
MATH 337, by T. Lakoba, University of Vermont 141

14 Generalizations of the simple Heat equation

In this Lecture, we will consider the following generalizations of the IBVP (12.1)–(12.3), based
on the simple Heat equation:

• Derivative (Neumann and mixed-type) boundary conditions;

• The linear Heat equations with variable coefficients;

• Nonlinear parabolic equations.

14.1 Boundary conditions involving derivatives

Let us consider the modified IBVP (12.1)–(12.3) where the only modification concerns the
boundary condition at x = 0:

ut = uxx 0 < x < 1, t > 0 ; (14.1)

u(x, t = 0) = u0(x) 0 ≤ x ≤ 1 ; (14.2)

ux(0, t) + p(t)u(0, t) = q(t), t ≥ 0 ; (14.3)

u(1, t) = g1(t), t ≥ 0 . (14.4)

The boundary condition involving the derivative can be handled by either of the two methods
described in Section 8.4 for one-dimensional BVPs. Below we will describe in detail how the
first of those methods can be applied to the Heat equation. We will proceed in two steps,
whereby we will first consider a modification of the simple explicit scheme (12.12) and then, a
modification for the Crank–Nicolson method (13.8), for the boundary condition (14.3).

Modification of the simple explicit scheme (12.12)
For n = 0, i.e. for t = 0, U0

m, m = 0, 1, . . . ,M − 1,M are given by the initial condition
(14.2). Then, discretizing (14.3) with the second order of accuracy in x as

U0
1 − U0

−1

2h
+ p0U0

0 = q0, (14.5)

one immediately finds U0
−1 (because p0 ≡ p(0) and q0 ≡ q(0) are given by the boundary

condition (14.3)). Thus, at the time level n = 0, one knows U0
m, m = −1, 0, 1, . . . ,M − 1,M .

For n = 1, we first determine U1
m for m = 0, 1, . . . ,M − 1 as prescribed by the scheme:

U1
m = U0

m + r
(
U0
m−1 − 2U0

m + U0
m+1

)
. (14.6)

(Note that the value U0
−1 is used to determine the value of U1

0 .) Having thus found U1
0 and U1

1 ,
we next find U1

−1 from the equation analogous to (14.5):

U1
1 − U1

−1

2h
+ p1U1

0 = q1. (14.7)

Finally, U1
M is given by the boundary condition (14.4).

For n ≥ 2, the above step is repeated.

Remark 1: We used the second-order accurate approximation for ux in (14.5) and its coun-
terparts for n > 0 because we wanted the order of the error at the boundary to be consistent
with the order of the error of the scheme, which is O(h2).

MATH 337, by T. Lakoba, University of Vermont 142

Modification of the Crank–Nicolson scheme (13.8)
For n = 0, one finds U0

−1 from Eq. (14.5).
For n = 1, one has,

from the boundary condition (14.3):

U1
1 − U1

−1

2h
+ p1U1

0 = q1 ; (14.7)

from the scheme (13.7):

U1
m − r

2

(
U1
m−1 − 2U1

m + U1
m+1

)
= U0

m +
r

2

(
U0
m−1 − 2U0

m + U0
m+1

)
, m = 0, 1, . . . ,M − 1.

(14.8)
Equations (14.7) and (14.8) yield M + 1 equations for the M + 1 unknowns U1

−1, U
1
0 , U

1
1 , . . .,

U1
M−1. This system of linear equations can, in principle, be solved. However, as we know from

Sec. 8.4 (see Remark 2 there), the coefficient matrix in such a system will not be tridiagonal,
which would preclude a straightforward application of the time-efficient Thomas algorithm.
The way around that problem was also indicated in the aforementioned Remark. Namely, one
needs to eliminate U1

−1 from (14.7) and the Eq. (14.8) with m = 0. For example, we can solve
(14.7) for U1

−1 and substitute the result into Eq. (14.8) with m = 0. This yields:

U1
0 − r

2

([
U1
1 − 2h(q1 − p1U1

0)
]
− 2U1

0 + U1
1

)
= U0

0 +
r

2

([
U0
1 − 2h(q0 − p0U0

0)
]
− 2U0

0 + U0
1

)
,

(14.9)
where on the r.h.s. we have also used (14.5). Upon simplifying the above equation, one can
write the linear system for the vector

U⃗n =
[
Un
0 , U

n
1 , . . . , U

n
M−1

]T
, n = 0 or 1

in the form:
AU⃗1 = BU⃗0 + b⃗, (14.10)

where

A =

1 + r(1− hp1) −r 0 0 · 0

−r/2 1 + r −r/2 0 · 0

0 −r/2 1 + r −r/2 · 0

· · · · · ·
0 · 0 −r/2 1 + r −r/2

0 · 0 0 −r/2 1 + r

(14.11)

and

B =

1− r(1− hp0) r 0 0 · 0

r/2 1− r r/2 0 · 0

0 r/2 1− r r/2 · 0

· · · · · ·
0 · 0 r/2 1− r r/2

0 · 0 0 r/2 1− r

, b⃗ =

−rh(q0 + q1)
0
0
·
0

r
2
(g01 + g11)

.

(14.12)
System (14.10) with the tridiagonal matrix A given by (14.11) can now be efficiently solved by
the Thomas algorithm.

For n ≥ 2, the above step is repeated.

MATH 337, by T. Lakoba, University of Vermont 143

14.2 Linear parabolic PDEs with variable coefficients

Generalization of the explicit scheme (12.12) to such PDEs is straightforward. For example, if
instead of the Heat equation (14.1) we have a PDE

ut = a(x, t)uxx, (14.13)

then we use the following obvious discretization:

a(x, t)uxx → anm
δ2xU

n
m

h2
. (14.14)

For the CN method, only slightly more effort is required. Note that the main concern here
is to maintain the O(κ2 + h2) accuracy of the method. Maintaining this accuracy is achieved
by using the fact, verified by the Taylor expansion around X, that

f(X +H)− f(X −H)

2H
= f ′(X) +

H2

6
f ′′′(X) +O(H4), (14.15a)

where f(X) is any sufficiently smooth function, and X can stand for either x or t (then H
stands for either h or κ, respectively). You have actually seen this formula in Lectures 3, 8,
and 13. If we now “center” the above formula on (X +H/2) instead, then it becomes:

f(X +H)− f(X)

H
= f ′

(
X +

H

2

)
+

H2

24
f ′′′
(
X +

H

2

)
+O(H4). (14.15b)

Similarly, using the Taylor expansion, you will be asked in a QSA to show that

f(X +H) + f(X)

2
= f

(
X +

H

2

)
+

H2

8
f ′′
(
X +

H

2

)
+O(H4). (14.15c)

In other words, we can use values f(X) and f(X+H) to approximate the values of the function
and its derivative at (X + H

2
) — the midpoint between X and X +H — with accuracy O(H2).

Using the idea expressed by (14.15), the schemes that we will list below can be shown to have
the required accuracy of O(κ2 + h2).

For the PDE
ut = a(x, t)uxx + b(x, t)ux + c(x, t)u, (14.16)

we discretize the terms in a rather obvious way:

ut → 1

κ
δtU

n
m ,

a(x, t)uxx → 1

2

(
anm

δ2xU
n
m

h2
+ an+1

m

δ2xU
n+1
m

h2

)
,

b(x, t)ux → 1

2

(
bnm

Un
m+1 − Un

m−1

2h
+ bn+1

m

Un+1
m+1 − Un+1

m−1

2h

)
,

c(x, t)u → 1

2

(
cnmU

n
m + cn+1

m Un+1
m

)
.

(14.17)

Let us explain the origin of the expressions on the r.h.s.’es of the first and third lines above.
The term on the first line approximates ut with accuracy O(κ2) at the virtual node (mh, (n+
1
2
)κ); this is just a straightforward corollary of (14.15b). The term on the third line has two

MATH 337, by T. Lakoba, University of Vermont 144

parts. The first part approximates bux with accuracy O(h2) at the node (mh, nκ); this is
just a straightforward corollary of (14.15a). Similarly, the second term approximates bux with
accuracy O(h2) at the node (mh, (n+1)κ). Hence the average of these two parts approximates
bux with accuracy O(κ2 + h2) at the virtual node (mh, (n + 1

2
)κ); this is a straightforward

corollary of (14.15c). (If you still have difficulty following these explanations, draw the stencil
for the CN method and then draw all the nodes mentioned above.)

Often, the PDE arises in a physical problem in the form

γ(x, t)ut = (α(x, t)ux)x + β(x, t)u . (14.18)

Instead of manipulating the terms so as to transform this to the form of (14.16) and then use
the discretization (14.17), one can discretize (14.18) directly:

γ(x, t)ut → 1

2
(γn

m + γn+1
m)

1

κ
δtU

n
m, or γ

n+ 1
2

m
1

κ
δtU

n
m,

(α(x, t)ux)x → 1

2

[
1

h

(
αn
m+ 1

2

δxU
n
m

h
− αn

m− 1
2

δxU
n
m−1

h

)
+

1

h

(
αn+1
m+ 1

2

δxU
n+1
m

h
− αn+1

m− 1
2

δxU
n+1
m−1

h

)]
,

β(x, t)u → 1

2

(
βn
mU

n
m + βn+1

m Un+1
m

)
.

(14.19)
Here we only outline the explanation of the term on the r.h.s. of the second line, since the
other two discretizations are analogous to those presented in (14.17). The first term in the first
parentheses approximates aux with accuracy O(h2) at the virtual node ((m + 1

2
)h, nκ); this is

a corollary of (14.15b). Similarly, the second term in the first parentheses approximates aux

with accuracy O(h2) at the virtual node ((m− 1
2
)h, nκ). Consequently, the entire expression in

the first parentheses with 1/h factored in it approximates (αux)x with accuracy O(h2) at the
node (mh, nκ); this is a corollary of (14.15a).42 Finally, the entire expression on the r.h.s. of
the second line of (14.19) approximates (αux)x with accuracy O(κ2 + h2) at the virtual node
(mh, (n+ 1

2
)κ).

14.3 Von Neumann stability analysis for PDEs with variable coeffi-
cients

Let us recall that the idea of the von Neumann analysis was to expand the error of the PDE
with constant coefficients into a set of exponentials ρn exp(iβx) = ρn exp(iβmh), each of which
exactly satisfies the discretized PDE for a certain ρ. Note also that for both the simple explicit
scheme (12.12) and the modified Euler-like scheme considered in Problem 4 for Homework #
12, the harmonics exp(iβmh) that would first become unstable should the stability condition
for the scheme be violated, are those with the largest spatial frequency, i.e. with β = π/h (see
the figure at the end of Sec. 12.3). The same appears to be true for most other conditionally
stable schemes.

Now let us consider the PDE (14.13) (or either of (14.16) and (14.18)) where the coefficient(s)
does(do) not vary too rapidly. Then, such a coefficient can be considered to be almost constant
in comparison to the highest-frequency harmonic that can potentially cause the instability. This
simple consideration suggests that for PDEs with sufficiently smooth coefficients, the

42Here, more accurate work, still based on (14.15), is needed to show that (O(h2) − O(h2))/h = O(h2) and
not O(h), as it generically would have been assumed. You can do this in a bonus problem.

MATH 337, by T. Lakoba, University of Vermont 145

von Neumann analysis can be carried out without any changes, while assuming that
at each point in space and time, the coefficients are constant. This approximation
is known as the principle of frozen coefficients; it was proposed by von Neumann around
1950.

For example, the principle of frozen coefficients yields the following stability criterion for
the simple explicit method applied to (14.13):

r ≤ 1

2a(x, t)
. (14.20)

This can be interpreted in the following two different ways.
(i) If the user decides to employ constant values for κ and h, and hence r, over the entire grid,
then he/she should ensure that

r ≤ 1

2maxx,t a(x, t)
(14.21)

for the scheme to be stable.
(ii) If the user decides to vary the time step κ, then at every time level, κ is to be chosen so
as to satisfy the condition

r(t) ≤ 1

2maxx a(x, t)
. (14.22)

The principle of frozen coefficients works often, but sometimes it can be strongly violated.
One example of this is pointed out in Sec. 14.5.3.

Let us now point out another issue, unrelated to the above one. It can occur, e.g., for PDE
(14.16) with c ̸= 0. Namely, note that (14.16) may have exponentially growing solutions. For
example, if each of a, b, and c is constant, then Eq. (14.16) has a solution u = exp(ct). If c > 0,
this solution grows in time. In such a case, when carrying out the von Neumann analysis, one
should not require that |ρ| ≤ 1 for the stability of the scheme, because this would preclude
obtaining the above exponentially growing solution. Instead, one should stipulate that the
largest 43 value of |ρ| satisfy (for the above example)

max |ρ| = 1 + cκ+ “smaller terms”, (14.23)

while all the other ρ’s must be strictly less than the r.h.s. of (14.23) in absolute value. Equation
(14.23) allows the (largest) amplification factor ρ corresponding to very low-frequency harmonics
(i.e. those with β ≈ 0) to be greater than 1 because of the true nature of the solution. If one
does not include the term into cκ into the modified definition of stability, Eq. (14.23), then it
would not be possible to find a range for r where the scheme (12.12) could be stable.

For the above example of Eq. (14.16) with constant coefficients a, b, and c, the condition on
r based on this modified stability criterion can be shown, by a straightforward but somewhat
lengthy calculation, to be

r ≤
2 + cκ− 1

2
r2b2π2h4

4a
≈ 1 + (cκ/2)

2a
, (14.24)

i.e. almost the same as (14.20).

43if more than one value of ρ for a given β exists, as for a multi-level scheme

MATH 337, by T. Lakoba, University of Vermont 146

14.4 Nonlinear parabolic PDEs: I. Explicit schemes, and the Newton–
Raphson method for implicit schemes

14.4.1 Explicit schemes

Explicit schemes for nonlinear parabolic PDEs can be constructed straightforwardly. As the
example of a nonlinear “Heat-like” equation, in this Section (i.e., in all subsections of 14.5), we
will use the PDE

ut =
(
u2ux

)
x
. (14.25)

The simple explicit scheme, based on (14.19), for it is:

δtU
n
m

κ
=

1

h

[(
Un
m+1 + Un

m

2

)2
δxU

n
m

h
−
(
Un
m + Un

m−1

2

)2 δxU
n
m−1

h

]
. (14.26)

If you are confused as to how this scheme can be justified, review Eqs. (14.15) and the expla-
nation found after (14.19). Understanding this will be again required when reading the next
subsection. So: pause, take a deep breath, and verify, following the guidelines two sentences
ago, that the r.h.s. of (14.26) indeed yields a O(h2)-accurate discretization of the r.h.s. of
(14.25).

The von Neumann stability analysis can no longer be rigorously justified for (most) nonlinear
PDEs, but it can often be justified approximately, if one assumes that the solution u(x, t)
(and hence its numerical counterpart Un

m) does not vary too rapidly. This is analogous to the
condition on the coefficients of linear PDEs mentioned in Sec. 14.3. Below we provide an
intuitive explanation for this claim using (14.25) as the model problem, and then write down
the stability criterion for that PDE.

Importantly, in the process, we will show that for nonlinear equations, the error no
longer satisfies the same equation as the solution of the PDE. This is in contrast
to what we stated about the error for a linear PDE; see Section 12.3. Instead, the error
of a nonlinear PDE satisfies a linearized version of that equation.

We will now work out an example.
Recall that to define stability in Lecture 4, we looked at the evolution of two “nearby”

solutions: see Eq. (4.16) in Lecture 4 and Eq. (5.40) in Lecture 5. We defined a numerical
method as stable if for a differential equation whose analytical solution is stable, the numerical
solutions that were close initially remain close at all times. Let us, therefore, consider two
“nearby” solutions, u and v, of (14.25). Their difference satisfies:

(u− v)t = (u2ux)x − (v2vx)x . (14.27)

Note that the r.h.s. of this equation is a counterpart of f(x, y) − f(x, u) in (4.16). To
approximate such a term, in Lectures 4 and 5 we linearized it about one of the solutions. Here,
we have to linearize the r.h.s. of (14.27). Below we show how to do so, considering that the
counterpart of the nonlinear function f(x, u) — i.e. (u2ux)x in (14.25) — depends on both u
and ux. In fact, we will first do it for an arbitrary function f(u, ux, uxx, . . .) and then illustrate
it for f = (u2ux)x.

MATH 337, by T. Lakoba, University of Vermont 147

The Chain Rule for a function of several variables is:44

d f
(
A(t), B(t), . . .

)
dt

=
∂f

∂A

dA

dt
+

∂f

∂B

dB

dt
+ · · · . (Chain Rule)

An equivalent form of the same rule written for differentials is:

df = fA dA+ fB dB + · · · , (14.28a)

where subscripts denote partial derivatives. If differentials are replaced by small but finite
increments, then (14.28a) becomes simply

∆f ≈ fA ∆A+ fB ∆B + · · · . (14.28b)

In what follows we will replace the “≈” with “=”. Now substitute u for A, ux for B,
(u− v) ≡ ∆u for ∆A, and (ux − vx) ≡ ∆ux for ∆B, etc., to obtain:

∆f(u, ux, uxx, . . .) = fu ∆u+ fux ∆ux + fuxx ∆uxx · · · . (14.29a)

where
∆f(u, ux, uxx, . . .) = f(u, ux, uxx, . . .)− f(v, vx, vxx, . . .) . (14.29b)

We will now compute the r.h.s. of (14.27) based on Eqs. (14.29):

∆
(
u2ux

)
x
=
(
(2uux)∆u+ u2 ∆ux

)
x

Product Rule
= 2u2

x∆u+ 2uuxx ∆u+ 4uux ∆ux + u2 ∆uxx .
(14.30)

In a QSA you will be asked to verify that if you first differentiate (u2ux)x and then apply
(14.29), you will re-obtain (14.30).

We are now ready to continue with the von Neumann analysis for the model problem (14.25).
Combining (14.27) and (14.30) and rearranging terms in the latter equation, we obtain:

∆ut = u2 ∆uxx + 2(u2)x ∆ux + (u2)xx ∆u . (14.31)

This equation is the linearization of (14.25) on the background of solution u, where we may
now assume that u is the exact solution of (14.25). Thus, again:

a small deviation ∆u between two solutions of a nonlinear PDE satisfies a
linearization of that PDE on the background of an exact solution.

This is a universal fact.

Equation (14.31) is a linear equation for ∆u that has the form of Eq. (14.16) if we pretend
for the moment that we know the exact solution u(x, t). Indeed, in the notations of (14.16),
a(x, t) ≡ u2, b(x, t) ≡ 2(u2)x, and c = (u2)xx. Then, in the spirit of the principle of frozen
coefficients, the stability condition is given by (14.24) with a ≡ u2:

r ≤ 1 + (u2)xxκ/2

2u2(x, t)
. (14.32)

In practice, one knows u(x, t) only at a given time level (and, of course, at previous levels), but
not for all times in advance. Therefore, condition (14.32) means that the step size κ needs to
be adjusted according to that condition at each time level so as to maintain the stability of the
scheme.

44You studied this in Calculus III.

MATH 337, by T. Lakoba, University of Vermont 148

14.4.2 Newton–Raphson method for implicit schemes

As far as implicit methods for nonlinear PDEs are concerned, there are quite a few possibilities
in which such methods can be designed. Here we will discuss in detail an equivalent of the
Newton–Raphson method considered in Lecture 8. In Sec. 14.5 we will introduce other methods,
whose counterparts we have not yet encountered in this course.

The main difficulty that one faces with the Newton–Raphson method is, similarly to Lecture
8, the need to solve systems of algebraic nonlinear equations to obtain the solution at the “new”
time level. In the Appendix, we present the general methodology of how this can be done for
equations of the form

ut = f(u, ux, . . .), (14.33)

while below in this subsection we will show how this general methodology can be applied to
the particular model, Eq. (14.25).

To ensure the least painful experience when reading the text in the remainder of this sub-
section, you should first review the material in the following order. First, review section 14.2.
Next, review subsection 14.4.1, where you will need to make sure that you understand both
Eq. (14.26) and the derivation of the linearized equation for ∆u. (Do not proceed with-
out understanding scheme (14.26), as the cumbersome formulas below will simply not make
sense.) Finally, work through the Appendix; after that, the cumbersome formulas in the re-
mainder of this subsection should no longer look to you as gory as they may look now.

To begin (that is, after you have done the reading indicated in the previous paragraph),
we can use the following slight modification of scheme (14.19) for the PDE (14.18), where now
α = u2, β = 0, and γ = 1:

ut → 1

κ
δtU

n
m ;

(u2ux)x → 1

2h

(
(Un

m)
2 + (Un

m+1)
2

2

δxU
n
m

h
−

(Un
m−1)

2 + (Un
m)

2

2

δxU
n
m−1

h

)
+

1

2h

(
(Un+1

m)2 + (Un+1
m+1)

2

2

δxU
n+1
m

h
−

(Un+1
m−1)

2 + (Un+1
m)2

2

δxU
n+1
m−1

h

)
.

(14.34)

Note that the discretization of (u2ux)x on the r.h.s. of (14.34) is a special case of the r.h.s. of
(14.69) in Appendix. Also, the following observation is in order.
Remark 2: Note that the value u2(xm + h/2, tn) was represented differently in (14.26) and in
(14.34):

in (14.26): u2(xm + h/2, tn) →
(

Un
m+1+Un

m

2

)2
;

in (14.34): u2(xm + h/2, tn) →
(Un

m+1)
2+(Un

m)2

2
.

(14.35)

This was done intentionally, to illustrate an ambiguity of writing out some nonlinear terms.
For now, we will just note this fact, but will comment on it more extensively at the end of this
subsection.

The scheme resulting from substitution of the discretized derivatives (14.34) into Eq. (14.25)
is a special case of scheme (14.69) in Appendix. You will be asked to write it down in a Bonus
homework problem. As also noted in Appendix, this scheme is a nonlinear algebraic system
of equations for Un+1

m with m = 1, . . . , M − 1 and can be solved by the Newton–Raphson via
a substitution (14.70a). We will rewrite that latter formula for the entire vector of unknown

MATH 337, by T. Lakoba, University of Vermont 149

solutions on the grid, U⃗n+1 = [Un+1
1 , Un+1

2 , . . . , Un+1
M−1]

T :

U⃗n+1 = U⃗n + ε⃗(0), ∥ε⃗(0)∥ ≪ ∥U⃗n∥ . (14.36)

Note that the superscript ‘(0)’ indicates that the subsequent calculations will reveal that ε⃗(0) is
only the first approximation to the change in the solution from time level n to (n+1); compare
this with (8.84). More accurate approximations can be found, as shown below (see (14.42)
below and compare with (8.88)).

Upon substituting (14.34) and (14.36) into (14.25) and discarding terms O((ε(0))2), one
obtains (see the explanation below):

ε(0)m − κ

2h

((
ε(0)m Un

m + ε
(0)
m+1U

n
m+1

) δxU
n
m

h
−
(
ε
(0)
m−1U

n
m−1 + ε(0)m Un

m

) δxU
n
m−1

h
+

(Un
m)

2 + (Un
m+1)

2

2

δxε
(0)
m

h
−

(Un
m−1)

2 + (Un
m)

2

2

δxε
(0)
m−1

h

)

=
κ

h

(
(Un

m)
2 + (Un

m+1)
2

2

δxU
n
m

h
−

(Un
m−1)

2 + (Un
m)

2

2

δxU
n
m−1

h

)
.

(14.37)

This is a special case of Eq. (14.71) in Appendix (please look at that equation and recall what
its notations mean). Below we provide brief details on how the above expression was obtained;
you will be asked to fill in the missing details in the aforementioned Bonus homework problem.

The partial derivative notations in (14.71) are not particularly illuminating since the explicit
dependence of f on u, ux, etc. is not given there. It is, therefore, instructive to work out the
terms in (14.37) using the specific form of the r.h.s. of (14.25). Namely, note that the expression
inside the outer parentheses can be written as:

u2ux ≡ AB, where A ≡ u2, B ≡ ux. (14.38)

Then, when we replace u → (U + ε(0)),45 we do not multiply out all terms, but instead use a
“mathematically literate” approach, equivalent to the the following form of the familiar Product
Rule from Calculus:

∆(AB) ≡ (A+∆A)(B +∆B)− AB ≈ A∆B +B∆A, (Product Rule)

where ∆A ≪ A and ∆B ≪ B are the small terms engendered by ε(0). Note that the quadrat-
ically small term ∆A∆B has been omitted. To show how one applies this formula, we first
compute ∆A:

(U + ε(0))2 ≈ U2 + 2U ε(0), ⇒ ∆A ≡ 2U ε(0). (14.39)

Note that the approximate equation in (14.39) is nothing but a linearization of the function(
U + ε(0)

)2
, as was considered in Sec. 14.4.1. As for B and ∆B, they are simply:

δxU

h
+

δxε
(0)

h
≡ B +∆B. (14.40)

Multiplying out (14.39) and (14.40) and using (Product Rule), one obtains the term in the
largest parentheses on the l.h.s. of (14.34). Again, you can verify this in a Bonus homework
problem.

45We have dropped indices m and n since they are not essential for what we are about to illustrate.

MATH 337, by T. Lakoba, University of Vermont 150

From (14.37), the vector ε⃗(0) can be solved for in a time-efficient manner (since the coefficient
matrix is tridiagonal). In most circumstances, one iteration (14.36) is sufficient, but if need be,
the iterations can be continued in complete analogy with the procedure described at the end
of Sec. 8.6. Namely, we first compute

U⃗(1) ≡ U⃗n + ε⃗(0) (14.41)

and then seek a correction to that solution in the form

U⃗n+1 = U⃗(1) + ε⃗(1), ∥ε⃗(1)∥ ≪ ∥U⃗(1)∥ . (14.42)

Substituting (14.42) along with (14.34) into (14.25), we obtain an equation similar to (14.37):

ε(1)m − κ

2h

((
ε(1)m U (1)

m + ε
(1)
m+1U

(1)
m+1

) δxU
(1)
m

h
−
(
ε
(1)
m−1U

(1)
m−1 + ε(1)m U (1)

m

) δxU
(1)
m−1

h
+

(U
(1)
m)2 + (U

(1)
m+1)

2

2

δxε
(1)
m

h
−

(U
(1)
m−1)

2 + (U
(1)
m)2

2

δxε
(1)
m−1

h

)

= −ε
(0)
m +

κ

2h

(
(Un

m)
2 + (Un

m+1)
2

2

δxU
n
m

h
−

(Un
m−1)

2 + (Un
m)

2

2

δxU
n
m−1

h

)
+

κ

2h

(
(U

(1)
m)2 + (U

(1)
m+1)

2

2

δxU
(1)
m

h
−

(U
(1)
m−1)

2 + (U
(1)
m)2

2

δxU
(1)
m−1

h

)
.

(14.43)

Recall that here, U (1), Un, and ε(0) are known, and one’s goal is to solve this linear equation for
ε(1). This can be done time-efficiently, because the coefficient matrix of the equation for ε(1) is
tridiagonal. Once ε(1) has been found, one can define, and solve for, ε(2), etc. These iterations
can be carried out in the above manner as many times as need be.

As we have seen above, the strength of the Newton–Raphson method is that it can be
applied to programming an implicit numerical scheme for any nonlinear equation or system
of equations. However, a drawback of this method is that it is quite cumbersome (see, e.g.,
(14.37) and (14.43)). Therefore, a considerable amount of research has been done on finding
other methods which, on one hand, would to large extent retain the good stability properties
of implicit methods while, one the other hand, would be much easier to program. Two such
systematic alternatives to the Newton–Raphson method, which can be applied to a wide class
of equations and which do not require the solution of a system of nonlinear equations, are
described in the next Section.

To conclude this Section, we will point out one issue that is specific to discretization of
nonlinear differential equations.

Remark 2+ : This elaborates on the observation made in Remark 2 above. Let us continue
using (14.25) as the model problem. Note that it can be written in an equivalent form:

ut =
1

3
(u3)xx . (14.44)

We can use the following discretization that has the accuracy of O(κ2 + h2):

1

κ
δtU

n
m =

1

3
· 1

2h2

(
δ2x(U

3)nm + δ2x(U
3)n+1

m

)
; (14.45)

MATH 337, by T. Lakoba, University of Vermont 151

recall the definition (13.3) of the operator δ2x. The point we want to make here is that the
nonlinear system (14.45) is different from the nonlinear system obtained upon substitution of
(14.34) into (14.25)!

The issue we have encountered can be understood from the following simple example, per-
taining to a single time level (hence we omit the superscript of the functions). Consider a
nonlinear function u3. Obviously,

(u3)x = 3u2ux . (14.46)

With the second-order accuracy, the l.h.s. can be discretized as, e.g.,

(u3)x → (Um+1)
3 − (Um−1)

3

2h
=

(Um+1 − Um−1)(U
2
m+1 + Um+1Um−1 + U2

m−1)

2h
. (14.47)

Using the same — central-difference — formula to discretize the derivative on the r.h.s. of
(14.46), one obtains

3u2 · ux → 3U2
m · Um+1 − Um−1

2h
, (14.48)

which, obviously, does not equal the r.h.s. of (14.47), although differs from it by an amount
O(h2).

Thus, a nonlinear term can have several representations, which are equivalent in the con-
tinuous limit (like the l.h.s. and r.h.s. of (14.46)). However, these different representations,
when discretized using the same rule, can still lead to distinct finite-difference equations, as
illustrated by (14.47) and (14.48). For Hamiltonian equations, this ambiguity can be utilized
to construct methods that preserve specified conserved quantities (like the symplectic Euler
and Verlet methods in Lecture 5 almost preserved the Hamiltonian). This is explored in a re-
cent paper by M. Dahlby and B. Owren “A general framework for deriving integral preserving
numerical methods for PDEs,” posted next to this Lecture.

14.5 Nonlinear parabolic PDEs: II. Semi-implicit, implicit-explicit
(IMEX), and other methods

14.5.1 A semi-implicit method

Let us present a simple alternative to the Newton–Raphson method using (14.44) as the model
problem. With the discretization error of O(κ2),46 the u3 term at the virtual time level tn+ 1

2

can be approximated as follows:

u3 →
(
Un+ 1

2

)2 Un + Un+1

2
, (14.49)

where the fraction on the r.h.s. is explained by (14.15c). The r.h.s. of (14.49) is now linear
with respect to Un+1, but the problem is that we do not yet know Un+ 1

2 . To achieve the desired
accuracy of O(κ2), that term can be approximated by an explicit method that should have that
accuracy. A simple, O(κ2)-accurate way to compute Un+ 1

2 is by a multi-step method similar to
(3.4):

Un+ 1
2 = Un +

κ

2

(
∂U

∂t

)n

+O(κ2) = Un +
κ

2

Un − Un−1

κ
+O(κ2) ≈ 3

2
Un − 1

2
Un−1 , (14.50)

46Recall from Section 12.2 that the discretization and global errors have the same order in κ for equations of
the form (14.33).

MATH 337, by T. Lakoba, University of Vermont 152

where in the last expression we have dropped the O(κ2)-term. The resulting scheme:

δtU
n
m =

r

3
δ2x

((
U

n+ 1
2

m

)2 Un
m + Un+1

m

2

)
(14.51a)

is called semi-implicit, for the following reason. The factor
(
U

n+ 1
2

m

)2
is known at time level n

from formula (14.50). Then, denoting this known factor by
(
U

n+ 1
2

m

)2
≡ a

n+ 1
2

m , one can rewrite

(14.51a) as:

δtU
n
m =

r

3

[
a
n+ 1

2
m

(
Un
m + Un+1

m

2

)
xx

+ 2
(
a
n+ 1

2
m

)
x

(
Un
m + Un+1

m

2

)
x

+
(
a
n+ 1

2
m

)
xx

Un
m + Un+1

m

2

]
,

(14.51b)

where the notation, say,
(
a
n+ 1

2
m

)
x
, stands for the O(h2)-accurate discretization of the first

spatial derivative of a
n+ 1

2
m , etc. Details of such discretizations are already worked out in (14.17).

In deriving (14.51b) from (14.51a), we also used the identity for the second derivative of the
product of two functions f and g:

(f g)′′ = f g′′ + 2f ′ g′ + f ′′ g.

It is important to stress that while scheme (14.51) does have the unknown variables Un+1
m on

the r.h.s., as typical of an implicit scheme, it is not fully implicit, because a fully implicit scheme
would involve a term (Un+1

m)3.
A semi-implicit scheme, such as (14.51), has a strong advantage over a fully implicit one

in that it is linear in the unknown variables Un+1
m and hence can be solved as a linear system

of equations. On the other hand, since it is not fully implicit, it cannot be unconditionally
stable (see Theorem 4.2 at the end of Lecture 4). However, one can reasonably expect that
stability properties of a semi-explicit scheme should be better than those of a
fully explicit scheme (although they may be worse than those of a fully implicit scheme). In
a Bonus homework problem, you will be given the opportunity to explore this matter further.
Thus, on balance, a semi-implicit scheme may be a good one to try since: (i) it is much
easier to implement than the Newton–Raphson method and (ii) it is expected to
have better stability properties than an explicit scheme.

Remark 3: Method (14.51), (14.50) is a member of a large class of semi-implicit methods.
It can be straightforwardly generalized to the following class of equations:

ut = a(u, ux, x, t)uxx + b(u, ux, x, t)ux , (14.52)

where, as stated above, the coefficients a and b may depend on the solution u and its derivative
ux.

47 An extension of scheme (14.51), (14.50) for (14.52) is:

δtU
n
m

κ
= a

(
U

n+ 1
2

m , (U
n+ 1

2
m)x, xm, tn+ 1

2

) (Un
m)xx + (Un+1

m)xx
2

+

b
(
U

n+ 1
2

m , (U
n+ 1

2
m)x, xm, tn+ 1

2

) (Un
m)x + (Un+1

m)x
2

, (14.53)

where U
n+ 1

2
m is given by (14.50), (Un

m)xx denotes the second-order accurate finite-difference
approximation of uxx(xm, tn) (i.e., δ

2
xU

n
m/h

2), and similarly for (Un
m)x.

47Further generalizations of this form are possible, but for the purpose of our brief discussion, form (14.52)
is sufficient.

MATH 337, by T. Lakoba, University of Vermont 153

14.5.2 The idea behind Implicit–Explicit (IMEX) methods

IMEX methods present another attractive alternative to the Newton–Raphson method because,
as the semi-implicit method above, they also do not require the solution of a system of nonlinear
algebraic equations. They do require the step size κ to be restricted since they are not fully
implicit and hence cannot be unconditionally stable (see Lecture 4). However, such a restriction
can be significantly weaker than that for a fully explicit method. Below we present only the
basic idea of IMEX methods. A more detailed, and quite readable, exposition, as well as
references, can be found in Section IV.4 of the book by W. Hundsdorfer and J.G. Verwer,
“Numerical Solution of Time-Dependent Advection–Diffusion–Reaction Equations,” (Springer
Series in Comput. Math., vol. 33, Springer, 2003).

The idea behind IMEX methods can be explained without any explicit reference to spatial
variables. Let the evolution equation that we want to solve have the form

ut = F (u(t), t)) ≡ F0(u(t), t) + F1(u(t), t) , (14.54)

where F0 is a non-stiff term suitable for explicit time-integration and F1 is a stiff term that
requires implicit treatment. Usually, F0 and F1 include, respectively, the advection and diffusion
terms (i.e., the second and first terms in (14.16) or (14.52), respectively; recall from Lecture
12 that the simple Heat equation ut = uxx is a stiff problem). The last term in (14.16), which
can be generalized to be some nonlinear function C(u), can belong to either F0 or F1. It is
usually referred to as the reaction term because it often describes chemical reactions. To make
the splitting (14.54) useful for a numerical implementation, which means avoiding the solution
of a system of nonlinear equations, it suffices to require that F1 be linear in u. Below we will
proceed with this assumption, but at the end of our discussion will mention a generalization
where F1 may contain nonlinear terms. Let us also note that our consideration applies equally
well both to a single Eq. (14.54) and to a system of coupled equations whose r.h.s. can be split
as a sum of non-stiff and stiff terms.

A simple first-order accurate IMEX method for (14.54) is:

Un+1 − Un

κ
= F0(U

n, tn) + (1− θ)F1(U
n, tn) + θF1(U

n+1, tn+1) , (14.55)

where θ is a parameter, as in Lecture 13. Note that since, by design, F1 depends on Un+1

linearly, scheme (14.55) does not require its user to solve any nonlinear algebraic equations.
The stability analysis for this scheme is done as follows. Instead of the model equation

ut = λu , (4.15)

which does not distinguish between the stiff and non-stiff parts, one considers a model equation

ut = λ0u+ λ1u , (14.56)

where λ0 and λ1 correspond to F0 and F1. Substituting Un = ρn into scheme (14.55) applied
to Eq. (14.56), one finds that

ρ ≡ ρ(z0, z1) =
1 + z0 + (1− θ)z1

1− θz1
, (14.57)

where z0 = λ0κ and z1 = λ1κ. As usual, one requires

|ρ(z0, z1)| < 1 (14.58)

MATH 337, by T. Lakoba, University of Vermont 154

for stability. Inequality (14.58) turns out to impose a set of two conditions on the time step
κ. We will now explain that this set of conditions can be interpreted in two different ways,
depending on what one knows about the family of equations that one wants to solve.

First interpretation of (14.58)
Suppose one has to design a method (14.55) that should be applicable to equations of the

form (14.54) where parameters of F0 cause the values of λ0 to be anywhere (i.e., not just on
the negative real line) in some bounded region of the left-half complex plane. Then one should
insist on using the full stability region of the explicit method, i.e., to have |1 + z0| < 1. Thus,
the first condition in the set is:

D0 : |1 + z0| < 1 , where z0 ≡ λ0κ, (14.59)

and where λ0 has been described in the previous sentence. An example of such a situation
is when F0 contains terms describing nonlinear, but non-stiff, reaction or advection, while F1

contains the simple diffusion term uxx, for which all λ1’s lie on the negative real axis (see
Problem 2 in HW 12). It turns out that enforcing both conditions, (14.58) and (14.59) imposes
a restriction on the values of z1, which in the absence of (14.59) (or, equivalently, if z0 = 0 in
(14.58)) would not have occurred. Let us now explain why this restriction on the values of z1
occurs.

For the sake of argument, consider the value θ = 1/2 in (14.55), which would lead to the
Crank–Nicolson scheme if F0 were absent. Since that scheme (again, still with F0 ≡ 0 for now)

is nothing but the implementation of the modified implicit Euler method for the Heat
equation (see Sec. 13.1), its stability region is the entire left-half complex plane (recall the
result of Problem 6 in HW 4). That is, ∣∣1 + 1

2
z1
∣∣∣∣1− 1

2
z1
∣∣ ≤ 1 , (14.60)

which holds whenever Re (z1) ≤ 0. Graphically, this is illustrated in Figure (a) below. There,
the expressions in the numerator and denominator on the l.h.s. of (14.60) are depicted by the
solid-line vectors in the left-half and right-half planes, respectively. It is clear that the ratio of
the lengths of those vectors is indeed always less than one.48

1

1

(1/2)z
1

−(1/2)z
1

Im z
1

Re z
1

 (a)

1+z
0

1

(1/2)z
1

−(1/2)z
1

Im z
1

Re z
1

 (b)

48Pause to study what this Figure panel shows, and how that relates to the previous sentence. Do not proceed
without this, as you will then be lost on the rest of this section.

MATH 337, by T. Lakoba, University of Vermont 155

On the other hand, when F0 ̸= 0, the stability condition (14.58) with θ = 1/2 is∣∣(1 + z0) +
1
2
z1
∣∣∣∣1− 1

2
z1
∣∣ ≤ 1, (14.61)

which must hold for all z0 such that |1+ z0| ≤ 1. As illustrated in Figure (b) above, condition
(14.61) can be violated for some of such z0 unless Im (z1) = 0.49 Thus, if one insists on having
the full stability region for the explicit part of the IMEX method (14.55), the stability region of
this method with respect to its implicit part is necessarily less than the corresponding stability
region of (14.55) with F0 ≡ 0. Specifically, we have just shown that for θ = 1/2, the stability
region of z1 has shrunk from being the entire left half of the complex plane (i.e., Rez1 ≤ 0) for
z0 = 0 — to being only the negative real axis (i.e., z1 ≤ 0) when z0 is allowed to be anywhere
within the region (14.59). (Often, accuracy — as opposed to stability — considerations dictate
that D0 be smaller than in (14.59); say, |a + z0| < a for some 0 < a < 1. Then, the stability
region for z1 expands into some sector with vertex at the origin that contains the negative real
z1-axis.)

In general, in this case one can show50 that the stability condition (14.58) yields the in-
equality

D1 : 1 + |(1− θ)z1| < |1− θz1| , where z1 ≡ λ1κ . (14.62)

This is the second condition in the set. That is, (14.59) and (14.62) together are equivalent to
(14.58).

With some effort, one can further show from (14.62) that the unconditional stability of the
IMEX method (14.55) is attained only for θ = 1. For θ < 1/2, scheme (14.55) is unstable.
(This should be contrasted with the situation when F0 ≡ 0, for which method (14.55) with
θ < 1/2 is conditionally stable, as we showed in Sec. 13.3.) For θ = 1/2, its stability region D1,
given by (14.62), collapses onto the negative real axis: z1 < 0, as mentioned before (14.62).
However, already for θ just slightly exceeding the critical value of 1/2, the stability region D1

becomes a sector with a significantly nonzero angle α on both sides of the negative real axis;
for example, α ≈ 25o and α > 50o for θ = 0.51 and θ = 0.6, respectively (see, e.g., Fig. 4.1 in
the book by Hundsdorfer and Verwer cited above).

Second interpretation of (14.58)
Alternatively, suppose that (14.54) is a system of coupled equations for variables u(1), u(2), . . .,

and suppose that F1 ≡ [F
(1)
1 , F

(2)
1 , . . .] contains both the diffusion term and the stiff part of

the reaction term. Then, the eigenvalues λ
(1)
1 , λ

(2)
1 , . . . (and hence the corresponding values

z
(1)
1 , z

(2)
1 , . . .) of the Jacobian matrix ∂(F

(1)
1 , F

(2)
1 , . . .)/∂(u(1), u(2), . . .) (see Sec. 5.4 in Lecture

5) can be found anywhere in the left half of the complex plane, i.e. Re z
(j)
1 ≤ 0 for all j. Thus,

one may want to know for which complex z0 one can fulfill condition (14.58) given that z1 can
be allowed anywhere in the left-half complex plane. The next paragraph contains a summary
of results from the book by Hundsdorfer and Verwer for this case.

Similarly to the previous case, the corresponding nonempty region D0 exists only for θ ≥ 1/2.
That is, if θ < 1/2, then the IMEX method (14.55) where z1 can be found anywhere in the
left-half plane, is unstable for any z0 ̸= 0 with Re (z0) ≤ 0! (This should be contrasted with
the situation when F1 ≡ 0, for which method (14.55) — i.e., the simple Euler method —

49Again, pause, then sketch the vector z1/2 for z1 < 0 (i.e., with Im (z1) = 0 being satisfied) and verify that
the previous statement is true.

50Please take this on faith.

MATH 337, by T. Lakoba, University of Vermont 156

is conditionally stable.) For θ < 1, the stability region D0 of the IMEX method is smaller
than the region |1 + z0| < 1, which would result in the absence of the F1 term in (14.54).
For θ = 1/2, the region D0 collapses into the segment −2 < z0 < 0 along the negative real
axis, while for θ = 1, the stability region of the explicit Euler method, e.g., D0(θ = 1) =
{All z0 such that |1 + z0| < 1}, is recovered (see, again, Fig. 4.1 in the book by Hundsdorfer
and Verwer).

The book by Hundsdorfer and Verwer provides an overview of higher-order accurate mem-
bers of the IMEX family, which are preferred in practice over the lowest-order method (14.55).
Among them are, for example, IMEX Runge–Kutta and multistep IMEX methods. Below we
will list two second-order accurate IMEX methods and briefly comment on their properties.

Second-order IMEX–Adams methods have the form:

Un+1 − Un

κ
=

3

2
F0(U

n, tn)−
1

2
F0(U

n−1, tn−1) + (14.63)

θF1(U
n+1, tn+1) +

(3
2
− 2θ

)
F1(U

n, tn) +
(
θ − 1

2

)
F1(U

n−1, tn−1) .

If we insist that it be stable for all z1 in the left-half plane, its stability region with respect to
z0 depends on θ (similarly to what we discussed above in the second interpretation of (14.58)).
For example, for θ = 1/2, this method is stable only when z0 belongs to a segment along the
negative real axis, z0 ∈ [−1, 0]. For θ = 1, the stability region of the second-order Adams–
Bashforth method is recovered (see Problem 4 in HW 4). For θ = 3/4, the stability region is
an oval (similar to that for the modified explicit Euler method; see Lecture 4) such that its
boundary follows the imaginary axis most closely (out of all values of θ). Thus, the IMEX–
Adams method with θ = 3/4 is preferred for equations that have z0 both on, and to the left of,
the imaginary axis.

If z0 are known to lie only on the imaginary axis, then the so-called IMEX–CNLF (Crank–
Nicolson Leap-frog) method can be used. Its scheme is:

Un+1 − Un−1

2κ
= F0(U

n, tn) +
1

2

(
F1(U

n+1, tn+1) + F1(U
n−1, tn−1)

)
. (14.64)

This scheme is stable for all z1 in the left-half plane and for z0 ∈ [−i, i]. Examples of the
non-stiff term F0 for which λ0 lies on the imaginary axis is the advection term b(x, t, u)ux. (It
is beyond the scope of this course to explain why this is so, but if you are familiar with Fourier
analysis, you may figure it out on your own.) Thus, equations of the form (14.52) where a is
independent of u can be solved by this method. Another example is the Nonlinear Schrödinger
equation (14.65) below.

Finally, we note that the same considerations can often be generalized when F1 is not a
linear function of u. For example, consider Eq. (14.52) where now the coefficient a does depend
on u. Then one can replace the implicit integration in (14.55) with an analogue of the semi-
implicit method (14.53). This would still result in the equation for Un+1 being linear, and hence
easily solvable. Stability properties of such a method are not, however, clear, and may need to
be verified by numerical experiments.

14.5.3 Comments on other methods

Let us mention a popular method called a split-step method, which we will illustrate with the
example of the celebrated Nonlinear Schrödinger equation:

iut + uxx + 2|u|2u = 0, (note the i =
√
−1 in front of ut) (14.65)

MATH 337, by T. Lakoba, University of Vermont 157

which appears in a great many applications involving propagation of wave packets. The split-
step method is based on the observation that the linear and nonlinear parts of this equation can
be solved exactly (we do not need to consider here how this can be done). Then the split-step
algorithm is:

Given Un(x) ≡ u(x, tn),

Solve iut + uxx = 0 from tn to tn+1; ⇒ get Uaux;

Using Uaux as the initial condition,

Solve iut + 2u|u|2 = 0 from tn to tn+1; ⇒ get Un+1.

(14.66)

The split-step method, being explicit, is only conditionally stable. Its numerical stability
for a constant-amplitude solution of the Nonlinear Schrödinger equation known as a plane-wave
solution:

u = Ae2iA
2t, where A is a real constant, (14.67)

was first considered in a paper by A. Weideman and B. Herbst “Split-step methods for the
solution of the nonlinear Schrödinger equation,” SIAM J. Numer. Anal., vol. 23, pp. 485 - 507
(1986). The Nonlinear Schrödinger equation has many other solutions, the most well-known
of which is the soliton:

u = A sech(Ax) eiA
2t, (14.68)

which hass a bell-like (i.e., localized) profile in x. Numerical stability of this solution obtained by
the split-step method was considered by me. The most remarkable conclusion of that analysis
is that the principle of frozen coefficients, mentioned in Sec. 14.3, is strongly violated. For
example, no prediction of the numerical stability or instability of the soliton (14.68) can be
made based on the knowledge of numerical stability or instability of the plane wave solution
(14.67).

The last class of methods that we will mention are valuable only for PDEs that possess
conserved quantities, like energy. Usually, such equations are hyperbolic PDEs or parabolic
PDEs with “imaginary time”, like the Nonlinear Schrödinger equation (14.65). Such equations
are multi-dimensional counterparts of the harmonic oscillator equation. There are classes of
numerical schemes that preserve some (or, in rare cases, all!) of the conserved quantities of those
equations. Such schemes are relatives of symplectic methods for ODEs, discussed in Lecture
5. One can read about those conservation-laws-based schemes in, e.g., a textbook by J.W.
Thomas, “Numerical partial differential equations: Conservation laws and elliptic equations”
(Springer, 1999); see also the paper by M. Dahlby and B. Owren mentioned at the end of
Sec. 14.4 and posted next to this Lecture. Let us stress that “true” parabolic equations,
like the Heat equation or, more generally, any equation with diffusion in real-valued time, do
not have conserved quantities like energy, and hence conservation-laws-based schemes are not
applicable to them.

14.6 Appendix: General form of the Newton–Raphson method for
(14.33)

For convenience of the reader, we restate Eq. (14.33) here:

ut = f(u, ux, . . .). ((14.33))

MATH 337, by T. Lakoba, University of Vermont 158

Everywhere below in this Appendix, ‘. . .’ denote possible dependence of f on higher spatial
derivatives of u (i.e., uxx etc.). The CN scheme for it is (see Eqs. (14.17) and, earlier, (13.1) in
Lecture 13):

δtU
n
m

κ
=

1

2

[
f(Ũn

m, (Ũx)
n
m, . . .) + f(Ũn+1

m , (Ũx)
n+1
m , . . .)

]
. (14.69)

Here the tilde in the notation Ũn
m signifies the fact that the value u(xm, tn) may need to be

evaluated using not only its value at node xm, but also adjacent nodes, xm±1; see the very first
term on the r.h.s. of (14.19). The notation (Ũx)

n
m has the analogous meaning. As mentioned

before, the challenge in solving (14.69) is that, for a nonlinear function f , those equations
(which have to be solved for all m at ones) constitute a system of nonlinear equations.

This challenge can be addressed by noticing that solutions at adjacent time levels should
differ by a small amount (proportional to κ), and therefore it is reasonable to write:

Un+1
m = Un

m + εm, where |εm| ≪ |Un
m|. (14.70a)

It is this εm — a small change of the solution from time level n to (n+ 1), — that we want to
determine. Since Ũn

m is some combination of the solution at nodes xm and xm±1, one can also
write

Ũn+1
m = Ũn

m + ε̃m, where |ε̃m| ≪ |Ũn
m|. (14.70b)

Substituting (14.70b) into the second term on the r.h.s. of (14.69) and using two leading terms
in the Taylor series to expand it, one obtains:

f(Ũn+1
m , (Ũx)

n+1
m , . . .) = f(Ũn

m + ε̃m, (Ũx)
n
m + (ε̃x)m, . . .) ≈

f(Ũn
m, (Ũx)

n
m, . . .) + ε̃m fu(Ũ

n
m, (Ũx)

n
m, . . .) + (ε̃x)m fux(Ũ

n
m, (Ũx)

n
m, . . .) + . . . ;

(14.71)

where subscripts of f denote the corresponding partial derivatives. Compare this with (14.29a).
To slightly simplify notations, in what follows we will drop the ‘. . .’. Substituting (14.71) for the
second term on the r.h.s. of (14.69) and moving terms with the unknowns εm (and, consequently,
also with ε̃m) to the l.h.s., we obtain:

εm
κ

− 1

2

(
ε̃m fu(Ũ

n
m, (Ũx)

n
m) + (ε̃x)m fux(Ũ

n
m, (Ũx)

n
m)
)

= f(Ũn
m, (Ũx)

n
m). (14.72)

To solve this system of equations (for all m), we first note that, unlike system (14.69),
system (14.72) is linear. Moreover, since ε̃m is composed of εm and εm+1, it is tridiagonal (just
like system (13.7), equivalently written as (13.9), is in Lecture 13). Therefore, it can be solved
time-efficiently by the Thomas algorithm. This will, in the first nontrivial approximation,
determine the solution at the next time level via (14.70a). If a higher accuracy is desired, one
can determine the next-order correction in the same way as (8.87) and (8.88) in Lecture 3. A
specific example is worked out in Section 14.4.2.

14.7 Questions for self-assessment

1. In (14.5) and (14.7), why did we not use the simpler discretization

Un
1 − Un

0

h
+ pnUn

0 = qn, n = 0, 1,

which would have eliminated the need to deal with the solution Un
−1 at the virtual node?

MATH 337, by T. Lakoba, University of Vermont 159

2. Be able to explain the idea(s) behind handling the derivative boundary condition for both
the simple explicit and Crank–Nicolson schemes.

3. Make sure you can obtain (14.9) and hence (14.10)–(14.12).

4. Obtain (14.15c). Hint: Expand about X + (H/2), not X.

5. Explain without calculations that discretization (14.17) produces a scheme of the accuracy
stated in the text. (Drawing the stencil should help.)

6. Same question about (14.19).

7. What condition on the variable coefficients of a linear PDE should hold in order for the
von Neumann stability analysis to proceed along the same lines as for the simple Heat
equation? Why?

8. Describe two ways in which the person who is numerically solving PDE (14.13) may use
the stability condition (14.20).

9. When and why does one need to modify the stability criterion to be (14.23)?

10. What is the order of accuracy of scheme (14.26)?

11. Make sure you can derive the r.h.s. of (14.30).

12. Verify the statement made immediately after (14.30).

13. Explain qualitatively (i.e., without calculations) that discretization (14.34) produces a
scheme of the accuracy O(κ2 + h2). (Drawing the stencil should help.)

14. What is the main difficulty in solving nonlinear PDEs by implicit methods?

15. Following the Appendix, explain the idea behind the Newton–Raphson method when
applied to nonlinear PDEs.

16. Describe the issue about discretization of nonlinear terms, pointed out in Remarks 2 and
2+.

17. Describe the idea behind the semi-implicit method presented in Sec. 14.5.

18. Explain why the r.h.s. of (14.50) approximates the l.h.s. of that equation.

19. Obtain (14.57).

20. What are two possible interpretations of (14.58)?

21. Make sure you can follow the argument made around condition (14.61).

22. Why does method (14.63) have the name ‘Adams’ in it?

23. When can method (14.64) be used?

