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17 Method of characteristics for solving hyperbolic PDEs

In this lecture we will describe a method of numerical integration of hyperbolic PDEs which
uses the fact that all solutions of such PDEs propagate along characteristics.

17.1 Method of characteristics for a single hyperbolic PDE

Let us start the discussion with the simplest, first-order hyperbolic PDE

wt + cwx = 0, (17.1)

where we will take c > 0 for concreteness. For now, we assume that c = const; later on this
restriction will be removed. The general solution of (17.1), derived in Appendix 2 of Lecture
16, is

w(x, t) = w(x− ct). (17.2)

Thus, if the steps in x and t are related so that

∆x = c ∆t, (17.3)

then
w(x + ∆x, t + ∆t) = w

(
x + ∆x− c(t + ∆t)

)
= w(x− ct); (17.4)

see also (16.32). This simply illustrates the fact that the solution does not change along the
characteristic x− ct = ξ.

To put (17.4) at the foundation of a numerical method, consider the mesh

xm = mh, m = 0, 1, 2, . . .

tn = nκ, n = 0, 1, 2, . . .
(17.5a)

where h and κ are related as per (17.3):

h = c κ. (17.5b)

This is illustrated in the figure on the right.
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The initial and boundary conditions for this problem are given by

w(x, t = 0) = φ(x), x ≥ 0;

w(x = 0, t) = g(t), t ≥ 0.
(16.25)

In the discretized form, they are:

W 0
m = φ(xm), m ≥ 0;

W n
0 = g(tn), n ≥ 0.

(17.6)

(Obviously, we require φ(0) = g(0) for the boundary and initial conditions to be consistent
with each other.) Then, according to (17.4), the solution at the node (m,n) with m > 0 and
n > 0 is found as

W n
m =

{
W 0

m−n = φ(xm−n), m ≥ n;

W n−m
0 = g(tn−m), n ≥ m.

(17.7)
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This method, called the method of characteristics, can be generalized to the equation

wt + c(x, t, w) wx = f(x, t, w). (17.8a)

For the sake of clarity, we will work out this generalization in two steps. First, we consider the
case when f(x, t, w) ≡ 0, i.e.

wt + c(x, t, w) wx = 0. (17.8b)

Then, making a change of variables

(x, t) −→ (ξ, t), where ξ = x−
∫ t

0

c
(
x(t′), t′, w(x(t′), t′)

)
dt′, (17.9)

and proceeding similarly31 to Appendix 2 of Lecture 16, one can show that

wt = 0 ⇒ w(x, t) = w(ξ) irrespective of a specific value of t. (17.10)

The equation for the characteristics ξ = const of
(17.8) is obtained by differentiating the expression

x−
∫ t

0

c
(
x(t′), t′, w(x(t′), t′)

)
dt′ = const

(see (17.9)) with respect to t. The result is:

dx

dt
= c(x, t, w), w = const (17.11)

where the last condition (w = const) appears be-
cause along the characteristic, the solution w does
not change (see (17.10)).
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Note that unlike in the figure next to Eqs. (17.5), the characteristics corresponding to Eqs. (17.11)
are curved, not straight, lines, as illustrated above.

The numerical solution of Eqs. (17.10) and (17.11) can be generated as follows. Let us denote
xn

m to be the grid point at the intersection of the time level t = nκ and the characteristic
ξ = mh (see the figure above for an illustration). Note that this definition of xn

m is different
from the definition of xm in (17.5a). Namely, there, xm are fixed points of the spatial grid
which are defined independently of the time grid. On the contrary, in scheme (17.12) below,
xn

m moves along the m-th characteristic and hence is different at each time level.
Continuing with setting up a scheme for (17.10) and (17.11), let W n

m denote the value of w

at the grid point xn
m, i.e. W n

m = w
(
ξ = mh, t = nκ). Then:

n = 0 : x0
m = mh, W 0

m = φ(mh), m ≥ 0; (17.12a)

n = 1 :
x1
−1 = 0, W 1

−1 = g(κ),

x1
m = x0

m +

∫ κ

0

c
(
x, t, W 0

m

)
dt, W 1

m = φ(mh), m ≥ 0;
(17.12b)

31E.g., ∂t = ∂tξ ∂ξ + ∂tt ∂t = −c ∂ξ + ∂t.
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n ≥ 2 : xn
−n = 0, W n

−n = g(nκ),

xn
m = xn−1

m +

∫ nκ

(n−1)κ

c
(
x, t, W n−1

m

)
dt,

{
W n

m = g(−mκ),

W n
m = φ(mh),

−(n− 1) ≤ m < 0,

m ≥ 0.
(17.12c)

Above, the expression
∫ nκ

(n−1)κ
c(x, t, w) dt is a symbol denoting the result of integration of

the ODE (17.11) from t = (n − 1)κ to t = nκ. This integration may be performed either
analytically (if the problem so allows) or numerically using any of the numerical methods for
ODEs. Note that this integration is the only computation required in (17.12); the rest of it is
just the assignment of known values to the grid points at each time level.

Let us emphasize the meaning of scheme (17.12). First, it computes the values xn
m along

the respective characteristics for each m as per the first equation in (17.11). Then, the value
of w is kept constant along each characteristic, as specified by (17.10).

Remark If one wants to keep the number of grid points at each time level of (17.12) the same
(say, (M + 1)), then one needs to “chop off” the right-most point at every time step. Recall
also that one cannot prescribe a boundary condition at the right boundary x = Mh.

Let us illustrate the solution of (17.8b) by Eqs. (17.12) for the so-called shock wave equation32

ut + uux = 0, (17.13)

which arises in a great many applications (e.g., in gas dynamics or in traffic flow modelling).
As an initial condition, let us take

u(x, 0) ≡ φ(x) =

{
a sin2 πx, 0 ≤ x ≤ 1,
0, otherwise,

(17.14)

where a is some constant. We will consider this problem on the infinite line, x ∈ (−∞, ∞),
but in our numerical solution will only follow points where u 6= 0.

According to Eqs. (17.10) and (17.9), the solution of problem (17.13), (17.14) is given by
an implicit formula

u = φ

(
x−

∫ t

0

u(x(t′), t′) dt′
)

, (17.15)

where we have used the initial condition u(x, t = 0) = φ(x). Recall that in (17.15), x(t) stands
for the equation of one given characteristic; in other words, the integral is computed along that
characteristic. We will now show that characteristics of (17.13) have a special form that allow
the integral in (17.15) to be be simplified. Indeed, the equation for the characteristics of (17.13)
follows from (17.11):

dx

dt
= u, u = const. (17.16)

Thus, since the u on the right-hand side of (17.15) is constant along the characteristic, then
(17.15) reduces to

u = φ(x− ut). (17.15′)

This is now an implicit algebraic equation for u which, in principle, can be solved for each pair
(x, t).

32Another name of this equation, or, more precisely, of the more general equation ut + c(u)ux = 0, is the
“simple wave” equation, with the adjective “simple” originating from physical considerations.
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To obtain a numerical solution of (17.13), (17.14) explicitly, we use a modification of (17.12)
which would allow us to keep track of only those grid points where u 6= 0. The correponding
scheme on such a moving grid is:

n = 0 : x0
m = mh, U0

m = φ(mh); (17.17a)

n = 1 : x1
m = x0

m + U0
mκ, U1

m = φ(mh); (17.17b)

(where the meaning of index m is clarified in (17.17d) below)

n ≥ 2 : xn
m = xn−1

m + Un−1
m κ, Un

m = Un−1
m = . . . = U0

m. (17.17c)

Note that in all these equations,

m = 0, 1, . . . , M, and h = 1/M (see (17.14)), (17.17d)

so that a particular value of m labels the characteristic emanating at point (x = mh, t = 0).
This way of labeling is illustrated in the figure next to Eq. (17.11). It defines a grid which
moves to the right (given that the initial velocity φ(x) ≥ 0). Also, at each time level except the
one at t = 0, the internode spacing along x is not uniform. Note that (17.17) is the discretized
form of the exact analytical solution (17.15′). You will be asked to plot solution (17.17) in a
homework problem.

Let us now return to Eq. (17.8) with f ½½≡ 0. Similarly to (17.10), one then obtains

wt = f(ξ, t, w), (17.18a)

where f(ξ, t, w) is obtained from f(x, t, w) by the change of variables (17.9). (For example,
if f(x, t) = x + t2 and c = 3, then f(ξ, t) = ξ + 3t + t2.) Equation (17.18a) says that w(ξ, t)
is no longer a constant along a characteristic

ξ = const (17.18b)

but instead varies along it in the prescribed manner. When solving (17.18a), ξ should be
considered as a constant parameter. To find the equation of the characteristics, one needs to
solve the first equation in (17.11) where instead of the second equation in (17.11), i.e. w = const,
one now needs to use (17.18a). Thus, the solution of the original PDE (17.8a) reduces to the
solution of two coupled ODEs: (17.18) and

dx

dt
= c(ξ, t, w), x(t = 0) = ξ, (17.19)

where c(ξ, t, w) is obtained from c(x, t, w) by the change of variables (17.9) (see the clarification
after (17.18a)). An implementation of the solution of (17.18) and (17.19) that assumes the
boundary conditions (17.6) is given below:

n = 0 : x0
m = mh, ξm = x0

m, W 0
m = φ(mh); (17.20a)

n = 1 : x1
−1 = 0, W 1

−1 = g(κ),
(

x1
m

W 1
m

)
=

(
x0

m

W 0
m

)
+

∫ κ

0

(
c
(
ξm, t, wm(t)

)

f
(
ξm, t, wm(t)

)
)

dt, m ≥ 0;
(17.20b)
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n ≥ 2 : xn
−n = 0, W n

−n = g(nκ),
(

xn
m

W n
m

)
=

(
xn−1

m

W n−1
m

)
+

∫ nκ

(n−1)κ

(
c
(
ξm, t, wm(t)

)

f
(
ξm, t, wm(t)

)
)

dt, m ≥ −n + 1.

(17.20c)
Here the expression ∫ nκ

(n−1)κ

(
c
(
ξm, t, wm(t)

)

f
(
ξm, t, wm(t)

)
)

dt

is a symbol that denotes the result of integration of the coupled ODEs (17.18) and (17.19). In
practice, this integration can be done numerically by any suitable ODE method. Also, wm(t)
above means the solution along the characteristic ξ = ξm (see (17.20a)).

The meaning of scheme (17.20) is the following. As previously scheme (17.12), it computes
the curves of characteristics xm(t) = ξm as per (17.19). However, unlike (17.12), now the value
of w is not constant along each characteristic but instead varies according to (17.18). Note
that now the equations for the characteristic and for the solution w are coupled and need to
be solved simultaneously.

17.2 Method of characteristics for a system of hyperbolic PDEs

In this section, we will first point out technical diffuculties that can arise when using the
method of charateristics for a system of PDEs. Then we will work out an example where those
difficulties do not occur.

If we attempt to generalize the approach that led
to schemes (17.12) and (17.20) to the case where
one has a coupled system of two PDEs with inter-
secting families of curved (i.e., not straight-line)
characteristics, one is likely to encounter a prob-
lem depicted in the figure on the right. Namely,
suppose the characteristics of the two families are
chosen to intersect at level t = 0. In the figure,
the intersection points are xm−1, xm, xm+1, etc.
However, these characteristics no longer intersect
at subsequent time levels; this is especially visible
at levels t = 2κ and t = 3κ.
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An analogous problem can also occur if one has
three or more characteristics, even if they are
straight lines. The only case where this will not
occur is where all the characteristics can be cho-
sen to intersect at uniformly spaced points at each
level. An example of such a special situation is
shown on the right. Note that the vertical charac-
teristics are just the lines

dx

dt
= 0 ⇒ x(t) = ξm ≡ const. (17.21)
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Characteristrics (17.21) occur whenever the system of PDEs includes an equation

wj, t = f
(
x, t, ~w

)
. (17.22)

You will be asked to verify this in a QSA.
A way around this issue is to interpolate the values of the solution at each time level. For

example, suppose one is to solve a system of two PDEs for w1 and w2 on the segment 0 ≤ x ≤ 1,
with the characteristics for w1 (w2) going northeast (northwest). Let there be (M − 1) internal
points, xm = mh, m = 1, . . . , (M − 1) at the initial time level t0 = 0. Suppose that the

characteristics for wj, j = 1, 2, intersect the next time level t1 = κ at points x
(j)
m . Then one

can interpolate the set of values w
(j)
m from the respective nonuniform grid x

(j)
m onto the same

grid xm as at the initial time level. This interpolation process is then repeated at every time
level.

Matlab’s command to interpolate a vector y from a grid defined by a vector x (such that
length(x)=length(y)) onto a vector xx is:
yy = spline( x, y, xx) .

We will now work out a solution of a system of two PDEs with straight-line charactristics:

w1, t + cw1, x = f1(x, t, w1, w2),

w2, t − cw2, x = f2(x, t, w1, w2),

wj(x, 0) = φj(x), 0 ≤ x ≤ 1, j = 1, 2

w1(0, t) = g1(t), w2(1, t) = g2(t), t ≥ 0.

(17.23)

The two characteristic directions of (17.23) are

ξj = x− cjt, j = 1, 2; c1 = c, c2 = −c. (17.24)

If fj for j = 1 and/or 2 in (17.23) vanishes, then the respective wj will not change along its
characteristic ξj. Therefore, for fj 6= 0, it is convenient to calculate the change of wj along the
characteristic ξj. Then, similarly to (17.18a), we can write the first two equations of (17.23) as

wj, t = fj

(
ξj + cjt, t, w1(ξ1, t), w2(ξ2, t)

)
along ξj = const, j = 1, 2. (17.25)
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Note that while integrating, say, the equation with j = 1, the argument ξ2 of w2 should not be
considered as constant. At the moment, this prescription is rather vague, but later on we will
present a specific example of how it can be implemented.

The formal numerical implementation of the solution of (17.25) is given below on the grid
(17.5) where the maximum value of m = M corresponds to the right boundary x = 1. Note that
this grid is stationary and hence is different from the moving grids used in schemes (17.12),
(17.17), and (17.20). In particular, in this stationary grid, m does not label a particular
characteristic.

The scheme for (17.25) is:

n = 0 : (ξj)
0
m = xm, (Wj)

0
m = φj(mh), j = 1, 2; (17.26a)

n ≥ 1 : (ξ1)
n
m = xm − c1κn ≡ (m− n)h, (see (17.5a,b))

(W1)
n
0 = g1(nκ),

(W1)
n
m = (W1)

n−1
m−1 +

∫ nκ

(n−1)κ

f1

(
(ξ1)

n−1
m−1 + c1t, t, W1, W2

)
dt, m = 1, . . . , M ;

(ξ2)
n
m = xm − c2κn ≡ (m + n)h,

(W2)
n
M = g2(nκ),

(W2)
n
m = (W2)

n−1
m+1 +

∫ nκ

(n−1)κ

f2

(
(ξ2)

n−1
m+1 + c2t, t, W1, W2

)
dt, m = 0, . . . , M − 1.

(17.26b)
Note that with the step sizes along the temporal and spatial coordinates being related by

(17.5b), the values of ξ1 and ξ2 stay constant along the lines m−n = const and m+n = const,
respectively.

To turn scheme (17.26) into a useful tool, we need to specify how the integrals

∫ nκ

(n−1)κ

fj

(
(ξj)

n−1
m+(−1)j + cjt, t, W1, W2

)
dt, j = 1, 2

can be computed. Recall that these integrals are just the symbols denoting the increment of the
solutions of (17.25) from t = (n− 1)κ to t = nκ along the respective characteristic ξj = const.
Below we show how this can be done by the modified explicit Euler method. We will write the
equations first and then will comment on their meaning.

W̄1 = (W1)
n−1
m−1 + κ f1

(
(ξ1)

n−1
m−1 + c1κ(n− 1), cκ(n− 1), (W1)

n−1
m−1, (W2)

n−1
m−1

)
,

W̄2 = (W2)
n−1
m+1 + κ f2

(
(ξ2)

n−1
m+1 + c2κ(n− 1), cκ(n− 1), (W1)

n−1
m+1, (W2)

n−1
m+1

)
;

(17.27a)

(W1)
n
m =

1

2

[
(W1)

n−1
m−1 + W̄1 + κ f1

(
(ξ1)

n
m + c1κn, cκn, W̄1, W̄2

) ]
,

(W2)
n
m =

1

2

[
(W2)

n−1
m+1 + W̄2 + κ f2

(
(ξ2)

n
m + c2κn, cκn, W̄1, W̄2

) ]
.

(17.27b)

Note that the notations (ξ1)
n−1
m−1 + c1κ(n−1) and (ξ2)

n−1
m+1 + c2κ(n−1) in (17.27a) have been

used only to mimic the corresponding terms in (17.25). Those terms, as evident from the first
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two equations of (17.23) and from (17.25), must equal xm−1 and xm+1 for j = 1 and j = 2,
respectively. Indeed:

(ξ1)
n−1
m−1 + c1κ(n− 1) =

(
h(m− 1)− cκ(n− 1)

)
+ cκ(n− 1) = xm−1,

(ξ2)
n−1
m+1 + c2κ(n− 1) =

(
h(m + 1) + cκ(n− 1)

)− cκ(n− 1) = xm+1,

where we have used the equations for (ξj)
n
m from (17.26b). Similarly, (ξj)

n
m + cjκn in (17.27b)

equal xm for both j = 1 and 2.

The meaning of the first equation in (17.27a) is the
following. The change of W1 is computed along the
characteristic ξ1 = (ξ1)

n−1
m−1 by the simple Euler ap-

proximation, whereby all arguments of f1 are eval-
uated at the “starting” node (x = xm−1, t = tn−1).
Since, as we have said, this change occurs along
the characteristic ξ1 = (ξ1)

n−1
m−1, which is labeled

“ξ1 = const” in the figure on the right, then the
“final” node of this step is (x = xm, t = tn).

n 

n−1 

m−1 m m+1 

ξ
1
=const ξ

2
=const 

Similarly, the change of W2 in (17.27a) is computed along the characteristic ξ2 = (ξ2)
n−1
m+1

by the simple Euler approximation; hence all arguments of f2 are evaluated at the “starting”
node (x = xm+1, t = tn−1) for that characteristic (which is labeled “ξ2 = const” in the figure
above.) The step along this characteristic ends at the same node (x = xm, t = tn).

Finally, the equations in (17.27b) are the standard “corrector” equations of the explicit
modified Euler method.

Scheme (17.26), (17.27) can be straightforwardly generalized for more than two coupled
first-order hyperbolic PDEs, as long as all the characteristics can be chosen to intersect at
uniformly spaced points at each time level. An example of that situation is shown in the figure
next to Eq. (17.21). Extending the scheme to use a Runge–Kutta type method of order higher
than two (which is the order of the modified explicit Euler method), or to use any other method
(say, leap-frog), also appears to be straightforward.

17.3 Questions for self-assessment

1. What is the meaning of scheme (17.7)?

2. Where can one specify a boundary condition for Eqs. (17.8) and where can one not?

3. Why is w = const in (17.11)?

4. What is the meaning of scheme (17.12)?

5. What does the expression

∫ nκ

(n−1)κ

c(x(t′), t′, w) dt′ in (17.12) stand for?

6. Explain where solution (17.15) comes from and then how it is reduced to (17.15′).

7. What is the meaning of scheme (17.20)?
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8. Describe a technical problem that is likely to occur when solving a system of coupled
PDEs by the method of chatacteristics. How can this problem be overcome?

9. Verify the statement found after Eq. (17.22).

10. What is the difference between the grids used in schemes (17.12) and (17.20), on one
hand, and in scheme (17.26), on the other?

11. Why is W2 in the first line of (17.27a) evaluated at xm−1? Why is W1 in the second line
of (17.27a) evaluated at xm+1?


