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12 The Heat equation in one spatial dimension:

Simple explicit method and Stability analysis

12.1 Formulation of the IBVP and the minimax property of its so-
lution

We begin by writing down the Heat equation (in its simplest form) on the interval x ∈ [0, 1]
and the corresponding initial and boundary conditions. In fact, this is just a restatement from
the end of Lecture 11.

ut = uxx 0 < x < 1, t > 0 ; (12.1)

u(x, t = 0) = u0(x) 0 ≤ x ≤ 1 ; (12.2)

u(0, t) = g0(t), u(1, t) = g1(t) t ≥ 0 . (12.3)

The IBVP (12.1)–(12.3) will be the subject of this and the next lectures. Boundary conditions
of a form more general than (12.3) will be considered in Lecture 14. Recall that in order to
produce a continuous solution, the boundary and initial conditions must match:

u0(0) = g0(0) and u0(1) = g1(0) . (12.4)

On physical grounds, in what follows we will always require that the matching conditions (12.4)
be satisfied.

It is always useful to know what general properties one may expect of the analytical solution
of a given IBVP, so that one could verify that the corresponding numerical solution also has
these properties (this is a basic sanity check for the numerical code). Such a property for IBVP
(12.1)–(12.3), stated below, is proved in courses on PDEs.

Minimax principle Suppose ut (and hence uxx

and both ux and u) is continuous in the region
D = [0, 1] × [0, ∞) (see the figure on the right).a

Then the solution u of the IBVP (12.1)–(12.3)
achieves its maximum and minimum values on ∂D
(i.e. either for t = 0 or for x = 0 or x = 1).
In other words, u cannot achieve its maximum or
minimum values strictly inside D.

aNote that here domain D and its boundary ∂D are
defined slightly differently than in the figure at the end of
Sec. 11.1.
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Note that this, at least partially, agrees with our intuition in “real life”. Indeed, suppose
one creates some distribution of non-negative temperature in the rod at t = 0 while keeping
the ends of the rod at zero temperature at all times. Then we expect that the temperature
inside the rod at any t > 0 will be less than it was at t = 0 (because the rod will cool down);
that is, the maximum temperature was observed somewhere along the rod at t = 0, i.e. at the
bottom part of ∂D. On the other hand, we also expect that the temperature in this setup will
not drop below zero; that is, the temperature will be minimum at the ends of the rod, i.e. at
the sides of ∂D.
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12.2 The simplest explicit method for the Heat equation

Let us cover the region D with a mesh (or grid), as
shown on the right. Denote

xm = mh, m = 0, 1, . . . ,M, (h = 1
M
);

tn = nκ, n = 0, 1, . . . , N,
(
κ = Tmax

N

)
;

(12.5)

here Tmax is the maximum time until we want to com-
pute the solution. Also, let Un

m be the solution computed
at node (xm, tn). For simplicity, in this lecture we will
assume that the boundary conditions are homogeneous:

g0(t) = g1(t) = 0 for all t ; (12.6)

note that this implies that u0(0) = u0(1) = 0.

When restricted to the grid, the initial and boundary conditions become:

(12.2) ⇒ U0
m = u0(mh), 0 ≤ m ≤ M ; (12.7)

(12.3) ⇒

{
Un
0 = 0,

Un
M = 0,

n ≥ 0 . (12.8)

Let us now use the simplest finite-difference approximations to replace the derivatives in
the Heat equation:

ut → Un+1
m − Un

m

κ
+O(κ) , (12.9)

uxx →
Un
m+1 − 2Un

m + Un
m−1

h2
+O(h2) . (12.10)

Substituting these formulae into (12.1) yields the simplest explicit method for solving the Heat
equation:

Un+1
m − Un

m

κ
=

Un
m+1 − 2Un

m + Un
m−1

h2
+O(κ+ h2) , (12.11)

or, equivalently,
Un+1
m = rUn

m+1 + (1− 2r)Un
m + rUn

m−1 , (12.12)

where
r =

κ

h2
. (12.13)

The numerical solution at node (xm, tn+1) can thus be
found if one knows the solution at nodes (xm, tn) and
(xm±1, tn). These four nodes form a stencil for scheme
(12.12), as shown schematically on the right.
Given the initial and boundary conditions (12.7) and
(12.8), one can advance the solution Un

m from time level
number n to time level number (n + 1) using scheme
(12.12).

n+1 

n 

m−1 m m+1 
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Let us point out that the error derived in (12.9)–(12.11) is the discretization error of the
simple explicit scheme (12.12). It is worth displaying this fact conspicuously:

discretization error of (12.12) = O(κ2 + h2). (12.14)

You may recall that discretization error is one of the three types of error that was defined
in Lecture 1 and revisited in Lecture 4. The discretization error is the one caused by the
replacement of derivatives by finite differences in the equation. For differential equations that
are first-order in the evolution variable (x — for ODEs in Lectures 1 and 4; t — for the Heat
equation), it has the same order (for ODEs — in h; for PDEs — in κ and h) as the global error,
but, unlike the latter, can be explicitly found. (Please review that material in Lectures 1 and
4 if the above brief review seems insufficient.) Thus, the global error of scheme (12.12) is
also given by (12.14).

From Eq. (12.11) (or, equivalently, from (12.14)) one can see that the simple explicit method
is consistent with the PDE (12.1).37 However, from Lecture 4, we know that consistency alone
is not sufficient for the numerical solution to converge to the analytical solution of an evolution-
type differential equation (i.e., for any of the ODEs considered in Lecture 1 – 5 and for the
Heat equation in this Lecture). To assure the convergence, we must also require that the
finite-difference scheme be stable. We therefore turn to studying stability of scheme (12.12)
next.

12.3 Stability analysis

Recall that stability means that small errors made during one step of the computation must
not grow at subsequent steps. For ODEs, we stated a theorem that said that “stability +
consistency” implied convergence of the numerical solution to the analytical one. For PDEs, a
similar result also holds:

Lax Equivalence Theorem, 12.1 For a properly posed (as discussed in Lecture 11)
IBVP and for a finite-difference scheme that is consistent with the IBVP, stability is a necessary
and sufficient condition for convergence.

As for ODEs, this theorem can be understood from the following simple consideration.
Let un

m = u(xm, tn) be the exact solution of the PDE, Ūn
m be the exact solution of the finite-

difference scheme, and Un
m be the actually computed solution of that scheme. (It may differ

from the exact one because, e.g., of round-off errors.) Then

|un
m − Un

m| =
∣∣(un

m − Ūn
m

)
+
(
Ūn
m − Un

m

)∣∣ ≤
∣∣un

m − Ūn
m

∣∣+ ∣∣Ūn
m − Un

m

∣∣ . (12.15)

If the difference scheme is consistent, then the first term on the r.h.s. is small. If the difference
scheme is stable, then the second term on the r.h.s. is small for all n (i.e., it does not grow).
Thus, if the scheme is both consistent and stable, then the l.h.s. of (12.15) is small for all
n, which, in words, means that the numerical solution of the finite-difference scheme closely
approximates the analytical solution of the PDE.

Now we will show how stability of a finite-difference scheme for a PDE can be studied. We
will do this using two alternative methods. Method 1 will show a relation between the stability
analysis for PDEs with that for systems of ODEs. Method 2 will be new. It is specific to

37Recall from Lecture 4 that consistency means that the solution of the finite-difference scheme approaches
the solution of the differential equation as the step size(s), κ and h in this case, tend to zero. In other words,
the discretization error τ satisfies limκ,h→0 τ = 0.



MATH 337, by T. Lakoba, University of Vermont 124

PDEs and, quite pleasantly, is easier to apply than Method 1. However, nothing is free: this
simplicity comes at the price that this method gives less complete information than Method 1.
We will provide more details after we will have described both methods.

Method 1 (Matrix stability analysis)
One can view scheme (12.11) (and hence (12.12)) as the simple explicit Euler method applied
to the following coupled system of ODEs:

d

dt


u1

u2

·
·

uM−1

 =
1

h2


−2 1 0 · · 0
1 −2 1 0 · 0
· · · · · ·
0 · 0 1 −2 1
0 · · 0 1 −2




u1

u2

·
·

uM−1

 . (12.16)

(In writing out (12.16), we have also used the homogeneous boundary conditions (12.8).) In-
deed, Eqs. (12.11) are obtained by discretizing the time derivative in (12.16) according to
(12.9). Thus, studying the stability of scheme (12.11) is equivalent to studying the stability
of the simple Euler method for system (12.16). You will be asked to do so, using techniques
of Lecture 5, in one of the homework problems. Below we will proceed in a slightly different,
although, of course, equivalent, way.

We write Eqs. (12.12) in the matrix form:
Un+1
1

Un+1
2

·
·

Un+1
M−1

 =


1− 2r r 0 · · 0

r 1− 2r r 0 · 0
· · · · · ·
0 · 0 r 1− 2r r
0 · · 0 r 1− 2r




Un
1

Un
2

·
·

Un
M−1

 , (12.17)

or
U⃗n+1 = AU⃗n, (12.18)

where r is defined by (12.13),

U⃗n =
[
Un
1 , U

n
2 , · · , Un

M−1

]T
,

and A is the matrix on the r.h.s. of (12.17).
Next, to study stability of this finite-difference scheme, we follow the logic of Section 4.2 of

Lecture 4. We assume that when computing the solution of (12.18), one makes a small error

ϵ⃗n (defined similarly to U⃗n above) on top of the exact solution ⃗̄Un.38 Thus, one has:

U⃗n = ⃗̄Un + ϵ̃n. (12.19)

Substituting this into (12.18) and using the fact that both U⃗n and ⃗̄Un satisfy that equation,
one concludes that the error also satisfies the same equation, i.e.:

ϵ⃗n+1 = A ϵ⃗n. (12.20)

Let us stress that the fact that the exact solution and the error of the (discretized)
Heat equation satisfy the same equation, (12.18) and (12.20), respectively, holds for
any linear equation. This, of course, could also be deduced from Section 4.2 of Lecture
4, where one would set f(x, y) = a(x)y + b(x) for linear equations; see (4.16).

38The bar-notation here mimics that in (12.15).
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Stability analysis of scheme (12.12) (or, equivalently, (12.18)) amounts to determining when
the norm of the error grows or does not grow with the number of time steps in (12.20). As
we showed in the Appendix, this norm does not grow only if all the eigenvalues of A do not
exceed 1 in magnitude. Therefore, for the stability analysis, we need to know bounds for the
eigenvalues of matrix A. In fact, for the matrix of the very special form appearing in (12.17),
exact eigenvalues are well known. We present the following result without a proof (which can
be found, e.g., in D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific
Computing, 3rd Ed. (Brooks/Cole, 2002); Sec. 9.1; or from the notes posted alongside this
Lecture).

Lemma For an arbitrary N , let B be an N ×N tridiagonal matrix of the form

B =


b c 0 · · 0
a b c 0 · 0
· · · · · ·
0 · 0 a b c
0 · · 0 a b

 . (12.21)

The eigenvalues and the corresponding eigenvectors of B are:

λj = b+ 2
√
ac cos

πj

N + 1
, v⃗j =



(
a
c

)1/2
sin 1·πj

N+1(
a
c

)2/2
sin 2·πj

N+1

·
·(

a
c

)N/2
sin N ·πj

N+1

 , j = 1, . . . , N . (12.22)

Using this Lemma, we immediately deduce that the eigenvalues of matrix A in (12.18) are

λj = 1− 2r + 2r cos
πj

M
, j = 1, . . . , M − 1 , (12.23)

whence

λmin = λM−1 = 1− 2r + 2r cos
π(M − 1)

M
, (12.24)

λmax = λ1 = 1− 2r + 2r cos
π

M
. (12.25)

If π/M ≪ 1 (i.e., if there are sufficiently many grid points on the interval [0, 1]), the preceding
expressions reduce to

λmin ≈ 1− 4r + r
( π

M

)2

, (12.26)

λmax ≈ 1− r
( π

M

)2

, (12.27)

where we have used the expansion cosα ≈ 1−1
2
α2 for α ≪ 1. Then the condition for convergence

of the iterations (12.17), which is, as we said before the Lemma,

−1 ≤ λj ≤ 1, j = 1, . . . , M − 1, (12.28)
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yields

λmin ≈ 1− 4r + r
( π

M

)2

≥ −1 ;

λmax ≈ 1− r
( π

M

)2

≤ 1 .

The second of these equations is satisfied automatically because r = κ/h2 > 0. The first
equation yields:

r ≤ 2

4−
(

π
M

)2 ≡ 2

4− (πh)2
≈ 1

2
. (12.29)

This condition, in a simplified form

r ≤ 1

2
, or κ ≤ 1

2
h2 , (12.30)

is usually taken as the stability condition of the finite-difference scheme (12.12). This
means that if κ ≤ 1

2
h2, then all round-off errors will eventually decay, and the scheme is stable.

The corresponding numerical solution will converge to the solution of IBVP (12.1)–(12.3). If,
on the other hand, κ > 1

2
h2, then the errors will grow, thereby making the scheme unstable.

The corresponding numerical solution, starting at some t > 0, will have nothing in common
with the exact solution of the IBVP.

Remark 1 Above we said that for stability of iterations (12.18), the eigenvalues of A must be
less than 1 in magnitude. Let us stress that this is true only for diagonalizable (e.g., symmetric)
matrices. For nondiagonalizable matrices, e.g., for an (M − 1)× (M − 1) matrix

N =


1 −1 0 · · 0
0 1 −1 0 · 0
· · · · · ·
0 · 0 0 1 −1
0 · · 0 0 1

 , (12.31)

an eigenvalue-based stability analysis will fail. Indeed, all of N ’s eigenvalues equal 1, yet one
can show (e.g., using Matlab’s command norm) that ∥N n∥ → ∞ as nM−1. There is an entire
field of matrix analysis that deals with such non-diagonalizable matrices (with the descriptive
keyword being “pseudospectra”), but we will not go into its details here.

Condition (12.30) highlights the main drawback of the simple explicit scheme (12.12).
Namely, in order for this scheme to be stable (and hence converge to the analytical solution
of the IBVP), one must take very small steps in time, κ ≤ 1

2
h2. This will make the code very

time-consuming. We will consider alternative approaches, which do not face that problem, in
the next lecture.

Now we turn to the second method for stability analysis, announced earlier in this section.

Method 2 (von Neumann stability analysis)
It is rare that eigenvalues of a matrix, like those of matrix A in (12.18), are available. Therefore,
we would like to be able to deduce stability of a scheme without finding those eigenvalues. To
begin, let us recall that, since the Heat equation and its discrete version (12.12) are linear,
the computational errors satisfy the same equations as the solution itself; see (12.20). Let us
denote the error at node (mh, nκ) as ϵnm. According to the above, it satisfies Eq. (12.12):

ϵn+1
m = rϵnm+1 + (1− 2r)ϵnm + rϵnm−1 . (12.32)
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At each time level, the error can be expanded as a linear superposition of Fourier harmonics:

ϵnm =
∑
l

cl(n) exp(iβlxm) (here i ≡
√
−1). (12.33)

The range of values for βl will be specified as we proceed.
Since Eq. (12.32) is linear, we can substitute in it each individual term of the above

expansion. In doing so, we will also let

cl(n) = ρn,

where ρ is the number to be determined. Thus, substituting ϵnm = ρn exp(iβmh) into (12.32),
one obtains

ρn+1eiβmh = rρneiβ(m+1)h + (1− 2r)ρneiβmh + rρneiβ(m−1)h . (12.34)

Let us make two remarks about the notations in (12.34). First, the superscript in ϵnm means
that the error ϵ is evaluated at the nth time level. On the other hand, the superscript in ρn

means that the factor ρ is raised to nth power. Second, we have dropped the subscript l of β
since we now deal with only one term in expansion (12.33).

Continuing with our derivation, we divide all terms in (12.34) by ρn exp(iβmh) and obtain:

ρ = reiβh + (1− 2r) + re−iβh = 1− 2r + 2r cos(βh) . (12.35)

Condition |ρ| ≤ 1, which would guarantee that the errors do not grow, yields:

−1 ≤ 1− 2r + 2r cos(βh) ≤ 1 . (12.36)

To obtain a condition on r from this double inequality, we need to know what values the
parameter β can take. Even though periodic boundary conditions, which are tacitly implied
by the use of the Fourier expansion (12.33) (as shown in graduate courses on Fourier analysis),
yield certain discrete values for β, we will follow an alternative — and simplified — approach.
Namely, we will assume that the cosine in (12.36) can take its full range of values:

−1 ≤ cos(βh) ≤ 1 ⇒ 0 ≤ βh ≤ π . (12.37)

Using now the half-angle formula, valid for any α:

1− cosα = 2 sin2
(α
2

)
,

one rewrites (12.36) as

−1 ≤ 1− 4r sin2

(
βh

2

)
≤ 1. (12.38)

The right-hand inequality in (12.38) holds automatically, while the left-hand one implies:

r sin2

(
βh

2

)
≤ 1/2. (12.39)

To guarantee stability of the method, this inequality must hold for all values of βh from
(12.37). In particular, it must hold for the “worst”-case value that yields the largest value of
sin2(βh/2). The latter value is 1, occurring for βh = π. Then, the stability condition is

r · 1 ≤ 1

2
, (12.30)
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which is the simplified form of the stability condition obtained in Method 1 above.
A few remarks are now in order.

Remark 2 The reason why the condition obtained by the von Neumann analysis is slightly
different from the exact condition (12.29) is that the latter, based on the eigenvalues of matrix
A in (12.17), takes into account the boundary conditions (QSA: how?), while the von Neumann
analysis, based on expansion (12.33), ignores those conditions.

Remark 3, related to Remark 2. A condition on r obtained via the von Neumann analysis
is, in many cases, a necessary, but not sufficient, condition for stability of a finite-difference
scheme. That is, a scheme may be found to be stable according to the von Neumann analysis,
but taking into account the information about the boundary conditions may reveal that there
still is an instability. The latter can come from a mode that “hinges” on the boundary but
decays towards the inside of the x-domain. An example of such a boundary mode that is
unstable analytically (i.e., according to the IBVP for the PDE), will be given in HW 14. An
example of a boundary mode that is unstable due to the numerical scheme used, can be found
in R.D. Richtmyer and K.W. Morton, Difference methods for initial-value problems, 2nd Ed.
(Interscience/John Wiley, New York, 1967); pp. 154–156. A simple, yet practical approach
to extend the results of the von Neumann analysis to an IBVP with non-periodic boundary
conditions is to follow these two steps: (i) Apply the von Neumann analysis to a given scheme,
find the condition (usually on r) that is required for the scheme to be stable, and then test the
scheme on the problem of interest while monitoring if any modes localized near the boundaries
tend to become unstable.

Let us note that in some — admittedly, much rarer — cases (specifically, in one case known
to this instructor), the von Neumann analysis may do the opposite of what is said in the
previous paragraph. Namely, a scheme can be found to be von Neumann-unstable, but an
analysis taking into account non-periodic boundary conditions can find the instability to be
suppressed. A paper (by this instructor) illustrating this situation for an evolution equation of
a hyperbolic type (i.e., one describing wave propagation), is posted next to this Lecture.

Let us also remind the reader that Method 1 provides a sufficient condition for stability of
the numerical scheme,39 because it takes into account the boundary conditions when setting up
matrix A. However, that method is difficult to apply in practice since it requires the knowledge
of the eigenvalues of A.

Remark 4 Note, however, that in finite-difference discretization of hyperbolic equations, where
the counterpart of matrix A may turn out to be nondiagonalizable, the von Neumann analysis
would provide more information about the stability of the numerical scheme than Method 1. An
extreme example is that of matrix N in (12.31), for which the information about its eigenvalues
is useless for the stability analysis (see above). Yet, the von Neumann analysis in this case can
be shown to correctly predict stability or instability of the numerical scheme.

An important feature of the von Neumann analysis is that it tells the user which harmonics
(or modes) of the numerical solution will first become unstable if the stability condition is
slightly violated. For example, it follows from (12.36) and (12.39) that if r just slightly exceeds
the critical value of 1/2, then modes with β ≈ π/h will have the amplification factor ρ that
will be slightly less than −1:

r >
1

2
⇒ ρ

(
β ≈ π

h

)
< −1 . (12.40)

39We refer to the case of the Heat equation, where matrix A is diagonalizable and hence has a basis of
eigenvectors over which any initial condition U⃗0 can be expanded.
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Now recall that the modes are proportional to
exp(iβmh), hence the unstable modes mentioned above
are

exp(iβmh) = exp
(
i
π

h
·mh

)
= exp(iπm) . (12.41)

Therefore, with the account of eiπ = −1, the mode
changes its sign from one node to the next, as shown
on the right. In other words, it is modes with the high-
est frequency that can cause numerical instability of the
simple explicit method for the Heat equation.

−1

0

1

m−2 

m−1 

m 

m+1 

m+2 

12.4 Explicit methods of higher order

As it follows from (12.11), scheme (12.12) has the first order of consistency in t and the second
order of consistency in x (i.e., the global error is O(κ + h2)). Note, however, that since the
stability condition (12.30),

κ ≤ 1

2
h2 , (12.30)

must hold, then one always has O(κ) = O(h2) for a stable scheme. In other words, it would
not make sense to derive a method with the discretization (or, equivalently, global — see the
end of Section 12.2) error of O(κ2+h2) while keeping κ ≤ 1

2
h2. However, it will still be of value

to derive a method with the discretization error O(κ2 + h4), which we will now do.
Remembering how we derived higher-order methods for ODEs, we start off by writing out

the Taylor expansions for the finite differences appearing in (12.9) and (12.10):

Un+1
m − Un

m

κ
=

∂

∂t
Un
m +

κ

2

∂2

∂t2
Un
m +O(κ2) , (12.42)

Un
m+1 − 2Un

m + Un
m−1

h2
=

∂2

∂x2
Un
m +

h2

12

∂4

∂x4
Un
m +O(h4) . (12.43)

Equation (12.42) is the counterpart of Eq. (8.35), and Eq. (12.43) was obtained in Problem 3
of HW 5. Substituting (12.42) and (12.43) into the Heat equation (12.1), we obtain:

Un+1
m − Un

m

κ
−
Un
m+1 − 2Un

m + Un
m−1

h2
=

(
∂

∂t
Un
m − ∂2

∂x2
Un
m

)
+

(
κ

2

∂2

∂t2
Un
m − h2

12

∂4

∂x4
Un
m

)
+O(κ2+h4) .

(12.44)
If the term in second parentheses on the r.h.s. does not vanish, then this equation merely
repeats the previously stated fact, (12.14), that the simple explicit scheme has the accuracy
O(κ2+h2). Therefore, we need to find condition(s) when this second-parentheses term vanishes;
then the discretization error will be given by the last term.

To find such a condition, we note that the first term on the r.h.s. of (12.44) vanishes,
because Un

m is assumed to satisfy the Heat equation. Next, we will handle the second term by
relating (Un

m)tt with (Un
m)xxxx. To that end, differentiating both sides of the Heat equation with

respect to t and then using the Heat equation again, we obtain:

∂

∂t
(ut − uxx) = utt −

∂2

∂x2
ut = utt − uxxxx , ⇒ utt = uxxxx . (12.45)
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Note that in the middle part of the first equation above, we have used that uxxt = utxx, which
implies that the solution has to be differentiable sufficiently many times with respect x and t.40

Continuing with the derivation of a higher-order scheme, we use (12.45) to write the second
term on the r.h.s. of (12.44) as(

κ

2
utt −

h2

12
uxxxx

)
=

(
κ

2
− h2

12

)
uxxxx . (12.46)

Thus, if one chooses

κ =
1

6
h2, or r =

1

6
, (12.47)

then the term (12.46) vanishes identically. Then the r.h.s. of (12.44) becomes O(κ2 + h4) =
O(h4) (or O(κ2)), since κ and h2 are related by (12.47). Thus, scheme (12.12) with r = 1/6
has the error O(κ2) = O(h4); it is sometimes called the Douglas method.

12.5 Effect of smoothness of initial condition (12.2) on accuracy of
scheme (12.12)

As has been noted after Eq. (12.45), the order of the truncation error of the numerical scheme
depends on the smoothness of the solution, which, in its turn, is determined by the smoothness
of the initial and boundary data. Below we give a corresponding result, whose proof may be
found in Sec. 1.7 of the book by Richtmyer and Morton, mentioned a couple of pages back.

Consider the IBVP (12.1)–(12.3) with constant boundary conditions (g0(t) = const and
g1(t) = const) which satisfy the consistency conditions (12.4). Let the initial condition u0(x)
have (p−1) continuous derivatives, while its pth derivative is discontinuous but bounded. Then
for scheme (12.12) with r ≤ 1/2 and r ̸= 1/6, there hold the following conservative estimates
for the error of the numerical solution:

||ϵn|| =


O(κp/4) = O(hp/2), for 1 ≤ p ≤ 3;

O(κ| lnκ|) = O(h2| lnh|), for p = 4;

O(κ) = O(h2), for p > 4 .

(12.48)

For the Douglas method (i.e. scheme (12.12) with r = 1/6), the analogous error estimates are:

||ϵn|| =


O(κp/3) = O(h2p/3), for 1 ≤ p ≤ 5;

O(κ2 lnκ) = O(h4| lnh|), for p = 6;

O(κ2) = O(h4), for p > 6 .

(12.49)

An intuitive understanding of why an insufficiently smooth initial condition causes the
accuracy of the numerical solution to decrease comes from the expressions for the discretization
error stated in Section 12.4. Namely, the r.h.s. of Eq. (12.43) shows that in order for the
spatial discretization error to be O(h2), it suffices that uxxxx be continuous. More generally,
all accuracy estimates obtained above (and also in Lecture 13) hold only under the
assumption that the corresponding Taylor expansions are valid. It is this requirement
for which sufficient smoothness of the solution (and hence of the initial condition) is needed.

40We will state some results of the effect of smoothness of the solution on the order of the error in the next
section.
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Let us emphasize that estimates (12.48) and (12.49) are very conservative and, according
to Richtmyer and Morton, more precise estimates can be obtained, which would show that the
error tends to zero with κ and h faster than predicted by (12.48) and (12.49). These estimates,
however, do show two important trends, namely:
(i) If the initial condition is not sufficiently smooth, the numerical error will tend to zero slower
than for a smooth initial condition. In other words, the “full potential” of a scheme in regards
to its accuracy can be utilized only for sufficiently smooth initial data; see the last lines in
(12.48) and (12.49).
(ii) The higher the (formally derived) order of the truncation error, the smoother the initial
condition needs to be for the numerical solution to actually achieve that order of accuracy.

Finally, let us mention that there is one more important trend in regards to the accuracy of
numerical schemes, which estimates (12.48) and (12.49) do not illustrate. Namely, the accuracy
of a scheme depends also on how close the parameter r is to the stability threshold (which is 1/2
for scheme (12.12)). Intuitively, the reason for this dependency can be understood as follows.
Note that when r is at the stability threshold, there is a mode that does not decay, because for
it, the amplification factor satisfies: |ρ| = 1 (ρ was introduced before Eq. (12.34)). According
to the end of Sec. 12.3, such a mode for scheme (12.12) is the highest-frequency mode with
β = π/h = πM . It is intuitively clear that any discontinuous or jagged initial condition will
contain such a mode and modes with similar values of β (i.e. β = π(M − 1), π(M − 2), etc.).
For those modes, |ρ| will be just slightly less than 1, and hence they will decay very slowly,
thereby lowering the accuracy of the scheme. On the contrary, when r is, say, 0.4, i.e. less than
the threshold by a finite amount, then all modes will decay at a finite rate, and the accuracy
of the scheme is expected to be higher than for r = 0.5. In a homework problem, you will be
asked to use a model initial datum to explore the effect of its smoothness, as well as the effect
of the proximity of r to the stability threshold, on the accuracy of scheme (12.12).

12.6 Appendix: Role of eigenvalues in stability analysis

Discretization schemes that we encounter for PDEs in this and subsequent lectures have the
following matrix form:

U⃗n+1 = MU⃗n, (12.50)

where U⃗n is defined after Eq. (12.18) and M is some (square) matrix; e.g., in (12.18) M ≡ A.
The question that we will want to answer is whether the “size” of vector U⃗n grows or decays
with time step n. ‘Size’ above is a layman term for the norm of a vector. This question can
be answered in terms of the norm of matrix M, similarly to our considerations of Method 1
(Picard iterations) in Sec. 8.6 of Lecture 8. However, for a large class of matrices (see below),
this question can be answered in terms of eigenvalues of M.

In all situations that we will encounter in this course this matrix will be symmetric (or,
perhaps, differ from such only in a small number of its entries). From your undergraduate
Linear Algebra you know that symmetric matrices are always diagonalizable. This means not
only that the first formula in Sec. 5.4.1 of Lecture 5 applies to them, but also that they have
as many linearly independent eigenvectors as their dimension. That is:

Mm⃗j = λjm⃗j, j = 1, 2, . . . ,M − 1. (12.51)

In other words, these eigenvectors for a basis in the same space RM−1 where U⃗n “lives”. Then,
any initial condition U⃗0 can be expanded over this basis:

U⃗0 = c
(0)
1 m⃗1 + c

(0)
2 m⃗2 + · · ·+ c

(0)
M−1m⃗M−1 (12.52)
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for some c
(0)
j . Substituting (12.52) into (12.50) with n = 0 and using (12.51), one obtains:

U⃗1 = λ1c
(0)
1 m⃗1 + λ2c

(0)
2 m⃗2 + · · ·+ λM−1c

(0)
M−1m⃗M−1. (12.53)

Now note that U⃗1 can be expanded over the same basis using a counterpart of (12.52):

U⃗1 = c
(1)
1 m⃗1 + c

(1)
2 m⃗2 + · · ·+ c

(1)
M−1m⃗M−1 (12.54)

for some c
(1)
j . Comparing the last two equations we conclude that

c
(1)
j = λjc

(0)
j , j = 1, 2, . . . ,M − 1. (12.55a)

Similarly:
c
(n)
j = λn

j c
(0)
j , j = 1, 2, . . . ,M − 1. (12.55b)

(Note that while the superscript ‘n’ in U⃗n denotes the time level tn, on the r.h.s. of (12.55b)
the same superscript denotes the power exponent.) From (12.55b) one sees that coordinates

c
(n)
j (and hence the norm) of vector U⃗n grow or decay depending on whether

|λj| > 1 or |λj| < 1. (12.56)

respectively.
Let us now clarify how the above applies to the stability of a given discretization scheme.

Since the Heat equation, which we study in this Lecture, is linear, then the numerical error
satisfies the same evolution equation as the solution; the boxed statement after Eq. (12.20).
Therefore:

• If for at least one j, one has |λj| > 1, then the discretization scheme is unstable;

• Otherwise, i.e. if all |λj| ≤ 1, then the scheme is stable.

Remark 5: In advanced texts on Numerical Analysis one also considers a somewhat rare
subcase of the second case where there are repeated eigenvalues with absolute value of 1. For
general matrices M, this may lead to a slow (sub-exponential) growth of the error. However,
for diagonalizable matrices, this never occurs. (This is shown in graduate courses on Linear
Algebra or Differential Equations.)

Remark 6: You may notice that formulas and conclusions of this Appendix, starting with
Eq. (12.55b), are very similar to those in the stability analysis of general-purpose methods
in Section 5.4.1 of Lecture 5.41 This is not a coincidence. Indeed, as we pointed out after
Eq. (12.16), all we do in this Lecture is apply the simple Euler method (which is one of the
general-purpose methods) to the system of ODEs (12.16).

12.7 Questions for self-assessment

1. State the minimax principle and provide its intuitive interpretation. When can this
principle be useful?

2. Obtain (12.12).

3. State the Lax Equivalence Theorem and provide a justification for it, based on (12.15).

41Quantities cj here are direct counterparts of zj there.
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4. Make sure you can obtain (12.16) as explained in the text below that equation. Where
are the boundary conditions (12.8) used in this derivation?

5. Make sure you can obtain (12.17) from (12.12).

6. Describe the idea behind Method 1 of stability analysis of the Heat equation.

7. Make sure you can obtain Eq. (12.20) as explained in the text.

8. Obtain Eq. (12.53) as explained in the text.

9. What will happen to the solution of scheme (12.12) if condition (12.30) is not satisfied?

10. Describe the idea behind the von Neumann stability analysis.

11. Make sure you can obtain Eqs. (12.34) and (12.35).

12. Answer the QSA posed in Remark 2 after the description of the von Neumann stability
analysis.

13. Describe advantages and disadvantages of the von Neumann method relative to Method
1.

14. What piece of information would be required to turn a von Neumann-like analysis from
a necessary to a sufficient condition of stability?

15. Which harmonics are “most dangerous” from the point of view of making scheme (12.12)
unstable? How would you proceed answering this question for an arbitrary numerical
scheme?

16. Make sure you can follow the derivation of (12.45).

17. Can you recall a counterpart of the Douglas method for ODEs?

18. Which factors affect the accuracy of a numerical scheme?


