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11 Classification of partial differentiation equations (PDEs)

In this lecture, we will begin studying differential equations involving more than one indepen-
dent variable. Since they involve partial derivatives with respect to these variables, they are
called partial differential equations (PDEs). Although this course is concerned with numerical
methods for solving such equations, we will first need to provide some analytical background
on where those equations arise and how their setup is different from that of ODEs. This will
be done in this lecture, while the subsequent lectures, except Lecture 16, will deal with the
numerical methods proper.

11.1 Classification of physical problems described by PDEs

The majority of problems in physics and engineering fall into one of the following categories:
(i) equilibrium problems, (ii) eigenvalue problems, and (iii) evolution problems.

(i) Equilibrium problems are those where a
steady-state spatial distribution of some quantity
u inside a given domain D is to be determined by
solving a differential equation

L[u] = f(x, y), (x, y) ∈ D

subject to the boundary condition

B[u] = g(x, y), (x, y) ∈ ∂D,

where ∂D is the boundary of D. Here L is a differ-
ential operator involving derivatives with respect
to x and y (for the case of two spatial dimensions);
B, in general, may also involve derivatives. These
BVPs generalize, to two or more dimensions, the
one-dimensional BVPs we studied in Lectures 6
through 9.

PDE:
 L[u]=f 

inside domain D 
Boundary 
conditions 

 B[u]=g 

on boundary ∂D 
 of D 

Examples of equilibrium problems include: Steady flows of liquids and gases; steady tem-
perature distributions; equilibrium stress distributions in elastic structures.

(ii) Eigenvalue problems are extensions of equilibrium problems with no external forces
where nontrivial (i.e. not identically zero) steady-state distributions exist only for special values
of certain parameters, called eigenvalues. These eigenvalues, denoted λ, are to be determined
along with the steady-state distributions themselves. The simplest form of an eigenvalue prob-
lem is

L[u] = λu for (x, y) ∈ D; B[u] = 0 for (x, y) ∈ ∂D.

In a more complex setup, the eigenvalue may enter into the PDE, and even into the boundary
condition, in a more complicated way.

Examples of eigenvalue problems include: Natural frequencies of vibrating strings and
beams; resonances in electric circuits, mechanics, and acoustics; energy levels in quantum
mechanics.
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(iii) Evolution problems are extensions of initial value problems, where the distribution of
a quantity u is not steady but exhibits transient behavior. Generally, the problem is to predict
the evolution of the system at any time given its initial state. This is done by solving the PDE

L[u] = f(x, t), x ∈ D for t > t0,

given the initial state
I[u] = h(x), x ∈ D for t = t0,

and the boundary conditions

B[u] = g(x, t), x ∈ ∂D and t ≥ t0.

The differential operator L now involves derivatives with respect to x and t.
Examples of evolution problems include: Propagation of waves of any nature; diffusion of a

substance in a room; cooling down or heating an object.
For example, the mathematical problem of determining the evolution of a temperature

distribution u(x, t) inside a rod of length 1 is set up as follows:

L[u] = f(x, t), 0 < x < 1, t > 0,

where the form of the operator L will be specified
later;

u(x, t = 0) = h(x), 0 ≤ x ≤ 1,

where h(x) is the initial temperature distribution
inside the rod;

u(x = 0, t) = g0(t), u(x = 1, t) = g1(t), t ≥ 0,

where g0,1(t) are the temperature values main-
tained at the two ends of the rod. 0 1

0

1
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t 
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 D 
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In subsequent lectures, we will consider exclusively evolution problems. To that end, we
would like to obtain an unambiguous, mathematically rigorous criterion which allows one to
distinguish problems of different categories. This is done in the next subsection.

11.2 Classification of PDEs into three types; characteristics

Here we will consider the question of how many initial or boundary conditions can or should be
specified for a PDE, and where (in the (x, y)-space or (x, t)-space) it can or should be specified.
We will concentrate on the case of two-dimensional spaces; generalizations to three- and four-
(i.e., the time plus three spatial dimensions) dimensional cases are possible and for the most
part straightforward. For definiteness, let us speak about the (x, y)-space until otherwise is
indicated. (That is, for now, y may denote either the second spatial variable or the time
variable t.)

As a reference, let us recall the situation with ODEs and, for concreteness, consider a
second-order ODE u′′ = f(x, u, u′). There, we could either specify the initial values for the
dependent function u and its derivative u′ at one point x = x0, or the values of u (or more
complicated expressions, e.g., (8.29)) at two points, x = a and x = b. In the former case, we
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have an IVP, and in the latter case, a BVP. Since, as we said earlier, we will be concerned
with the evolution problems, which are higher-dimensional counterparts of IVPs, we proceed
to recall how we were able to solve (conceptually, not technically) an IVP

u′′ = f(x, u, u′), u(x0) = u0, u′(x0) = v0 . (11.1)

Question: What does it actually mean “to solve an IVP”?
Answer: Obviously, it means to find the solution at every point x. But how? Well, we do so
by “marching” from one point to the next: from x0 to x0 + h, then from x0 + h to x0 +2h, etc.
(Here h is not related to a numerical step size (since we are discussing the analytical solution
of the problem) but merely denotes a small increment.)

Now, to march from x0 to x0 + h, we use the Taylor expansion:

u(x0 + h) = u(x0) + hu′(x0) +
1

2
h2u′′(x0) +

1

6
h3u′′′(x0) + . . . . (11.2)

The first two terms on the r.h.s of (11.2) are known from the initial condition; the third term
is known from the ODE, which we assume to be satisfied at x = x0. The last term in (11.2)
can then be found from

u′′′(x) =
du′′

dx
=

df

dx
=

∂f

∂x
+ u′∂f

∂u
+ u′′ ∂f

∂u′ . (11.3)

All omitted higher-order terms in (11.2) can be found analogously to (11.3). In this way, from
(11.2) one finds u(x0 + h) at a point x0 + h that is sufficiently close to x0. Then, to march on
from x0 + h to x0 + 2h, we need to know also u′(x0 + h), u′′(x0 + h), u′′′(x0 + h), etc., so as to
be able to write a counterpart of (11.2) for u(x0 + 2h). The first derivative is found from the
differentiated form of (11.2):

u′(x0 + h) = u′(x0) + hu′′(x0) +
1

2
h2u′′′(x0) +

1

6
h3u′′′′(x0) + . . . (11.4)

where, as we have explained above, we know every term on the r.h.s. The second derivative
u′′(x0 + h) is then found from the differential equation in (11.1) evaluated at x = x0 + h. Next,
u′′′(x0 + h) is found from (11.3) evaluated at x = x0 + h, and so on. We can thus march on in
this way, one small (and otherwise arbitrary) step at a time, and thus find the solution for all
x.

When we move from one independent variable (as
in ODEs) to two (as in PDEs), it is intuitive to
suppose that now the initial and/or boundary con-
ditions should be specified along certain curves in
the (x, y)-space rather than at a point. (In that
case, the dimensions of both the differential equa-
tion and the initial/boundary condition are each
increased by one.) Thus, let us assume that we
know the dependent function u along some curve
Γ in the (x, y)-plane and also the derivative ∂u/∂N⃗
in the direction normal to Γ:

N
T

N
x

T
x

T
y

N
y

Γ


u(x, y) = g̃0(x, y),

∂u(x, y)

∂N⃗
= G̃1(x, y),

(x, y) ∈ Γ, (11.5)
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where g̃0 and G̃1 are some known functions.
These equations can be rewritten in a different form that emphasizes that x and y in (11.5)

are not independent. Indeed, recall that any curve Γ can be defined by parametric equations:

Γ : x = x(s), y = y(s). (11.6)

It is convenient to chose the parameter s to be the arclength along Γ (starting from an arbitrary
point (a, b) on that curve). Then conditions (11.5) take on the form{

u = g0(s),

uxNx + uyNy = G1(s),
(x(s), y(s)) ∈ Γ. (11.5′)

where g0(s) ≡ g̃0(x(s), y(s)), G1(s) ≡ G̃1(x(s), y(s)). In the last equation in (11.5′), subscripts
denote partial differentiation; i.e., ux ≡ ∂u/∂x and uy ≡ ∂u/∂y, Nx, Ny are the components
of N⃗ (see the figure above), and we have used the definition of the directional derivative (along
vector N⃗) from Calculus III.

For reasons which will become clear later, we will now rewrite (11.5′) in yet another equiv-
alent form which will explicitly exhibit the first partial derivatives of u. For that, take the
directional derivative of the first equation in (11.5′) along the tangent vector T⃗ :

uxTx + uyTy = dg0(s)/ds, (11.7)

where Tx,y are the components of T⃗ . Then from (11.7) and the last equation in (11.5′) one can
solve for ux and uy separately at each point on Γ. Thus, Eqs. (11.5) are equivalent to

u = g0(s),

ux = g1(s),

uy = g2(s),

(x(s), y(s)) ∈ Γ, (11.8)

where g1,2 are some linear combinations of dg0/ds and G1.
In the remainder of this course, we will consider PDEs of the form

Auxx + 2Buxy + Cuyy +Dux + Euy + F = 0, (11.9)

where coefficients A,B,C may depend on any or all of x, y, u, ux, uy and coefficients D,E, F

may depend on x, y, u. Given the PDE (11.9) and the initial/boundary conditions (11.8) on
curve Γ, we would like to determine u at some point that is sufficiently near Γ. So, let (x0, y0) be
some point on Γ and (x0+h, y0+κ) with h, κ ≪ 1 be a nearby point where we want to determine
u. The fundamental question that we now ask is: What are the restrictions on curve Γ and
on the coefficients A, B, C in (11.9), under which one can determine u(x0 + h, y0 + κ)?

We begin answering this question by writing the Taylor expansion for u(x0+h, y0+κ) near
point (x0, y0) on Γ, where we know both u and its first derivatives from (11.8):

u(x0 + h, y0 + κ) = u(x0, y0) + hux(x0, y0) + κuy(x0, y0) +

1

2
h2uxx(x0, y0) + hκuxy(x0, y0) +

1

2
κ2uyy(x0, y0) +

1

6
h3uxxx(x0, y0) + . . . (11.10)

This expansion is the analog of (11.2). Now, as we have said, all terms on the r.h.s. of the first
line of (11.10) are known from (11.8). If each of the three terms in the second line of (11.10)
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can be found separately (i.e., as opposed to in the combination in which they enter Eq. (11.9)),
then all the higher-order terms in expansion (11.10) can be found similarly to (11.3). Indeed,
suppose we have found expressions for uxx, uxy, and uyy in the form that generalizes (11.1) to
two variables:

uxx = f1(x, y, u, ux, uy), uxy = f2(x, y, u, ux, uy), uyy = f3(x, y, u, ux, uy). (11.11)

Then the third-order partial derivatives (see the last line in (11.10)) can be computed using
the Chain Rule for a function of several variables. For example,

uyyy =
∂uyy

∂y

∣∣∣∣
x=const

=
df3(x, y, u(x, y), ux(x, y), uy(x, y))

dy

∣∣∣∣
x=const

=
∂f3
∂y

+
∂f3
∂u

∂u

∂y
+

∂f3
∂ux

∂ux

∂y
+

∂f3
∂uy

∂uy

∂y
≡ ∂f3

∂y
+

∂f3
∂u

uy +
∂f3
∂ux

uxy +
∂f3
∂uy

uyy .(11.12)

The first two terms on the r.h.s. of (11.12) are known from (11.8). Therefore, if we also know
uxy and uyy on Γ, we then can compute the last two terms in (11.12) and hence the uyyy.
Other third- and higher-order derivatives in the Taylor expansion (11.10) can be computed
analogously. Thus, will be able to find u(x0 + h, y0 + κ) if and only if we know uxx, uxy, and
uyy on Γ.

Now, we need three equations to be able to uniquely determine the three quantities uxx,
uxy, and uyy. The first equation is the PDE (11.9). The other two equations are found by
taking the directional derivative of the last two equations of (11.8) along the tangent vector T⃗ :

uxxTx + uxyTy = dg1/ds , (11.13)

uyxTx + uyyTy = dg2/ds . (11.14)

Recall that the subscripts of u denote corresponding partial derivatives, while Tx and Ty denote
the x- and y-components of T⃗ , as in (11.7).

Further, if we assume u to be continuously differentiable at least twice, then

uxy = uyx, (11.15)

and Eqs. (11.9) and (11.13), (11.14) can be written as a linear system for uxx, uxy, and uyy at
any point on Γ:  A 2B C

Tx Ty 0

0 Tx Ty


 uxx

uxy

uyy

 =

 −Dux − Euy − F

dg1/ds

dg2/ds

 . (11.16)

This system yields a unique solution for uxx, uxy, and uyy provided that the coefficient matrix
is nonsingular. The matrix would be singular if its determinant vanishes:

AT 2
y − 2B Tx Ty + C T 2

x = 0 ⇒

A

(
dy

dx

)2

Γ

− 2B

(
dy

dx

)
Γ

+ C = 0 , (11.17)

where (
dy

dx

)
Γ

=
Ty

Tx

(11.18)
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is the slope of curve Γ (at a given point).
Thus, we have obtained the answer to the fundamental question posed above. Namely,

if the initial/boundary conditions are prescribed on a curve Γ whose tangent at any point
satisfies Eq. (11.17), then the corresponding initial-boundary value problem (IBVP) (11.5) and
(11.9) cannot be solved for a twice-countinuously differentiable (see (11.15)) function u(x, y). If
the initial/boundary conditions (11.5) are prescribed along any other curve, the IBVP can be
solved. Alternatively, the IBVP can still be solved if a smaller set of initial/boundary conditions
(say, just the first line in (11.5)) is specified along Γ, or if uxy (or any lower-order derivative of
u) is allowed to be discontinuous across Γ.

Equation (11.17) gives one the mathematically rigorous criterion that separates all PDEs
(11.9) into three types depending on the relation among A, B, and C.

B2 − AC < 0
In this case, no real solution for the slope (dy/dx)Γ can be found from the quadratic equation
(11.17). This means that one can specify the initial/boundary conditions (11.5) along any
curve in the plane, and be able to obtain the solution u sufficiently close to that curve. Such
equations are called elliptic. Physical problems leading to elliptic equations are the equilibrium
and eigenvalue problems, described in Sec. 11.1. Typical examples of such problems are the
Laplace and Helmholtz equations:

uxx + uyy = 0, (Laplace)

uxx + uyy = λu. (Helmholtz)

The boundary conditions for elliptic equations are usually imposed along the boundary of a
closed domain D, as in the first figure in Sec. 11.1. One can also show that to obtain the
solution inside the entire domain D rather than only “sufficiently close” to its boundary ∂D,
one needs to impose only one of the conditions (11.5), but not both. On this remark, we leave
the elliptic equations and will not consider them again in this course.

B2 − AC > 0
In this case, two real solutions for the slopes of curve Γ exist:(

dy

dx

)
Γ

=
B ±

√
B2 − AC

A
. (11.19)

These slopes specify two distinct directions in the (x, y)-plane, called characteristics. The
correspondinf PDEs are called hyperbolic. Physical problems that lead to hyperbolic equa-
tions are the evolution problems dealing with propagation of waves (e.g., light or sound). The
coordinates in this case are x, the spatial coordinate of propagation, and t, the time, rather
than the second spatial coordinate y. The typical example is the Wave equation:

uxx − utt = 0 . (Wave)

The importance of characteristics in hyperbolic problems is two-fold: (i) the initial data
for a smooth solution cannot be prescribed on a characteristic, and (ii) initial disturbances
propagate along the characteristics. We will consider this latter issue in more detail when we
begin to study numerical methods for hyperbolic PDEs.

B2 − AC = 0
In this case, only one value of the slope of Γ exists:(

dy

dx

)
Γ

=
B

A
. (11.20)
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This gives only one direction of characteristics. The corresponding PDEs are called parabolic.
Physical problems that lead to parabolic equations are usually diffusion-type problems. The
typical example is the Heat equation,

uxx − ut = 0 , or ut = uxx , (Heat)

which describes, e.g., evolution of temperature inside a rod.
Since in the next four lectures we will consider methods of numerical solution of the Heat

equation, let us discuss how boundary conditions can or should be set up for it. In fact, this
was considered in the example at the end of Sec. 11.1. Namely, the initial condition for the
Heat equation on x ∈ [0, 1] is

u(x, t = 0) = u0(x), 0 ≤ x ≤ 1,

(
Initial condition
for Heat equation

)
and the boundary conditions are

u(0, t) = g0(t), u(1, t) = g1(t), t ≥ 0 .

(
Boundary conditions
for Heat equation

)
Note that the initial condition is prescribed along a characteristic! Indeed, for the Heat

equation, A = 1, B = C = 0, and Eq. (11.20) gives the slope of characteristic as dt/dx = 0,
which means that any line t = const is a characteristic. The above, however, does not contradict
the results of analysis of this subsection, because the initial condition corresponds only to the
first equation in (11.5), while the second equation is absent. Thus, one cannot prescribe the
rate of change ut at the initial moment for the Heat equation.

11.3 Questions for self-assessment

1. Give examples from physics of equilibrium, eigenvalue, and evolution problems.

2. Explain how system (11.16) is set up (i.e., where its equations come from).

3. What is the significance of characteristics?

4. What types of physical problems lead to elliptic, hyperbolic, and parabolic equations?

5. How many characteristics does the Wave equation have?

6. Why does prescribing initial data on a characteristic for the Heat equation not prevent
one from finding the solution of that IBVP?


