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5 Higher-order ODEs and systems of ODEs

5.1 General-purpose discretization schemes for systems of ODEs

The strategy of generalizing a discretization scheme from one to N > 1 ODEs is, for the most
part, straightforward. Therefore, below we will consider only the case of a system of N = 2
ODEs. This case will also allow us to investigate those issues that are specific to systems of
ODEs and do not occur for a single ODE. We will denote the exact solutions of the ODE system
in question as y(1)(x) and y(2)(x), while the corresponding numerical solutions of this system,
as Y (1) and Y (2); the functions appearing on the r.h.s. of the system will be denoted as f (1)

and f (2). Thus, the IVP for the two unknowns, y(1) and y(2), is:

y(1)
′
= f (1)(x, y(1), y(2)), y(1)(x0) = y

(1)
0 ,

y(2)
′
= f (2)(x, y(1), y(2)), y(2)(x0) = y

(2)
0 .

(5.1)

We now consider generalizations of some of the methods introduced in Lectures 1 and 2.

Simple Euler method

This is, probably, the simplest method for two ODEs:
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(5.2)

Let us now consider a certain modification of it which, at the first glance, may seem strange:
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(5.3)

The first equation in (5.3) is an implicit method, while the second equation is explicit, because

Y
(1)
n+1 on its r.h.s. has been found by the first equation. Note, however, that the first equation

may become explicit if f (1)(· · · ) does not depend on Y (1). Later on we will see that this
condition holds for a wide and important class of differential equations.

Since the components Y (1) and Y (2) enter Eqs. (5.2) on equal footing, we can interchange
their order in (5.3) and obtain:
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(5.4)

Again, the first equation is, in general, implicit; however, it becomes explicit when f (2)(·) does
not depend on Y (2). This, also, may hold for the same wide and important class of equations.

It is rather straightforward to see that all these three implementations of the simple Euler
method, (5.2)–(5.4), are first-order methods.

An obvious question that now comes to mind is this: Is there any aspect because of which
methods (5.3) and (5.4) may be preferred over method (5.2)? The short answer is ‘yes, for a
certain form of f (1) and f (2), there is’. We will present more detail in Sec. 5.3 below. For now
we continue with presenting the discretization scheme for the Modified Euler equation for two
first-order ODEs.
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Modified Euler method
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(5.5)

Let us verify that (5.5) is a second-order method, as it has been for a single ODE. We
proceed in exactly the same steps as in Lecture 1. We will also use the shorthand notations:
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}
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Since in the derivation of the local truncation error we always assume that Y
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Expanding the r.h.s. of the second of Eqs. (5.5) about the “point” (xn, Y⃗n) in a Taylor
series, we obtain:
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Now expanding the exact solution y
(k)
n+1 = y(k)(xn+1) in a Taylor series, we obtain:
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Here the coefficient of the h2-term has been computed by using the fact that f (k) = f (k)(x, y(1)(x), y(2)(x))
and then using the Chain rule. Comparing the last lines in (5.6) and (5.7), we see that

y
(k)
n+1 = Y

(k)
n+1+O(h3), which confirms that the order of the local truncation error in the Modified

Euler method (5.5) is 3, and hence the method is second-order accurate.

In the homework problems, you will be asked to write out the forms of discretization schemes
for the Midpoint and cRK methods for a system of two ODEs.

To conclude this subsection, we note that any higher-order IVP, say,

y′′′ + f(x, y, y′, y′′) = 0, y(x0) = y0, y′(x0) = z0, y′′(x0) = w0 , (5.8)



MATH 337, by T. Lakoba, University of Vermont 53

can be rewritten as a system of first-order ODEs with appropriate initial conditions:

y′1 = y2 ,
y′2 = y3 ,
y′3 = −f(x, y1, y2, y3) ,

(5.9)

y1(x0) = y0, y2(x0) = z0, y3(x0) = w0 .

Above we have denoted y = y1, and then y2 and y3 get defined by the first two equations in
(5.9). To solve this system of three first-order ODEs, one can use any of the general-purpose
discretization schemes considered above. Similarly, any higher-order ODE that can be explicitly
solved for the highest derivative, can be dealt with along the same lines.

5.2 Special methods for the second-order ODE y′′ = f(y).
I: Central-difference methods

A second-order ODE, along with the appropriate initial conditions:

y′′ = f(y), y(x0) = y0, y′(x0) = y′0 , (5.10)

occurs in applications quite frequently because it describes the motion of a Newtonian particle
(i.e. a particle that obeys the laws of Newtonian mechanics) in the presence of a conservative
force (i.e. a force that depends only on the position of the particle but not on its speed and/or
the time). In the remainder of this subsection, it will be convenient to think of y as the position
of the particle, of x — as the time, and of y′ — as the particle’s velocity.

The first special method that we introduce for Eq. (5.10) (and for systems of such equations)
uses a second-order accurate approximation for y′′:

y′′n =
yn+1 − 2yn + yn−1

h2
+O(h2) ; (5.11)

you encountered a similar formula in Lecture 3 (see Sec. 3.1). Combining Eqs. (5.10) and
(5.11), we arrive at the central-difference method for Eq. (5.10):

Yn+1 − 2Yn + Yn−1 = h2fn . (5.12)

(Method (5.12) is sometimes referred to as the simple central-difference method, because the
r.h.s. of the ODE (5.10) enters it in the simplest possible way.) Since this is a two-step method,
one needs two initial points to start it. The first point, Y0, is simply the initial condition for
the particle’s position: Y0 = y0. The second point, Y1, has to be determined from the initial
position y0 and the initial velocity y′0. The natural question then is: To what accuracy should
we determine Y1 so as to be consistent with the accuracy of the method (5.12)?

To answer this question, we first show that the global error in the simple central-difference
method is O(h2). Indeed, the local truncation error is O(h4), as it follows from (5.10)–(5.12).
For numerical methods for a first-order ODE, considered earlier, this would imply that the
global error must be O( 1

h
) · O(h4) = O(h3), since the local error of O(h4) would accumulate

over O( 1
h
) steps. However, (5.10) is a second-order ODE, and for it, the error accumulates

differently than for a first-order one. Below we will explain this qualitatively; for a rigorous
derivation, the reader is referred to Appendix 1.
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Consider the simplest case where the same error is made at every step, and all these errors
simply add together. This can then be modeled by the following second-order “ODE” in the
discrete variable n:

d2(GlobalError)/dn2 = LocalError, where LocalError=const; (5.13)

GlobalError(0) = 0, GlobalError ′ (0) = StartupError . (5.14)

The “StartupError” is actually the error one makes in computing Y1. If we now treat the
discrete variable n as continuous (which is acceptable if we want to obtain an estimate for the
answer), then the solution of the above is, obviously,

GlobalError(n) = StartupError · n + LocalError · n
2

2
, (5.15)

which on the account of

n =
(b− a)

h
= O

(
1

h

)
, ([a, b] being the interval of integration)

becomes

GlobalError(n) = StartupError ·O
(
1

h

)
+ LocalError ·O

(
1

h2

)
. (5.16)

In Appendix 1, we derive an analog of (5.16) for the discrete equation (5.12) rather than for the
continuous equation (5.13); that derivation confirms the validity of our replacing the discrete
equation by its continuous equivalent for the purposes of the estimation of error accumulation.

Equation (5.16) along with the aforementioned fact that the local truncation error is O(h4)
imply that the global error is indeed O(h2), provided that the “startup error” (i.e., the error in
Y1) is appropriately small. Using the same equation (5.16), it is now easy to see that Y1 needs
to be determined with accuracy O(h3). Therefore, we supplement Eq. (5.12) with the following

Initial conditions for method (5.12):

Y0 = y0, Y1 = y0 + hy′0 +
h2

2
f(y0) , (5.17)

where in the last equation we have used the ODE y′′ = f(y).

Another method that uses the central-difference approximation (5.11) for y′′ is:

Yn+1 − 2Yn + Yn−1 =
h2

12
(fn+1 + 10fn + fn−1) . (5.18)

This is called Numerov’s method, or the Royal Road formula. The local truncation error of
this method is O(h6). Therefore, the global error will be O(h4) (i.e., 2 orders better than the
global error in the simple central-difference method), provided we calculate Y1 with accuracy
O(h5). In principle, this can be done using, for example, the Taylor expansion:

Y1 = y0 + hy′0 +
h2

2
y′′0 +

h3

6
y′′′0 +

h4

24
y
(iv)
0 , (5.19)

where y0 and y′0 are given as the initial conditions and the higher-order derivatives are computed
successively as follows:

y′′0 = f(y0),

y′′′0 = d
dx
f(y)

∣∣
y=y0

= fy(y0)y
′
0 ,

y
(iv)
0 = d

dx
[fy(y) y

′(x)]
∣∣
y=y0

= fyy(y0)y
′
0 + fy(y0)f(y0) .

(5.20)
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However, Numerov’s method is implicit (why?), which makes it unpopular for numerical inte-
gration of the IVPs (5.10). The only exception would be the case when f(y) = ay + b, a linear
function of y, when the equation for Yn+1 can be easily solved. We will encounter Numerov’s
method later in this course when we study boundary value problems; there, this method is the
method of choice because of its high accuracy.

5.3 Special methods for the second-order ODE y′′ = f(y).
II: Methods that approximately preserve energy

5.3.1 Analytical background

As we said at the beginning of the previous subsection, Eq. (5.10) describes the motion of a
particle in the field of a conservative force. For example, the gravitational or electrostatic force
is conservative, but any form of friction is not. We now rename the independent variable x

as t (the time) and denote v(t) = y′(t) (the velocity). As before, y(t) denotes the particle’s
position. Equation (5.10) can be rewritten as

y′ = v, (5.21)

v′ = f(y), (5.22)

y(t0) = y0, v(t0) = v0 .

In Eq. (5.22), the r.h.s. can be thought of as a force acting on the particle of unit mass. Note
that these equations admit a conserved quantity, called the Hamiltonian (which in Newtonian
mechanics is just the total energy of the particle):

H(v, y) =
1

2
v2 + U(y) , U(y) = −

∫
f(y)dy . (5.23)

The first and second terms on the r.h.s. of (5.23) are the kinetic and potential energies of the
particle. Using the equations of motion, (5.21) and (5.22), it is easy to see that the Hamiltonian
(i.e., the total energy) is indeed conserved:

dH

dt
=

∂H

∂v

dv

dt
+

∂H

∂y

dy

dt
= v · f(y) + dU

dy
· v = 0 ∀t . (5.24)

It will be useful to refer to a simple model that is Hamiltonian. As such a model, we will
use the equation of a simple harmonic oscillator

y′′ = −ω2y. (5.25a)

Here f(y) = −ω2y and thus U(y) = ω2y2/2. As an initial condition for (5.25a) we will use

y(0) = 0, y′(0) = v0. (5.25b)

The parameter ω is called the frequency of the oscillator.
Model (5.25a) arises in a great variety of applications where energy of the system is con-

served (as one should expect from (5.24)). It is also a good first approximation for systems
whose energy is nearly conserved. More specifically, this model describes small oscillations (not
surprisingly!) when the system is given a small initial displacement or kick from its equilibrium
state.
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To analyze (5.25a), we write it in matrix form as follows:(
ωy
v

)′

=

(
0 ω
−ω 0

)(
ωy
v

)
, (5.26)

so that y(1) = ωy and y(2) = v. Note that using the factor ω in the definition of y(1) has made
the matrix in (5.26), as well as subsequent formulas, more “symmetric-looking”. The matrix
in (5.26) has the eigenvalues λ1,2 = ±iω; indeed:∣∣∣∣ 0− λ ω

−ω 0− λ

∣∣∣∣ = 0 ⇒

λ2 + ω2 = 0 ⇒
λ = ±iω . (5.27)

We will now demonstrate that Eq. (5.25a) does indeed describe an oscillating solution, which
is to be expected of a model named ‘harmonic oscillator’. First, from (5.26) and (5.27) one can
state, using standard techniques from a course on differential equations, that

ωy = C eiωx + C∗e−iωx, (5.28)

where C is some (complex-valued) constant and C∗ is its complex conjugate. (Such a relation
between the coefficients in (5.28) ensures that this solution is real-valued.) Then, using the
Euler formula for complex numbers,

eiωx = cos(ωx) + i sin(ωx) ,

in (5.28), one obtains

ωy = B cos(ωx+ ϕ), v = B sin(ωx+ ϕ) , (5.29)

where B are ϕ are some constants (related to constant C). It is now clear that solution (5.29)
of Eq. (5.25a) indeed describes oscillations.

Finally, let us point out that the Hamiltonian (5.23) for the harmonic oscillator can be seen
to be constant by a direct calculation using (5.29):

1

2
v2 +

1

2
(ωy)2 =

1

2
B2. (5.30)

One can interpret the last equation by saying that if the oscillator’s coordinates y(1) = ωy and
y(2) = v are plotted in the (y(1), y(2))-plane, they would form a circle. The oscillator’s motion
is then represented as a rotation around that circle. This will soon be illustrated in the next
subsection.

5.3.2 Numerical methods

It is now natural to ask: Do any of the methods considered so far conserve the Hamiltonian?
That is, if {Yn, Vn} is a numerical solution of (5.21) and (5.22), is H(Yn, Vn) independent of n?
The answer is ‘no’. However, some of the methods do conserve the Hamiltonian approximately
over very long time intervals. We now consider specific examples of such methods.

Consider the three implementations of the simple Euler method, given by Eqs. (5.2)–
(5.4). We will refer to method (5.2) as the regular Euler method; the other two methods are
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conventionally referred to as symplectic20 Euler methods. (Note that Eqs. (5.21) and (5.22) are
exactly of the form, discussed after Eqs. (5.3) and (5.4), for which both these symplectic Euler
methods are explicit, and hence easy to program.) Let us apply these methods with h = 0.02
to integration of the simple harmonic oscillator model (5.25). For simplicity, in this section we
set ω = 1.

The results are presented below. We plot the numerical solutions along with the exact one
in the phase plane for t ≤ 20, which corresponds to slightly more than 3 oscillation periods.
The orbits of the solutions obtained by the symplectic methods lie very close to the orbit of
the exact solution, while the orbit corresponding to the regular Euler method winds off into
infinity (provided one waits infinitely long, of course).
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At this point, we are ready to ask two more questions.

Question: What feature of the symplectic Euler methods allows them to maintain the
Hamiltonian of the numerical solution near that of the exact solution?

Answer: A short answer is ‘stability’. We will provide more details on this in Sec. 5.4.
Another point of view is based on the concept of a so-called modified equation. It is mentioned
in the paper posted on the course website alongside this Lecture. While it is a useful concept,
we do not have the time to cover it in this course.

Question: Among the methods we have considered in this Section, are there other methods
that possess the property of near-conservation of the Hamiltonian?

Answer: A short answer is ‘yes’. To present a more detailed answer, let us look back at
the figure for the error in the Hamiltonian, obtained with the two symplectic Euler methods.
We see that these errors are nearly opposite to each other and hence, being added, will nearly
cancel one another. Therefore, if we somehow manage to combine the symplectic methods
(5.3) and (5.4) so that the Hamiltonian error of the new method is the sum of those two “old”
errors, then that new error will be dramatically reduced in comparison with either of the “old”
errors. (This is similar to how the second-order trapezoidal rule for integration of f(x) is

20“Symplectic” is a term from Hamiltonian mechanics that means “preserving areas in the phase space”. If
this explanation does not make the matter clearer to you, simply ignore it and treat the word “symplectic” just
as a new adjective in your vocabulary.
Perhaps surprisingly, systematic studies of symplectic methods began relatively recently, in the late 1980s. The
theory behind these methods goes far beyond the scope of this course (and the expertise of this instructor). A
review of such methods is posted on the website of this course.
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obtained as the average of the first-order accurate left and right Riemann sums, whose errors
are nearly opposite and thus, being added, nearly cancel each other.) Below we produce such
a combination of methods (5.3) and (5.4).

Let us split the step from xn to xn+1 into two substeps: from xn to xn+ 1
2
and then from

xn+ 1
2
to xn+1 (see the figure below). Let us now advance the solution in the first half-step

using method (5.4) and then advance it in the second half-step using method (5.3). Here is this
process in detail:

xn → xn+ 1
2
, use (5.4) : Vn+ 1

2
= Vn +

h
2
f(Yn) ,

Yn+ 1
2
= Yn +

h
2
Vn+ 1

2
,

xn+ 1
2

→ xn+1, use (5.3) : Yn+1 = Yn+ 1
2
+ h

2
Vn+ 1

2
,

Vn+1 = Vn+ 1
2
+ h

2
f(Yn+1) .

(5.31)
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Combining the above equations (simply add the 2nd and 3rd equations, and then add the
1st and 4th ones), we obtain:

Yn+1 = Yn + hVn +
h2

2
f(Yn) ,

Vn+1 = Vn +
h
2
(f(Yn) + f(Yn+1)) .

(5.32)

Method (5.32) is called the Verlet method, after Loup Verlet, who “discovered” it in 1967.
Later, however, Verlet himself found accounts of his method in works dated as far back as the
late 18th century. In particular, in 1907, G. Störmer used higher-order versions of this method
for computation of the motion of the ionized particles in the Earth’s magnetic field. About 50
years earlier, J.F. Encke had used method (5.32) for computation of planetary orbits. For this
reason, this method is also sometimes related with the names of Störmer and/or Encke.

The Verlet method is extensively used in applications dealing with long-time computations,
such as molecular dynamics, planetary motion, and computer animation21. Its benefits are:
(i) It nearly conserves the energy of the modeled system;
(ii) It is second-order accurate; and
(iii) It requires only one function evaluation per step.

To make the value of these benefits evident, in a homework problem you will be asked to
compare the performance of the Verlet method with that of the higher-order cRK method,
which is not symplectic and does not have the property of near-conservation of energy.

21For example, you may visit a game-developers’ website at http://www.gamedev.net, go to their Forums
and there do a search for ‘Verlet’.
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We now complete the answer to the question asked about a page ago and show that the
Verlet method is equivalent to the simple central-difference method. To this end, let us write
the Verlet equations at two consecutive steps:

Yn+1 = Yn + hVn +
h2

2
f(Yn) ,

Vn+1 = Vn +
h
2
(f(Yn) + f(Yn+1)) ,

Yn+2 = Yn+1 + hVn+1 +
h2

2
f(Yn+1) ,

Vn+2 = Vn+1 +
h
2
(f(Yn+1) + f(Yn+2)) .

(5.33)

In fact, we will only need the first three of the above equations. Subtracting the 1st equation
from the 3rd and slightly rearranging the terms, we obtain:

Yn+2 − 2Yn+1 + Yn =

{
hVn+1 +

h2

2
f(Yn+1)

}
−
{
hVn +

h2

2
f(Yn)

}
. (5.34)

We now use the 2nd equation of (5.33) to eliminate Vn+1. The straightforward calculation yields

Yn+2 − 2Yn+1 + Yn = h2f(Yn+1),

which is the simple central-difference method (5.12). Thus, we have shown that the simple
central-difference method nearly conserves the energy of the system.

To conclude this section, we note that although the Verlet method nearly conserves the
Hamiltonian of the simulated system, it may not always conserve or nearly-conserve other
constants of the motion, whenever such exist. As an example, consider the Kepler two-body
problem (two particles in each other’s gravitational field):

q′′ = − q

(q2 + r2)3/2
, r′′ = − r

(q2 + r2)3/2
, (5.35)

where q and r are the Cartesian coordinates of a certain radius vector relative to the center
of mass of the particles. Let us denote the velocities corresponding to q and r as Q and R,
respectively. This problem has the following three constants of the motion:

Hamiltonian of (5.35):

H =
1

2
(Q2 +R2)− 1√

q2 + r2
, (5.36)

Angular momentum of (5.35):

A = qR− rQ , (5.37)

Runge–Lenz vector of (5.35):

L = i⃗

(
R(qR− rQ)− q√

q2 + r2

)
+ j⃗

(
−Q(qR− rQ)− r√

q2 + r2

)
. (5.38)

It turns out that the Verlet method nearly conserves the Hamiltonian and exactly conserves
the angular momentum A, but does not conserve the Runge–Lenz vector L. In a homework
problem, you will be asked to examine what effect this nonconservation has on the numerical
solution.
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5.4 Stability of numerical methods for systems of ODEs and higher-
order ODEs

Following the lines of the previous three subsections, we will first comment on the stability
of general-purpose methods, and then on that of special methods for y′′ = f(y) and similar
equations.

In Lecture 4, we showed that in order to analyze stability of numerical methods for a single
first-order ODE y′ = f(x, y), we needed to consider that stability for the model problem (4.15),
y′ = λy with λ = const. The motivation for this was given in Sec. 4.2. Namely, we related
the stability concept with the deviation (y − u) between two nearby solutions y and u of the
ODE in question, and this deviation satisfies Eq. (4.16), which we re-state here for the reader’s
convenience:

(y − u) ′ ≈ fy(x, y) · (y − u). (5.39)

Replacing the variable coefficient fy(x, y) with a constant λ, one arrives at the model problem
(4.15). Recall that when we analyze the stability of a particular numerical method, we need
to keep into account what range of values fy, and hence λ, can take on. Thus, as we stated
earlier, the stability of the numerical method depends on the ODE that it is applied to. We will
see below that the same statement also pertains to a system of ODEs.

Question: What is the counterpart of (5.39) for a system of ODEs?
Answer, stated for two ODEs:

(y⃗ − u⃗) ′ =
∂(f (1), f (2))

∂(y(1), y(2))
(y⃗ − u⃗) , (5.40)

where

y⃗ =

(
y(1)

y(2)

)
, u⃗ =

(
u(1)

u(2)

)
,

∂(f (1), f (2))

∂(y(1), y(2))
=

 ∂f (1)

∂y(1)
∂f (1)

∂y(2)

∂f (2)

∂y(1)
∂f (2)

∂y(2)

 . (5.41)

The last matrix is called the Jacobian of the r.h.s. of system (5.1). Equations (5.40) and (5.41)
generalize straightforwardly for more than two equations.

We now give a brief derivation of Eqs. (5.40) and (5.41) which parallels that of Eq. (4.16)
for a single first-order ODE. For convenience of the reader, we re-state here the ODEs from
(5.1):

y(1)
′
= f (1)(x, y(1), y(2)),

y(2)
′
= f (2)(x, y(1), y(2)),

u(1) ′ = f (1)(x, u(1), u(2)),

u(2) ′ = f (2)(x, u(1), u(2)).
(5.42)

We subtract the second equation in the kth line (k = 1 or 2) of (5.42) from the first equation
in the same line and obtain:

(y(k) − u(k)) ′ = f (k)(x, y(1), y(2))− f (k)(x, u(1), u(2))

=
∂f (k)

∂y(1)
(y(1) − u(1)) +

∂f (k)

∂y(2)
(y(2) − u(2))

+O
(
(y(1) − u(1))2, (y(2) − u(2))2, (y(1) − u(1))(y(2) − u(2))

)
. (5.43)

Above k = 1 or k = 2, and in the second equation we have used the Taylor expansion for f (k)

“centered” about (u(1), u(2)), with ∆y(ℓ) ≡ (y(ℓ) − u(ℓ)), ℓ = 1, 2. You will be asked to verify
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(5.43) in a QSA. Putting Eqs. (5.43) for k = 1 and 2 together, one obtains Eqs. (5.40) and
(5.41).

Since we do not know the values of the entries in the Jacobian matrix in Eq. (5.40), we
simply replace that matrix by a matrix with constant terms. Thus, the model problem that
one should use to analyze stability of numerical methods for system of ODEs is

y⃗ ′ = Ay⃗ , A is a constant matrix. (5.44)

Now, for a single first-order ODE, we had only one parameter, λ, in the model problem.

Question: How many parameters do we have in the model problem (5.44) for a system of N
ODEs?

The answer depends on which of the two categories of methods one uses. Namely, in Sec.
5.1, we saw that some methods (e.g., the regular Euler (5.2) and the Modified Euler (5.5)) use
the solution Y⃗n at x = xn to simultaneously advance to the next step, x = xn+1. Moreover,
each component Y (k) is obtained using the same discretization rule. To be consistent with
the terminology of Sec. 5.1, we will call this first category of methods, the general purpose
methods. Methods of the other category, which included the symplectic Euler and Verlet,
obtain a component Y

(m)
n+1 at xn+1 by using previously obtained components at xn+1, Y

(k)
n+1 with

k < m, as well as the components Y
(p)
n with p ≥ m at xn. In other words, they apply different

discretization rules for different components. We will call methods from this category, special
methods.

5.4.1 Stability analysis for general-purpose methods

Returning to the above question, we will show below that for the general-purpose methods
(regular Euler, modified Euler, cRK, etc.), the answer is ‘1’ (yes, one), even though matrix A
contains N2 entries!

Let us begin by presenting a diagonalization process (see below) for the model problem
(5.44). Most matrices, or at least those that we will encounter in this course, are diagonaliz-
able22. This means that there exists a matrix S and a diagonal matrix D such that

A = S−1 DS ; D = diag(λ1, λ2, . . . , λN) . (5.45)

Moreover, the diagonal entries of D are the eigenvalues of A. Substitution of (5.45) into (5.44)
leads to the following sequence of transformations:

y⃗ ′ = Ay⃗ ⇒
y⃗ ′ = S−1 DSy⃗ ⇒

Sy⃗ ′ = DSy⃗ ⇒
(Sy⃗)′ = D (Sy⃗) ⇒

z⃗ ′ = D z⃗, where z⃗ = Sy⃗ . (5.46)

Given the diagonal form (5.45) of matrix D, the last equation in (5.46) can be written as

z(k)
′
= λ(k)z(k) , for k = 1, . . . N , (5.47)

22Some matrices, e.g.

(
1 1
0 1

)
, are not diagonalizable. However, if we perturb it as, say,

(
1.01 1
0 1

)
, this

latter matrix is diagonalizable.
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which means that the matrix model problem (5.44) reduces to the model problem (4.15) for a
single first-order ODE. Furthermore, since all z(k)-components are independent, then consid-
ering N equations for them is equivalent to considering just the single model problem (4.15)
from Lecture 4.

We will now show that steps leading to the above steps are relevant to studying stability of
general-purpose methods. We will explain this using the regular Euler method as an example.
(Details for other general purpose methods are more involved, but follow the same logic.)
Applying the regular Euler method to system (5.44), we get

Y⃗n+1 − Y⃗n = hAY⃗n . (5.48)

Repeating now the steps of (5.46), we rewrite this as

Z⃗n+1 − Z⃗n = hDZ⃗n , (5.49)

where Z⃗n is the numerical approximation to z⃗n. Given the diagonal form of D, for the compo-
nents of Z⃗n we obtain:

Z
(k)
n+1 − Z(k)

n = hλ(k)Z(k)
n , (5.50)

which is just the simple Euler method applied separately to individual model problems (5.47).
Thus, we have confirmed our earlier statement that for a general purpose method, the stability
analysis for a system of ODEs reduces to the stability analysis for a single equation.

Let us reiterate this important conclusion: To study stability of a given general-purpose
method applied to a system of equations, it will suffice to study its stability for the single
model equation (4.15), which we already did in Lecture 4. In particular, is some information
about the entries of the Jacobian matrix is available,23 this information should be used to infer
information about possible location of eigenvalues of A. Then, stability analysis can be carried
out based on the information about the eigenvalues of A.

Below we give an example of doing stability analysis for the regular Euler method. As
a model problem, we choose that of a simple harmonic oscillator (5.25), whose solution was
derived at the end of Sec. 5.3.1. According to the ‘important conclusion’ (boldfaced above), it
suffices to study stability of this general-purpose method for a single ODE

y′ = λy with λ = iω or λ = −iω, (5.51)

as these are the eigenvalues of the simple harmonic oscillator; see (5.27). Equation (4.20) of
Lecture 4 yielded the following expression for the magnitude of the amplification factor:

|ρ| = |1 + h · iω| =
√
1 + h2ω2 ≈ 1 +

1

2
h2ω2 , (5.52)

so that

|ρ|n = |ρ|(x/h) ≈
(
1 +

1

2
h2ω2

)(x/h)

=

(
1 + h · 1

2
hω2

)(x/h)

≈ exhω
2/2 . (5.53)

To see what the above result says about the numerical solution being (or not being) close to
the exact solution, first combine (5.53) with a form of the definition of the amplification factor:
Yn = ρn Y0 and the fact that Y0 = y0:

|Yn| = exhω
2/2 |y0|. (5.54)

23This is always the case for systems whose f (k) are linear in y⃗, since then the Jacobian matrix equals the
constant matrix A in (5.47).
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Before we proceed, let us explain what we meant by the notation |Yn|, or “amplitude”, of
the solution. You know that the exact solution yn of the simple harmonic oscillator equation,
well, oscillates. I.e., it is a sinusoidal wave with some amplitude. It is this amplitude that we
refer to in (5.54). Alternatively, you can think of this amplitude and the height of the envelope
of this sinusoidal wave.

While we have shown that the amplitude of the numerical solution, (5.54), grows, the
amplitude of the exact solution of (5.51) remains constant in x. This is intuitive, since the
amplitude of the simple harmonic oscillator, in the absence of any other terms, should remain
constant. This can also be shown more formally as follows.24 If we view yn not as the real-
valued solution of the harmonic oscillator problem (5.25a) but as a complex-valued solution
of its complex form (5.51), we can write (where now | . . . | denotes the modulus of a complex
number):

|yn| =
∣∣y0 e±iωx

∣∣ = |y0| ·
∣∣e±iωx

∣∣ = |y0| for all n.25 (5.55)

Comparing Eqs. (5.54) and (5.55), we see that the amplitude of the numerical solution grows
with x, whereas the amplitude of the exact solution of (5.26) is constant. One can relate them
as follows:

|Yn| ≈ e(hω
2/2)x |yn|. (5.56)

Thus, we have shown that the regular Euler method applied to (5.26) produces an exponentially
growing solution, and hence is unstable for any step size h!

This result is corroborated by the figure accompanying Eq. (4.20). Namely, for λ = i or
−i (recall that in Sec. 5.3.2 we set ω = 1), the value hλ lies on the imaginary axis, which
is outside the stability region for the simple Euler method. Since the magnitude of any error
will then grow exponentially, so will the amplitude of the solution, because, as we discussed
in Lecture 4, for linear equations the error and the solution satisfy the same equation. In a
homework problem, you will be asked to show that the behavior of the Hamiltonian of the
numerical solution shown in a figure in Sec. 5.3 quantitatively agrees with Eq. (5.53).

5.4.2 Stability analysis for special methods

We will now show that the ‘important conclusion’ stated after (5.50) does not apply to special
methods like the symplectic Euler etc. That is, the eigenvalues of matrix A do not alone
determine stability of such methods. To illustrate this, let us apply symplectic Euler (5.3) to a

2× 2 model problem (5.44), assuming that A =

(
a11 a12
a21 a22

)
. We have (verify):

Y⃗n+1 − Y⃗n = h

(
0 a12
0 a22

)
Y⃗n + h

(
a11 0
a21 0

)
Y⃗n+1 . (5.57)

This can no longer be written in the form (5.48), and hence the subsequent calculations that
led to (5.50) are no longer valid. Therefore, we arrive at another important conclusion, this
time for stability analysis of special methods:. The only venue to proceed with the stability
analysis for special methods is to consider the original matrix model problem (5.44).26

24If you find the next sentences and equation confusing, you can skip them.
25If you are unsure how the last equation, implying that the modulus of the complex exponential equals

1, came about, apply the definition of the modulus of a complex number to the Euler formula, stated below
Eq. (5.28).

26Obviously, this model problem has, in general, as many parameters as the matrix A, i.e. N2.
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Let us illustrate this for the symplectic Euler method (5.3). Recall that we need to do the
stability analysis for a specific matrix A in the model problem (5.44). As for the regular Euler
method in the previous subsection, we will use the model problem y′′ = −ω2y (i.e., (5.25a)),
written in the form (5.26): (

ωy
v

)′

=

(
0 ω
−ω 0

)(
ωy
v

)
. (5.26)

The finite-difference equations are:

ωYn+1 = ωYn + (hω)Vn

Vn+1 = Vn − (hω)ωYn+1

⇒(
1 0
hω 1

)(
ωY
V

)
n+1

=

(
1 hω
0 1

)(
ωY
V

)
n

⇒(
ωY
V

)
n+1

=

(
1 0
hω 1

)−1(
1 hω
0 1

)(
ωY
V

)
n

⇒(
ωY
V

)
n+1

=

(
1 0

−hω 1

)(
1 hω
0 1

)(
ωY
V

)
n

⇒(
ωY
V

)
n+1

=

(
1 hω

−hω 1− (hω)2

)(
ωY
V

)
n

. (5.58)

Once we have obtained this matrix relation between the solutions at the nth and (n + 1)st
steps, we need to obtain the eigenvalues of the matrix on the r.h.s. of (5.58). Indeed, it is
known from Linear Algebra that the solution of (5.58) is(

ωY
V

)
n

= u⃗1 ρ
n
1 + u⃗2 ρ

n
2 , (5.59)

where ρ1,2 are the eigenvalues of the matrix in question and u⃗1,2 are the corresponding eigenvec-
tors. (We have used the notation ρ1,2 instead of λ1,2 for the eigenvalues in order to emphasize
the connection with the characteristic root ρ that arises in the stability analysis of a single
ODE.) If we find that the modulus of either of the eigenvalues ρ1 or ρ2 exceeds 1, this would
mean that the symplectic method is unstable (well, we know already that it is not, but we need
to demonstrate that). A simple calculation similar to that found after Eq. (5.26) yields

ρ1,2 = 1− 1

2

(
h2ω2 ±

√
h4ω4 − 4h2ω2

)
. (5.60)

With some help from Mathematica, one can show that

|ρ1| = |ρ2| = 1 for − 2 ≤ hω ≤ 2
either |ρ1| > 1 or |ρ2| > 1, for any other complex hω .

(5.61)

Thus, the symplectic Euler method is stable for the simple harmonic oscillator equation (and, in
general, other oscillatory models), provided that h is sufficiently small, so that −2 < hω < 2.
Note that ω in Eq. (5.25a) is just λI (i.e., Im(λ) ), where λ is the coefficient in the model
equation (4.15): see (5.26) and (5.27). Using this relation between λ and ω, we then observe
that the stability region for the symplectic Euler method, given by the first line of (5.61), is
reminiscent of the stability region of the Leap-frog method (see Eq. (4.36)). This may suggest
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that the Leap-frog method, applied to an oscillatory equation, will also have the property of
near-conservation of the total energy. While this is indeed so, we will not consider this issue
here.

Let us now state the result for stability analysis of the simple central-difference method
(5.12) and Numerov’s method (5.18) applied to the model equation (5.25a). Substituting
Yn = ρn into the simple central-difference equation, where f(y) = −ω2y, one finds

ρ2 − (2− h2ω2)ρ+ 1 = 0 . (5.62)

The two roots ρ1,2 of Eq. (5.62) satisfy Eq. (5.59) and therefore are given by the Eq. (5.61)
above. This is not at all surprising, given that the simple central-difference method is equivalent
to the Verlet method (see the text around (5.33)) and the latter, in its turn, is simply a
composition of two symplectic Euler methods.

Similarly, one can show that the stability region for Numerov’s method is given by

−
√
6 ≤ hω ≤

√
6 , where |ρ1| = |ρ2| = 1 , (5.63)

whereas for any other complex hω, either |ρ1| > 1 or |ρ2| > 1.

We conclude this section with a side note. The symplectic Euler (and higher-order symplec-
tic) methods may lose their remarkable property of near-conservation of energy if the step size
is varied. This is discussed, e.g., in the article by J. Dummer posted alongside this Lecture.
An explanation of this fact was given by Robert Skeel in 1993; his paper is also posted on the
course website. In Appendix 2 we summarize the main idea of his explanation.

However, in practice, a varying step size
does not always cause the symplectic Euler
method to become unstable. To illustrate
this fact, we show the error in the Hamilto-
nian obtained for the same Eq. (5.25) as in
Sec. 5.3 when the step size is sinusoidally var-
ied with a frequency incommensurable with
that of the oscillator itself. Specifically, we
took h = 0.02+0.01 sin(1.95t). We see, how-
ever, that the error in the symplectic meth-
ods is still much smaller than that obtained
by the regular Euler method. 0 10 20 30 40 50 60 70 80 90
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5.5 Stiff equations

Here we will encounter, for the first time in this course, a class of equations that are very
difficult to solve numerically. These equations are called numerically stiff. It is important to
be able to recognize cases where one has to deal with such systems of equation; otherwise, the
numerical solution that one would obtain will have no connection to the exact one.

Let us consider an IVP(
u
v

)′

=

(
998 1998

−999 −1999

)(
u
v

)
,

(
u
v

)∣∣∣∣
x=0

=

(
1
0

)
. (5.64)
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Its exact solution is (
u
v

)
=

(
2

−1

)
e−x +

(
−1
1

)
e−1000x . (5.65)

The IVP (5.64) is an example of a stiff equation. Although there is no rigorous definition of nu-
merical stiffness, it is often accepted that a stiff system should satisfy the following two criteria:
(i) The system of ODEs must contain at least two groups of solutions, where solutions in one
group vary rapidly relatively to the solutions of the other group. That is, among the eigenvalues
of the corresponding matrix A there must be two, λslow and λrapid, such that

|Reλrapid|
|λslow|

≫ 1 . (5.66)

(ii) The rapidly changing solution(s) must be stable. That is, the large in magnitude eigen-
values, λrapid, of the matrix A in Eq. (5.44) must have Re λrapid < 0. As for the slowly
changing solutions, they may be either stable or unstable.

Let us verify that system (5.64) is stiff. Indeed, criterion (i) above is satisfied for this system
because of its two solutions, given by the two terms in (5.65), the first (with λslow = −1) varies
slowly compared to the other term (with λrapid = −1000). Criterion (ii) is satisfied because the
rapidly changing solution has λrapid < 0.

Another example of a stiff system is(
u
v

)′

= −
(

499 501
501 499

)(
u
v

)
,

(
u
v

)∣∣∣∣
x=0

=

(
0
2

)
, (5.67)

whose solution is (
u
v

)
=

(
−1
1

)
e2x +

(
1
1

)
e−1000x . (5.68)

Here, again, the first and second terms in (5.68) represent the slow and fast parts of the solution,
with λslow = 2 and λrapid = −1000, so that |λrapid| ≫ |λslow|. Thus, criterion (i) is satisfied.
Criterion (ii) is satisfied because the rapid solution is stable: λrapid < 0.

The difficulty with stiff equations can be understood from the above examples (5.64), (5.65)
and (5.67), (5.68). Namely, the rapid parts of those solutions are important only very close to
x = 0 and are almost zero everywhere else. However, in order to integrate, e.g., (5.64) using,
say, the simple Euler method, one would require to keep h · 1000 ≤ 2 (see Eq. (4.19)), i.e.
h ≤ 0.002. That is, we are forced to use a very small step size in order to avoid the numerical
instability caused by the least important part of the solution!

Thus, in layman terms, a problem that involves processes evolving on two (or more) dis-
parate scales, with the rapid process(es) being stable, is stiff. Moreover, as the above example
shows, the meaning of stiffness is that one needs to work the hardest (i.e., use the smallest
h) to resolve the least important part of the solution (i.e., the second terms on the r.h.s.’es of
(5.65) and (5.68)).

An obvious way to deal with a stiff equation is to use an A-stable method (implicit or
modified implicit Euler). This would eliminate the issue of numerical instability; however, the
problem of (low) accuracy will still remain.

In practice, one strikes a compromise between the accuracy and stability of the method.
Matlab, for example, uses a family of methods known as BDF (backward-difference formula)
methods. Matlab’s built-in solvers for stiff problems are ode15s (this uses a method of order
between 1 and 5) and ode23s.
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5.6 Appendix 1: Derivation of Eq. (5.12) with fn = const

Here we will derive the solution of Eq. (5.12) with its right-hand side being replaced by a
constant:

Yn+1 − 2Yn + Yn−1 = M, M = const. (5.69)

This will provide a rigorous justification for the solution (5.15) of the system (5.13)–(5.14)
with StartupError= 0. We will indicate at the end how this derivation can be extended for
StartupError ̸= 0.

The method that we will use closely follows the lines of the method of variation of parameters
for the second-order ODE

y′′ +By′ + Cy = F (x). (5.70)

In what follows we will refer to Eq. (5.70) as the continuous case. Namely, we first obtain the
solutions of the homogeneous version of (5.69):

Yn = c(1) + c(2)n , c(1) and c(2) are arbitrary constants. (5.71)

Solution (5.71) was obtained by the substitution into (5.69) with M = 0 of the ansätze Yn = ρn

and Yn = nρn. This is analogous to how the solution y = c(1) + c(2)x of the ODE y′′ = 0 is
obtained.

Next, to solve Eq. (5.69) with M ̸= 0, we allow the constants c(1) and c(2) to depend on n.
Substituting the result into (5.69), we obtain:(

c
(1)
n+1 − 2c(1)n + c

(1)
n−1

)
+
(
(n+ 1)c

(2)
n+1 − 2nc(2)n + (n− 1)c

(2)
n−1

)
= M. (5.72)

Now, similarly to how in the continuous case the counterparts of our c(1) and c(2) are set to
satisfy an equation (

c(1)
)′

y(1) +
(
c(2)
)′

y(2) = 0,

where y(k), k = 1, 2 are the homogeneous solutions of (5.70), here we impose the following
condition:

k = n :
(
c
(1)
k+1 − c

(1)
k

)
+ k

(
c
(2)
k+1 − c

(2)
k

)
= 0. (5.73)

Subtracting from (5.73) its counterpart for k = n− 1, one obtains:(
c
(1)
n+1 − 2c(1)n + c

(1)
n−1

)
+
(
n c

(2)
n+1 − (2n− 1)c(2)n + (n− 1)c

(2)
n−1

)
= 0. (5.74)

Next, subtracting the last equation from (5.72), we obtain a recurrence equation for c(2) only,

which has a simple solution (assuming c
(2)
0 = 0):

c
(2)
n+1 − c(2)n = M, ⇒ c(2)n = nM. (5.75)

From (5.75) and (5.73) one obtains the solution for c(1):

c
(1)
n+1 − c(1)n = −nM, ⇒ c(1)n = −n(n− 1)

2
M. (5.76)

(Again, we have assumed that c
(1)
0 = 0.) Finally, combining the results of (5.71), (5.75), and

(5.76), we obtain the solution of Eq. (5.69):

Yn = −n(n− 1)

2
M + n2M =

n(n+ 1)

2
M = O(n2)M. (5.77)
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The leading-order dependence on n of this solution is that corresponding to the LocalError
term in formula (5.15).

To obtain the StartupError term in that formula, one needs to reconsider the initial
conditions for c

(1)
0 and c

(2)
0 . Let StartupError= S. This means that we now have

Y0 = 0 (as before), Y1 = S, (5.78)

which says that our error at the initial node, n = 0, is still zero, but at the first computed
node, n = 1, it is S. Next, for arbitrary c

(1)
0 and c

(2)
0 , expressions in (5.75) and (5.76) generalize

straightforwardly to

c(2)n = c
(2)
0 + nM, c(1)n = c

(1)
0 − n(n− 1)

2
M. (5.79)

Substituting this along with (5.71) into (5.78), one finds

c
(1)
0 = 0, c

(2)
0 = S −M. (5.80)

Finally, substituting (5.80) into (5.79) and then the result into (5.71), one obtains

Yn = nS +
n(n− 1)

2
M, (5.81)

which agrees with (5.15).

5.7 Appendix 2: Symplectic methods with a variable step size

Consider the symplectic Euler method performed with two alternating step sizes, h1 and h2.
The corresponding relations follow from (5.58):(

ωY
V

)
n+1

= M1

(
ωY
V

)
n

,

(
ωY
V

)
n+2

= M2

(
ωY
V

)
n+1

. (5.82a)

Mk =

(
1 hkω

−hkω 1− (hkω)
2

)
, k = 1, 2. (5.82b)

Thus, (
ωY
V

)
n+2

= M2M1

(
ωY
V

)
n

, (5.83)

which means that the matrix whose eigenvalues determine the behavior of the numerical solution
(see the text after (5.58)) is (M2M1). These eigenvalues would have been the products of the
corresponding eigenvalues (5.60) computed with h = h1 and h = h2 ifM1 andM2 had commuted.
However, these matrices do not commute (as one can straightforwardly verify). Hence the only
way to compute the eigenvalues of M2M1 is by direct calculation. In general, such calculations
for the Verlet method (which, as you may recall, is just a superposition of two symplectic Euler
methods) are performed in a paper “Variable step size destabilizes the Störmer/Leapfrog/Verlet
method” by R. Skeel, which is posted on the course webpage.

Here is a numeric example illustrating the above statement. Take h1 and h2 such that
h1ω = 3/4 and h2ω = 7/4. Both values are within the stability region of the symplectic Euler
method, according to (5.61). However, the eigenvalues of M2M1 are (−647± 3

√
17385)/512,

and the more negative of them has modulus that is slightly greater than 2. Thus, the symplectic
Euler method with a variable step size implemented as per (5.82) with the h1,2ω values as above
not only will not conserve the energy, but also will be strongly unstable.
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5.8 Questions for self-assessment

1. Verify (5.6).

2. Verify (5.7).

3. What would be your first step to solve a 5th-order ODE using the methodology of Sec.
5.1?

4. Use Eq. (5.11) to explain why the local truncation error of the simple central-difference
method (5.12) is O(h4).

5. What is the global error of the simple central-difference method?

6. Explain why Y1 for that method needs to be calculated with accuracy O(h3).

7. How does the rate of the error accumulation (with the number of steps) for a second-order
ODE differ from the rate of the error accumulation for a first-order ODE?

8. Explain the last term in the expression for Y1 in (5.17).

9. Why is Numerov’s method implicit?

10. What is the physical meaning of the Hamiltonian for a Newtonian particle?

11. Verify (5.24).

12. What is the advantage of the symplectic Euler methods over the regular Euler method?

13. State the observation that prompted us to combine the two symplectic Euler methods
into the Verlet method.

14. Obtain (5.32) from (5.31).

15. Obtain (5.34) and the next (unnumbered) equation.

16. What is the model problem for the stability analysis for a system of ODEs?

17. Obtain (5.43) following the explanatory sentence after that equation and the observation
that y = u+ (y − u).

18. Verify (for the case of two-component vectors) that (5.46) yields (5.47).

19. Show that for a “general-purpose” method, the stability analysis for a system of ODEs
reduces to the stability analysis for the model problem (4.15).

20. Why is this not so for the “special” methods, like the symplectic Euler?

21. Make sure you can follow (5.58).

22. Verify that (5.59) is the solution of (5.58). That is, substitute (5.59), with the correspond-
ing subindices, into both sides of the last equation of (5.58). Then for the expression on
the r.h.s., use the stated fact that u⃗1 and u⃗2 are the eigenvectors of the matrix appearing
on the r.h.s. of that equation. (You do not need to use the explicit form of that matrix.)
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23. Obtain (5.60).

24. Would you apply a simplectic Euler method to the following strongly damped oscillator
(where the 3y′ is the damping term):

y′′ + 3y′ + y = 0 ?

Please explain.

25. Same question for Numerov’s method.

26. What is the numerical stiffness, in layman terms?


