
MATH 337, by T. Lakoba, University of Vermont 86

8 Finite-difference methods for BVPs

In this Lecture, we consider methods for solving BVPs whose (methods’) idea is to replace the
BVPs with a system of approximating algebraic equations. In the first five sections, we will
(mostly) deal with linear BVPs, so that the corresponding system of equations will be linear.
The last section will show how nonlinear BVPs can be approached.

8.1 Matrix problem for the discretized solution

Let us begin by considering a linear BVP with Dirichlet boundary conditions:

y′′ + P (x)y′ +Q(x)y = R(x) ,

y(a) = α, y(b) = β .
(8.1)

As before, we assume that P , Q, and R are twice continuously differentiable, so that y is a four
times continuously differentiable function of x. Also, we consider the case where Q(x) ≤ 0 on
[a, b], so that the BVP (8.1) is guaranteed by Theorem 6.2 to have a unique solution.

Let us replace y′′ and y′ in (8.1) by their second-order accurate discretizations:

y′′ =
1

h2
(yn+1 − 2yn + yn−1) +O(h2) , (8.2)

y′ =
1

2h
(yn+1 − yn−1) +O(h2) . (8.3)

Upon omitting the O(h2)-terms and substituting (8.2) and (8.3) into (8.1), we obtain the
following system of linear equations:

Y0 = α ;

(1 + h
2
Pn)Yn+1 − (2− h2Qn)Yn + (1− h

2
Pn)Yn−1 = h2Rn , 1 ≤ n ≤ N − 1 ;

YN = β .

(8.4)

In the matrix form, this is
AY⃗ = r⃗ , (8.5)

where

A =

−(2− h2Q1) (1 + h
2
P1) 0 0 · · · 0

(1− h
2
P2) −(2− h2Q2) (1 + h

2
P2) 0 · · · 0

0 (1− h
2
P3) −(2− h2Q3) (1 + h

2
P3) 0 0

· · · · · · · · · · · · · · · · · ·

0 · · · 0 (1− h
2
PN−2) −(2− h2QN−2) (1 + h

2
PN−2)

0 · · · 0 0 (1− h
2
PN−1) −(2− h2QN−1)

 , (8.6)

Y⃗ = [Y1, Y2, . . . , YN−1]
T , and

r⃗ =

[
h2R1 −

(
1− h

2
P1

)
α, h2R2, h2R3, · · · , h2RN−2, h2RN−1 −

(
1 +

h

2
PN−1

)
β

]T
;

(8.7)
the superscript ‘T ’ in (8.7) denotes the transpose.

MATH 337, by T. Lakoba, University of Vermont 87

From Linear Algebra, it is known that the linear system (8.5) has a unique solution if (and
only if) the matrix A is nonsingular. Therefore, below we list some results that will allow us
to guarantee that under certain conditions, a particular A is nonsingular.

Gerschgorin Circles Theorem, 8.1 Let aij be entries of an M ×M matrix A and let
λk, k = 1, . . . ,M be the eigenvalues of A. Then:

(i) Each eigenvalue lies in the union of “row circles” Ri, where

Ri =

{
z : |z − aii| ≤

M∑
j=1, j ̸=i

|aij|

}
. (8.8)

(In words,
∑M

j=1, j ̸=i |aij| is the sum of all off-diagonal entries in the ith row.)

(ii) Similarly, since A and AT have the same eigenvalues,30 then each eigenvalue also lies
in the union of “column circles” Cj, where

Cj =

{
z : |z − ajj| ≤

M∑
i=1, i ̸=j

|aij|

}
. (8.9)

(In words,
∑M

i=1, i ̸=j |aij| is the sum of all off-diagonal entries in the jth column.)

(iii) Let
⋃i=l

i=k Ri be a cluster of (l − k + 1) row circles that is disjoint from all the other
row circles. Then it contains exactly (l − k + 1) eigenvalues.
A similar statement holds for column circles.

Example Use the Gerschgorin Circles Theorem to estimate eigenvalues of a matrix

E =

 1 2 −1

1 1 1

1 3 −1

 . (8.10)

Solution The circles are listed and sketched below:

R1 = {z : |z − 1| ≤ |2|+ |1| = 3} C1 = {z : |z − 1| ≤ |1|+ |1| = 2}
R2 = {z : |z − 1| ≤ |1|+ |1| = 2} C2 = {z : |z − 1| ≤ |2|+ |3| = 5}
R3 = {z : |z + 1| ≤ |1|+ |3| = 4} C3 = {z : |z + 1| ≤ |1|+ | − 1| = 2}

−6 −4 −2 0 2 4 6

−4

−2

0

2

4 Im z

Re z

R
3

R
1

−4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6 Im z

Re z

C
2

C
3

30This was covered in your Linear Algebra class (without proof).

MATH 337, by T. Lakoba, University of Vermont 88

(Circles R2 and C1 are not sketched because they are concentric with, and lie entirely within,
circles R1 and C2, respectively.)

Gerschgorin Circles Theorem says that the eigenvalues of E must lie both within
⋃3

i=1 Ri

and within
⋃3

j=1 Cj. Therefore, they must lie within the intersection of
⋃3

i=1 Ri and
⋃3

j=1 Cj.
For example, this gives that |Reλ| ≤ 4 for each and any of the eigenvalues.

Before we can apply the Gerschgorin Circles Theorem, we need to introduce some new
terminology.

Definition Matrix A is called diagonally dominant if

either |aii| ≥
M∑

j=1, j ̸=i

|aij| or |aii| ≥
M∑

j=1, j ̸=i

|aji| , 1 ≤ i ≤ M , (8.11)

with the strict inequality holding for at least one i.
A matrix is called strictly diagonally dominant (SDD) if

either |aii| >
M∑

j=1, j ̸=i

|aij| or |aii| >
M∑

j=1, j ̸=i

|aji| for all i = 1, . . . ,M . (8.12)

In other words, in a SDD matrix, the sums of the off-diagonal elements along either every row
or every colum are less than the corresponding diagonal entries.

Theorem 8.2 If a matrix A is SDD, then it is nonsingular.

Proof If A is SDD, then one of the inequalities (8.12) holds. Suppose the inequality for the
rows holds. Comparing that inequality with the r.h.s. of (8.8), we conclude, by the Gerschgorin
Circles Theorem, that point λ = 0 is outside of the union

⋃M
i=1 Ri of Gerschgorin circles. Hence

it is automatically outside of the intersection of the unions
⋃M

i=1 Ri and
⋃M

i=1 Ci. (Make sure
you see why this is so.) Therefore, λ = 0 is not an eigenvalue of A, hence A is nonsingular.
q.e.d.

Theorem 8.3 Consider the BVP (8.1). If Q(x) ≤ 0, and if P (x) is bounded on [a, b] (i.e.
|P (x)| ≤ P for some P), then the discrete version (8.4) of the BVP in question has a unique
solution, provided that the step size satisfies hP ≤ 2.

Proof Case (a): Q(x) < 0. In this case, matrix A in (8.6) is SDD, provided that hP ≤ 2.
Indeed, A is tridiagonal, with the diagonal elements being

aii = −(2− h2Qi), ⇒ |aii| > 2 . (8.13)

The sum of the absolute values of the off-diagonal elements is

|ai,i+1|+ |ai,i−1| =
∣∣∣∣1 + h

2
Pi

∣∣∣∣+ ∣∣∣∣1− h

2
Pi

∣∣∣∣ =

(
1 +

h

2
Pi

)
+

(
1− h

2
Pi

)
= 2 . (8.14)

In removing the absolute value signs in the above equation, we have used the fact that hP ≤ 2.
Now, comparing (8.13) with (8.14), we see that

|ai,i+1|+ |ai,i−1| < |aii| ,
which means that A is SDD and hence by Theorem 8.2, (8.4) has a unique solution. q.e.d.

Case (b): Q(x) ≤ 0 requires a more involved proof, which we omit.

Note: We emphasize that Theorem 8.3 gives a bound for the step size,

h · max
x∈[a, b]

|P (x)| ≤ 2 , (8.15)

which is a sufficient condition for the discretization (8.4) (with Q(x) ≤ 0) to be solvable.

MATH 337, by T. Lakoba, University of Vermont 89

8.2 Thomas algorithm

In the previous section, we have considered the issue of the possibility to obtain the unique
solution of the linear system (8.4), which (the system) approximates the BVP (8.1). In this
section, we will consider the issue of solving (8.4) in an efficient manner. The key fact that
will allow us to do so is the tridiagonal form of A; that is, A has nonzero entries only on the
main diagonal and on the subdiagonals directly above and below it.It can be shown that in
order to solve31 a linear system of the form (8.5) with a full M × M matrix A, one requires
O(M3) operations. However, this would be an inefficient way to solve a linear system with a
tridiagonal A. Below we will present an algorithm, which has been discovered independently
by several researchers in the 50’s, that allows one to solve a linear system with a tridiagonal
matrix using only O(M) operations.

One way to numerically solve a linear system of the form

Ay⃗ = r⃗ (8.5)

(with any matrix A) is via so-called LU decomposition. Namely, one seeks two matrices L

(lower triangular) and U (upper triangular) such that32

LU = A . (8.16)

Then (8.5) is solved in two steps:

Step 1 : Lz⃗ = r⃗ and Step 2 : U y⃗ = z⃗ . (8.17)

The linear systems in (8.17) are then solved using forward (for Step 1) and backward (for Step
2) substitutions; details of this will be provided later on.

When A is tridiagonal, both finding the matrices L and U and solving the systems in (8.17)
requires only O(M) operations. You will be asked to demonstrate that in a homework problem.
Here we will present details of the algorithm itself.

Let

A =

b1 c1 0 0 · · · 0

a2 b2 c2 0 · · · 0

0 a3 b3 c3 · · · 0

· · · · · · · ·
0 · · · 0 aM−1 bM−1 cM−1

0 · · · 0 0 aM bM

; (8.18)

then we seek L and U in the form:

LU =

1 0 0 · 0

α2 1 0 · 0

0 α3 1 · 0

· · · · ·
0 · 0 αM 1

β1 c1 0 · 0

0 β2 c2 · 0

· · · · ·
0 · 0 βM−1 cM−1

0 · 0 0 βM

(8.19)

31by Gaussian elimination or by any other direct (i.e., non-iterative) method
32Disclaimer: The theory of LU decomposition is considerably more involved than the simple excerpt from

it given here. We will not go into further details of that theory in this course.

MATH 337, by T. Lakoba, University of Vermont 90

Multiplying the matrices in (8.19) and comparing the result with (8.18), we obtain:

Row 1: β1 = b1;

Row 2: α2β1 = a2, α2c1 + β2 = b2;

Row j: αjβj−1 = aj, αjcj−1 + βj = bj .

(8.20)

Equations (8.20) are easily solved for the unknown coefficients αj and βj:

β1 = b1,

αj = aj/βj−1, βj = bj − αjcj−1, j = 2, . . . ,M .
(8.21)

Finally, we show how the systems in (8.17) can be solved. Let

z⃗ = [z1, z2, · · · , zM]T , etc.

Then the forward substitution in Lz⃗ = r⃗ gives:

z1 = r1,

zj = rj − αjzj−1, j = 2, . . . ,M .
(8.22)

The backward substitution in U y⃗ = z⃗ gives:

yM = zM/βM ,

yj = (zj − cjyj+1)/βj, j = M − 1, . . . , 1 .
(8.23)

Thus, y⃗ is found in terms of r⃗.
The entire procedure (8.21) to (8.23) is fast, as we said earlier, and also requires the storage

of only 8 one-dimensional arrays of size O(M) for the coefficients {aj}, {bj}, {cj}, {αj}, {βj},
{rj}, {zj}, and {yj}. Moreover, it is possible to show that when A is SDD, i.e. when

|bj| > |aj|+ |cj|, j = 1, . . . ,M, (8.24)

then small round-off (or any other) errors do not get amplified by this algorithm; specifically,
the numerical error remains small and independent of the size M of the problem.33

To conclude this section, we note that similar algorithms exist for other banded (e.g., pen-
tadiagonal) matrices. The details of those algorithms can be found, e.g., in Sec. 3-2 of W.
Ames, “Numerical methods for partial differential equations,” 3rd ed. (Academic Press, 1992).

8.3 Error estimates, and higher-order discretization

In this section, we will state, without proof, two theorems about the accuracy of the solutions
of systems of discretized equations approximating a given BVP.

Theorem 8.4 Let {Yn}N−1
n=1 be the solution of the discretized problem (8.4) (or, which

is the same, (8.5)–(8.7)) and let y(x) be the exact solution of the original BVP (8.1); then
ϵn = y(xn) − Yn is the error of the numerical solution. In addition, let P = maxx∈[a, b] |P (x)|

33In line with the earlier disclaimer about the LU decomposition, we also note that condition (8.24) is just
the simplest of possible conditions that guarantee boundedness of the error. Other conditions exist and are
studied in advanced courses in Numerical Analysis.

MATH 337, by T. Lakoba, University of Vermont 91

and also let Q(x) ≤ Q < 0 (recall that Q(x) ≤ 0 is required for the BVP to have a unique
solution). Then the error satisfies the following estimate:

max |ϵn| ≤
1

h2 (|Q|+ 8
(b−a)2

)

(
1

12
h4(M4 + PM3) + 2ρ

)
, (8.25)

where M3 = maxx∈[a, b] |y′′′|, M4 = maxx∈[a, b] |y′′′′|, and ρ is the round-off error.
When the round-off error is neglected, estimate (8.25) yields that the discrete approximation

(8.4) to the BVP produces the error on the order of O(h2) (i.e., in other words, is second-order
accurate). At first sight, this is similar to how the finite-difference approximations (8.2) and
(8.3) led to second-order accurate methods for IVPs. In fact, for both the IVPs and BVPs, the
expression inside the largest parentheses on the r.h.s. of (8.25) is the local truncation error.
However, the interpretation of the O(1/h2) factor in front of those parentheses differs from
the interpretation of the similar factor for IVPs. In the latter case, that factor arose from
accumulation of the error over O(1/h) steps. On the contrary, for the BVPs, that factor arises
due to solving the linear system (8.5) and, more specifically, due to needing to invert matrix
A. This is explained in more details in Sec. 8.6 below: see the discussion leading to (8.68). In
brief, the multiplication of the vector on the r.h.s. of (8.5) by A−1 causes a factor O(1/h2) in
the solution. This fact, along with the local truncation error δ⃗r being O(h4), implies estimate
(8.25) for the solution error.

The numerical error of the discrete approximation of the BVP (8.1) can be significantly
reduced if instead of the simple central-difference approximation to y′′ = f(x, y), as in (8.2),
one uses the Numerov’s formula (5.18). Specifically, if y′ does not enter the BVP, i.e. when the
BVP is

y′′ = f(x, y) , y(a) = α, y(b) = β, (8.26)

then Numerov’s formula leads to the following system of discrete equations:

Y0 = α;

Yn+1 − 2Yn + Yn−1 =
h2

12
(fn+1 + 10fn + fn−1) 1 ≤ n ≤ N − 1 ;

YN = β .

(8.27)

In particular, when f(x, y) = −Q(x)y+R(x), system (8.27) is linear. Since the local truncation
error of Numerov’s method is O(h6), the solution of system (8.27) must be a fourth-order
accurate approximation to the exact solution of the BVP (8.26). More precisely, the following
theorem holds true:

Theorem 8.5 Let {Yn}N−1
n=1 be the solution of the discretized problem (8.27), where

f(x, y) = −Q(x)y + R(x) (so that this system is linear). Then the error ϵn = y(xn) − Yn

satisfies the following estimate:

max |ϵn| ≤
1

h2 (|Q|+ 8
(b−a)2

)

(
1

240
h6M6 + 2ρ

)
, (8.28)

where the notations are the same as in Theorem 8.4 and, in addition, M6 = maxx∈[a, b] |y(6)|.

8.4 Neumann and mixed boundary conditions

Suppose that at, say, x = a, the boundary condition is

A1y(a) + A2y
′(a) = α , (8.29)

MATH 337, by T. Lakoba, University of Vermont 92

where A1 and A2 are some constants. (Recall that for A1 = 0, this is the Neumann boundary
condition, while for A1 · A2 ̸= 0, this condition is of the mixed type.) Below we present two
methods that allow one to construct generalizations of systems (8.4) (simple central-difference
discretization) and (8.27) (Numerov’s formula) for the case of the boundary condition (8.29)
instead of

y(a) = α .

Note that the problem we need to handle for such a generalization is obtaining an approximation
to y′(a) in (8.29) that would have the accuracy consistent with the accuracy of the discretization
scheme. That is, the accuracy needs to be second-order for a generalization of (8.4) and fourth-
order for a generalization of (8.27).

Method 1
This method is efficient only for a generalization of the second-order accurate approximation.
Thus, we will look for a second-order accurate finite-difference approximation to y′(a).

Introduce a fictitious point x−1 = a − h and let the approximate solution at that point be
Y−1. Once one knows Y−1, the approximation sought is

y′(a) =
Y1 − Y−1

2h
+O(h2) , (8.30)

so that the equation approximating the boundary condition (8.29) is

x = a : A1Y0 + A2
Y1 − Y−1

2h
= α . (8.31)

The discrete analog of the ODE itself at x = a is:(
1 +

h

2
P0

)
Y1 − (2− h2Q0)Y0 +

(
1− h

2
P0

)
Y−1 = h2R0 . (8.32)

Equations (8.31) and (8.32) should replace the first equation,

Y0 = α, (8.33)

in (8.4), so that the dimension of the resulting system of equations in (8.4) increases from
(N − 1) × (N − 1) to (N + 1) × (N + 1). Note that adding two new equations (8.31) and
(8.32) to system (8.4) is consistent with introducing two new unknowns Y−1 and Y0.

Later on we will see that, rather than dealing with two equations (8.31) and (8.32), it is
more practical to solve (8.31) for Y−1 and substitute the result in (8.32). Then, instead of two
equations (8.31) and (8.32), we will have one equation that needs to replace (8.33):

2Y1 −
[
2− h2Q0 − 2h

A1

A2

(
1− h

2
P0

)]
Y0 = h2R0 + 2h

α

A2

(
1− h

2
P0

)
. (8.34)

(We are justified to assume in (8.34) that A2 ̸= 0, since otherwise the boundary condition (8.29)
becomes Dirichlet.) The resulting system then contains 1 + (N − 1) = N equations for the N
unknowns: Y0 through YN−1, and hence can be solved for a unique solution {Yn}N−1

n=0 , unless
the coefficient matrix of this system is singular. We will remark on the latter possibility after
we describe the other method.

Method 2
This method does not use a fictitious point to approximate the boundary condition with the

MATH 337, by T. Lakoba, University of Vermont 93

required accuracy. We will first show how this method can be used for the second-order accurate
approximation (8.4) and then indicate how it (the method) can be modified for the fourth-order
accurate approximation (8.27).

By analogy with Eq. (3.10) of Lecture 3, one can obtain:

yn+1 − yn
h

= y′n +
h

2
y′′n +O(h2) . (8.35)

Then, using the ODE in (8.1) to express y′′ as R− Py′ −Qy, one finds:

y′n =
yn+1 − yn

h
− h

2
(Rn − Pny

′
n −Qnyn) +O(h2)

=
yn+1 − yn

h
− h

2

(
Rn − Pn

[
yn+1 − yn

h
+O(h)

]
−Qnyn

)
+O(h2) . (8.36)

Therefore, the boundary condition (8.29) can be approximated by

A1Y0 + A2

[
Y1 − Y0

h
− h

2

(
R0 − P0

Y1 − Y0

h
−Q0Y0

)]
= α , (8.37)

with the discretization error being O(h2). In a extra-credit homework problem, you will will be
given the chance to show that (8.37) can be put it in a form similar to that of (8.34). Such a
rearranged Eq. (8.37) should then be used along with the N−1 equations in (8.4) for {Yn}N−1

n=1 .
Thus we have a system of N equations for N unknowns {Yn}N−1

n=0 , which can be solved (again,
unless its coefficient matrix is singular).

When one solves the BVP (8.26) with its Dirichlet boundary conditions replaced by the
mixed boundary conditions (8.29) while requiring fourth-order accuracy, one needs to use the
Numerov scheme for grid points inside the interval [a, b] and a fourth-order accurate approxi-
mation to y′(a). The latter can be obtained by using two more terms in expansion (8.35):

yn+1 − yn
h

= y′n +
h

2
y′′n +

h2

6
y′′′n +

h3

24
y′′′′n +O(h4) . (8.38)

Recall that our goal is to find y′n (for n = 0) using quantities that we can compute. Clearly,
one can compute the l.h.s. of (8.38). Furthermore, one can obtain y′′n from y′′n = f(xn, yn) ≡ fn.
It now remains to compute y′′′n and y′′′′n , which can be done as follows. Note that

fn+1 ≡ f(xn+1, yn+1) = fn + h
d

dx
fn + . . . = y′′n + hy′′′n +

h2

2
y′′′′n +O(h3), (8.39)

and similarly,

fn+2 = fn + (2h)
d

dx
fn + . . . = y′′n + (2h)y′′′n +

(2h)2

2
y′′′′n +O(h3). (8.40)

These two equations can be solved for hy′′′n and h2y′′′′n in terms of the quantities on the l.h.s. and
y′′n. Doing so and substituting the result in (8.38) yields the desired fourth-order approximation
for y′n:

y′n =
yn+1 − yn

h
− h

24
(7fn + 6fn+1 − fn+2) +O(h4) . (8.41)

Equation (8.41) with n = 0 can then be used to obtain a fourth-order accurate counterpart of
(8.37).

MATH 337, by T. Lakoba, University of Vermont 94

Remark 1: Recall that the coefficient matrix in the discretized BVP (8.4) with Dirichlet
boundary conditions is SDD and hence nonsingular, provided that h satisfies the condition of
Theorem 8.3. We will now state a requirement that the coefficients A1, A2 in the non-Dirichlet
boundary condition (8.29) must satisfy in order to guarantee that the corresponding BVP has a
unique solution. To this end, we consider the situations arising in Methods 1 and 2 separately.

When Eq. (8.34) replaces the Dirichlet boundary condition (8.33) in Method 1, the resulting
coefficient matrix is SDD provided that

A1A2 ≤ 0, (8.42)

in addition to the earlier requirements of Q(x) < 0 and h·max |P (x)| ≤ 2. (You will be asked to
verify (8.42) in one of the Questions for self-assessment.) On the other hand, if two individual
equations (8.31) and (8.32) are used instead of their combined form (8.34), the corresponding
coefficient matrix is no longer SDD. This is one advantage of using (8.34) instead of (8.31) and
(8.32).

Thus, condition (8.42) is sufficient, but not necessary, to guarantee that the corresponding
discretized BVP has a unique solution. That is, even when (8.42) does not hold, one can still
attempt to solve the corresponding linear system, since strict diagonal dominance is only a
sufficient, but not necessary, condition for its matrix A to be nonsingular.

In the case of Method 2, by collecting the coefficients of Y0 and Y1 in Eq. (8.37), it is
straightforward (although, perhaps, a little tediuos) to show that the coefficient matrix is SDD
if (8.42) and the two conditions stated one line below it, are satisfied. You will verify this in
a homework problem. The fourth-order accurate analog of (8.37), based on Eq. (8.41), also
yields the same conditions for strict diagonal dominance of the coefficient matrix.

Remark 2: In the case of the BVP with Dirichlet boundary conditions, the coefficient
matrix is tridiagonal (see Eq. (8.6)), and hence the corresponding linear system can be solved
efficiently by the Thomas algorithm. In the case of non-Dirichlet boundary conditions, one can
show (and you will be asked to do so) that Method 1 based on Eq. (8.34) yields a tridiagonal
system, but the same method using Eqs. (8.31) and (8.32) does not. This is the other advantage
of using the single Eq. (8.34) in this method.

Method 2 for a second-order accurate approximation to the BVP gives a tridiagonal matrix.
This can be straightforwardly shown by the same rearrangement of terms in Eq. (8.37) that was
used above to show that the corresponding matrix is SDD. However, the fourth-order accurate
modification of (8.37), based on (8.41), produces a matrix Ã that is no longer tridiagonal. One
can handle this situation in two ways. First, if one is willing to sacrifice one order of accuracy in
exchange for the convenience of having a tridiagonal coefficient matrix, then instead of (8.41),
one can use

y′n =
yn+1 − yn

h
− h

6
(2fn + fn+1) +O(h3) . (8.43)

Then the modification of (8.37) based on (8.43) does result in a tridiagonal coefficient matrix.
Alternatively, one can see that matrix Ã obtained with the fourth-order accurate formula (8.41)
differs from a tridiagonal one only in having its (1, 3)th entry nonzero (verify). Thus, Ã is in
some sense “very close” to a tridiagonal matrix, and we can hope that this fact could be used to
find Ã−1 with only O(M) operations. This can indeed be done by using the algorithm described
in the next section.

MATH 337, by T. Lakoba, University of Vermont 95

8.5 Periodic boundary condition; Sherman–Morrison algorithm

In this section, we will consider the case when BVP (8.1) has periodic boundary conditions.
We will see that the coefficient matrix arising in this case is not tridiagonal, but is, in some
sense, close to it. We will then present an algorithm that will allow us to find the inverse of
that matrix using only O(M) operations, where M ×M is the dimension of the matrix. The
same method can also be used in other situations, including the inversion of matrix Ã defined
in the last paragraph of the preceding section.

We first obtain the analogues of Eqs. (8.5)–(8.7) in the case of the BVP having periodic
boundary conditions. Consider the corresponding counterpart of the BVP (8.1):

y′′ + P (x)y′ +Q(x)y = R(x) ,

y(a) = y(b).
(8.44)

The corresponding counterpart of system (8.4) is

Y0 = YN ;

(1 + h
2
Pn)Yn+1 − (2− h2Qn)Yn + (1− h

2
Pn)Yn−1 = h2Rn , 0 ≤ n ≤ N .

(8.45)

Note 1: Since our problem has periodic boundary conditions, it is logical to let

Y−n = YN−n and YN+n = Yn, 0 ≤ n ≤ N .

In particular,
Y−1 = YN−1 and YN = Y0 (8.46)

(the last equation here is just the original periodic boundary condition).
Note 2: The index n of yet unknown values Yn in (8.45) runs from 0 to N − 1, while in (8.4)
in runs from 1 to N − 1.

In view of Eq. (8.46), the equations in system (8.45) with n = 0 and n = N − 1 can be
written as follows:

(1 + h
2
P0)Y1 − (2− h2Q0)Y0 + (1− h

2
P0)YN−1 = h2R0 ,

(1 + h
2
PN−1)Y0 − (2− h2QN−1)YN−1 + (1− h

2
PN−1)YN−2 = h2RN−1 .

(8.47)

With this result, system (8.45) can be written in the matrix form (8.5), where now

Y⃗ = [Y0, Y1, . . . , YN−1]
T , (8.48)

A =

−(2− h2Q0) (1 + h
2
P0) 0 0 · · · (1− h

2
P0)

(1− h
2
P1) −(2− h2Q1) (1 + h

2
P1) 0 · · · 0

0 (1− h
2
P2) −(2− h2Q2) (1 + h

2
P2) 0 0

· · · · · · · · · · · · · · · · · ·

0 · · · 0 (1− h
2
PN−2) −(2− h2QN−2) (1 + h

2
PN−2)

(1 + h
2
PN−1) · · · 0 0 (1− h

2
PN−1) −(2− h2QN−1)

(8.49)

and
r⃗ =

[
h2R0, h2R1, h2R2, · · · , h2RN−2, h2RN−1

]T
. (8.50)

Matrix A in Eq. (8.49) differs from its counterpart in Eq. (8.6) in two respects: (i) its
dimension is N × N rather than (N − 1) × (N − 1) and (ii) it is not tridiagonal due to the
terms in its upper-right and lower-left corners. Such matrices are called circulant.

MATH 337, by T. Lakoba, University of Vermont 96

Thus, to obtain the solution of the BVP (8.44), we will need to solve the linear system (8.5
with the non-tridiagonal matrix A. We will now show how this problem can be reduced to
the solution of a system with a tridiagonal matrix. To this end, we first make a preliminary
observation. Let w⃗ be a N × 1 vector whose only nonzero entry is its ith entry and equals
wi. Let z⃗ be a N × 1 vector whose only nonzero entry is its jth entry and equals zj. Then
C = w⃗z⃗T is an N ×N matrix whose only nonzero entry is Cij = wizj (verify). Similarly, if
w⃗ = [w1, 0, 0, . . . , wN]

T and z⃗ = [z1, 0, 0, . . . , zN]
T , then

C = w⃗ z⃗T =

w1z1 0 · · · 0 w1zN

0 0 · · · 0 0

· · · · · · · · · · · · · · ·
0 0 · · · 0 0

wNz1 0 · · · 0 wNzN

. (8.51)

Therefore, the circulant matrix A in Eq. (8.49) can be represented as:

A = Atridiag + w⃗ z⃗T , (8.52)

where Atridiag is some tridiagonal matrix and w⃗ and z⃗ are some properly chosen vectors. Note
that while the choice of w⃗ and z⃗ allows much freedom, the form of Atridiag is unique for a given
circulant matrix A, once w⃗ and z⃗ have been chosen. In an extra-credit homework problem,
you will be given the chance to make a choice for w⃗ and z⃗ and consequently come up with the
expression for Atridiag, given that A is as in Eq. (8.49).

Linear systems (8.5) with the coefficient matrix A given by (8.52) can be time-efficiently
— i.e., in O(M) operations — solved by the so-called Sherman–Morrison algorithm. This
algorithm can be found in most textbooks on Numerical Analysis, or online.

8.6 Nonlinear BVPs

The analysis presented in this section is carried out with three restrictions. First, we consider
only BVPs with Dirichlet boundary conditions. Generalizations for boundary conditions of the
form (8.29) can be done straightforwardly along the lines of Secs. 8.4 and 8.5.

Second, we only consider the BVPs

y′′ = f(x, y), y(a) = α, y(b) = β , (8.26)

which does not involve y′. Although the methods described below can also be adopted to a
more general BVP

y′′ = f(x, y, y′), y(a) = α, y(b) = β , (7.1)

the analysis of convergence of those methods to a solution of the BVP (7.1) is significantly more
complex than the one presented here. Thus, the methods that we will develop in this section
can be applied to (7.1) without a guarantee that one will obtain a solution of that BVP.

Third, we will focus our attention on the second-order accurate discretization of the BVPs.
The analysis for the fourth-order accurate discretization scheme is essentially the same, and
produces similar results.

Consider the BVP (8.26). The counterpart of system (8.4) for this BVP has the same form
as (8.5), i.e.:

AY⃗ = r⃗ , (8.5)

MATH 337, by T. Lakoba, University of Vermont 97

where now

A =

−2 1 0 0 · · · 0

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

· · · · · · · ·

0 · · · 0 1 −2 1

0 · · · 0 0 1 −2

 ; r⃗ =

h2f(x1, Y1)− α

h2f(x2, Y2)

· · ·

h2f(xN−2, YN−2)

h2f(xN−1, YN−1)− β

 . (8.53)

Matrix A above is found from (8.6) upon setting P (x) ≡ 0 and Q(x) ≡ 0. The r.h.s. vector r⃗ is
found from (8.7) where we treat the nonlinear function f(x, y) in the same way as we treated
the term R(x) in (8.1).

Equations (8.5) and (8.53) constitute a system of nonlinear algebraic equations. Below we
consider three methods of iterative solution of such a system. Of these methods, Method 1 is
an analogue of the fixed-point iteration method for solving a single linear equation34

A · y = r(y), (8.54)

Method 2 is a modification of Method 1, and Method 3 is the analog of the Newton–Raphson
method for (8.54).

Method 1 (Picard iterations)
The fixed-point iteration scheme, also called the Picard iteration scheme, for the single nonlinear
equation (8.54) is simply

y(k+1) =
1

A
r(y(k)), (8.55)

where y(k) denotes the kth iteration of the solution of (8.54). To start the iteration scheme
(8.55), one, of course, needs an initial guess y(0).

Now, let Y⃗(k) denote the kth iteration of the solution of the matrix nonlinear equation (8.5),
(8.53). Then the corresponding Picard iteration scheme is

AY⃗(k+1) = r⃗
(
x⃗, Y⃗(k)

)
, k = 0, 1, 2, (8.56)

Importantly, unlike the original nonlinear Eqs. (8.5) and (8.53), Eq. (8.56) is a linear system.
Indeed, at the (k+1)th iteration, the unknown vector Y⃗(k+1) enters linearly, while the nonlinear
r.h.s. contains Y⃗(k), which has been determined at the previous iteration.

Let us investigate the rate of convergence of the iteration scheme (8.56). For its one-variable
counterpart, Eq. (8.54), the convergence condition of the fixed-point iterations (8.55) is known
to be ∣∣∣∣A−1 · dr(y)

dy

∣∣∣∣ < 1 (8.57)

for all y sufficiently close to the fixed point. This is illustrated in the figures below, where
the thick solid curve represents the r.h.s. of Eq. (8.55) and the thin dashed line represents
Y (k+1) = Y (k). The arrows show the evolution of consecutive iterations. In the left figure panel,
where condition (8.57) holds, iterations approach the so-called fixed point, which is the solution
of (8.55). In the right panel, where the opposite of condition (8.57) holds, the iterations are
seen to move away from the fixed point.

34The constant A in (8.54) could have been absorbed into the function r(y), but we kept it so as to mimic
the notations of (8.5).

MATH 337, by T. Lakoba, University of Vermont 98

0 1 2 3 4 5

Yk

1

2

3

4

5

Y
(k

+
1

)

0 1 2 3 4 5

Yk

0

2

4

6

Y
(k

+
1

)

The condition we will establish below will be a direct analog of (8.57) for the vector equation
(8.56).

Before we proceed, let us remark that the analysis of convergence of Picard’s iteration
scheme (8.56) can proceed in two slightly different ways. In one way, one can transform (8.56)
into an iteration scheme for δ⃗ (k) = Y⃗(k) − Y⃗(k−1). Then the conditions that the iterations
converge is expressed by∥∥∥δ⃗ (k)

∥∥∥ <
∥∥∥δ⃗ (k−1)

∥∥∥ for all sufficiently large k, (8.58)

where, as in Lecture 4 (see (4.1)), || . . . || denotes the ∞-norm:∥∥∥δ⃗∥∥∥ ≡
∥∥∥δ⃗∥∥∥

∞
= max

n
|δn| .

Indeed, condition (8.58) implies that limk→∞

∥∥∥δ⃗ (k)
∥∥∥ = 0. This, in its turn, implies that the

sequence of iterations
{
Y⃗(k)

}
tends to a limit, which then, according to (8.56), must be a

solution of (8.5).
We will, however, proceed in a slightly different way. Namely, we will assume that our

starting guess, Y⃗(0), is sufficiently close to the exact solution, Y⃗, of (8.5). Then, as long as
the iterations converge, Y⃗(k) will stay close to Y⃗ for all k, and one can write

Y⃗(k) = Y⃗ + ε⃗ (k), where
∥∥ε⃗ (k)

∥∥ ≪ 1. (8.59)

Quantity ε⃗ (k) is the “error” in the sense that it shows how different the current iterated solution
is close to the exact solution of the discretized BVP. Thus, it is different from the error ϵ⃗ due
to discretization itself, defined in Sec. 8.3.

The condition that iterations (8.56) converge has the same form as (8.58):∥∥ε⃗ (k)
∥∥ <

∥∥ε⃗ (k−1)
∥∥ for all sufficiently large k. (8.60)

However, its interpretation is slightly different (although equivalent): Now the fact that
limk→∞

∥∥ε⃗ (k)
∥∥ = 0 implies that limk→∞ Y⃗(k) = Y⃗, i.e. that the iterative solutions converge to

the exact solution of (8.5).
Both methods of convergence analysis described above can be shown to yield the same

conclusions. We chose to follow the second method, based on (8.59), because it can be more

MATH 337, by T. Lakoba, University of Vermont 99

naturally related to the linearization of the nonlinear equation at hand (see below). Lineariza-
tion will allow us to replace the analysis of the original nonlinear equation (8.5) by the analysis
of a system of linear equations, which can be carried out using well-developed methods of Linear
Algebra.

Thus, we begin the convergence analysis of the iteration scheme (8.56) by substituting
there expression (8.59) and linearizing the right-hand side using the first two terms of the
Taylor expansion near Y⃗:

�
��AY⃗ + Aε⃗ (k+1) =����

r⃗(x⃗, Y⃗) +
∂r⃗

∂Y⃗
ε⃗ (k) +O

(∥∥ε⃗ (k)
∥∥2)

. (8.61)

The first terms on both sides of the above equation cancel out by virtue of the exact equation
(8.5). Then, upon discarding the quadratically small terms O

(∥∥ε⃗ (k)
∥∥2)

and using the definition
of r⃗ from (8.53), one obtains a linear system

Aε⃗ (k+1) =
∂r⃗

∂Y⃗
ε⃗ (k), where

∂r⃗

∂Y⃗
= h2 diag

(
∂f(x1, Y1)

∂Y1

, . . . ,
∂f(xN−1, YN−1)

∂YN−1

)
. (8.62)

We will use this equation to relate the norms of ε⃗ (k+1) and ε⃗ (k) and thereby establish a sufficient
condition for convergence of iterations (8.62).

Let us assume that

max
1≤n≤N−1

∣∣∣∣∂f(xn, Yn)

∂Yn

∣∣∣∣ = L . (8.63)

Multiplying both sides of (8.56) by A−1 and taking their norm, one obtains:∥∥ε⃗ (k+1)
∥∥ ≤ ||A−1|| · h2L ·

∥∥ε⃗ (k)
∥∥ , (8.64)

where we have also used a known fact from Linear Algebra, stating that for any matrix A and
vector z⃗,

||Az⃗|| ≤ ||A|| · ||⃗z||

(actually, the latter inequality follows directly from the definition of a matrix norm). For
completeness, let us mention that

||A||∞ = max
1≤i≤M

M∑
j=1

|aij| . (8.65)

Inequality (8.64) shows that∥∥ε⃗ (k)
∥∥ ≤

(
h2L ||A−1||

)k ∥∥ε⃗ (0)
∥∥ , (8.66)

which implies that Picard iterations converge when

h2L ||A−1|| < 1 . (8.67)

As promised earlier, this condition is analogous to (8.57).
It now remains to find ||A−1||. Since matrix A shown in Eq. (8.53) arises in a great many

applications, the explicit form of its inverse has been calculated for any size N = (b − a)/h.
The derivation of A−1 can be found on photocopied pages posted on the course website; the
corresponding result for ||A−1||, obtained with the use of (8.65), is:

||A−1|| = (b− a)2

8h2
. (8.68)

MATH 337, by T. Lakoba, University of Vermont 100

Substituting (8.68) into (8.67), we finally obtain that for Picard iterations to converge, it is
sufficient (but not necessary) that

(b− a)2

8
L < 1 . (8.69)

Thus, whether the Picard iterations converge to the discretized solution of the BVP (8.26)
depends not only on the function f(x, y) but also on the length of the interval [a, b].

Remark 3: Notice the similarity of the r.h.s. of (8.68) with the denominator of Eq. (8.25),
except that here we are dealing with the case Q = 0. This was also briefly discussed in the
paragraph after that equation.

Method 2 (modified Picard iterations)
The idea of the modified Picard iterations method can be explained using the example of the
single equation (8.54), where we will set A = 1 for convenience and without loss of generality.
Suppose the simple fixed-point iteration scheme (8.55) does not converge because at the fixed
point ȳ, dr(ȳ)/dy ≈ κ > 1,35 so that the convergence condition (8.57) is violated. Then,
instead of iterating (8.54), let us iterate

y−κy = r(y)−κy ⇒ (1−κ)y(k+1) = r(y(k))−κy(k) ⇒ y(k+1) =
r(y(k))− κy(k)

1− κ
.

(8.70)
Note that the exact equation which we start with in (8.70) is equivalent to Eq. (8.54) (with
A = 1), but the iteration equation in (8.70) is different from (8.55). If our guess κ at the
true value of the derivative dr(ȳ)/dy is “sufficiently close”, then the derivative of the r.h.s. of
(8.70) is less than 1, and hence, by (8.57), the iteration scheme (8.70) converges, in contrast
to (8.54), which diverges. In other words, by subtracting from both sides of the equation a
linear term whose slope closely matches the slope of the nonlinear term at the solution ȳ, one
drastically reduces the magnitude of the slope of the right-hand side of the iterative scheme,
thereby making it converge.

Let us return to the iterative solution of Eq. (8.26), where now, instead of iterating, as in
Picard’s method, the equation (

y(k+1)
)′′

= f
(
x, y(k)

)
, (8.71)

we will iterate the equation(
y(k+1)

)′′ − c y(k+1) = f
(
x, y(k)

)
− c y(k) (8.72)

with some constant c. The corresponding linearized equation in vector form is obtained
similarly to (8.62):

(A− h2c I)ε⃗ (k+1) = h2 diag

(
∂f(x1, Y1)

∂Y1

− c, . . . ,
∂f(xN−1, YN−1)

∂YN−1

− c

)
ε⃗ (k), (8.73)

where I is the identity matrix of the same size as A. The c-terms in (8.73) are the counterparts
of such terms in (8.72), where on the l.h.s. we used the identity Iε⃗ = ε⃗ that holds for any
vector ε⃗.

We will now address the question of how one should choose the constant c so as to ensure
convergence of (8.73) and hence of the modified scheme (8.72).

35Here ‘≈’ is used instead of ‘=’ because dr(ȳ)/dy is usually not known exactly.

MATH 337, by T. Lakoba, University of Vermont 101

The main difference between the multi-component equation (8.73) and the single-component
equation (8.70) is that no single value of c could simultaneously match all of the values
∂f(xn, Yn)/∂Yn, which, in general, are distributed in some interval

L− ≤ ∂f(xn, Yn)

∂Yn

≤ L+ , n = 1, . . . , N − 1 . (8.74)

It may be intuitive to suppose that the optimal choice for c may be at the midpoint of that
interval, i.e.,

copt = Lav =
1

2

(
L− + L+

)
. (8.75)

Below we will show that this is indeed the case.
Specifically, let us only consider the case where ∂f/∂y > 0, when a unique solution of BVP

(8.26) is guaranteed to exist by Theorem 6.1 of Lecture 6. Then in (8.74), both

L± > 0, (8.76)

and hence Lav > 0. Next, by following the steps of the derivation of (8.64) one obtains from
(8.73): ∥∥ε⃗ (k+1)

∥∥ ≤
(
||(A− h2c I)−1|| · h2 max

L−≤ℓ≤L+
|ℓ− c|

)
·
∥∥ε⃗ (k)

∥∥ . (8.77)

Here ℓ stands for any of ∂f(xn, Yn)/∂Yn, which satisfy (8.74). Note that the maximum above
is taken with respect to ℓ while c is assumed to be fixed. Then:

L− − c ≤ ℓ− c ≤ L+ − c ⇒ max
L−≤ℓ≤L+

|ℓ− c| = max{|c− L−|, |L+ − c|}. (8.78)

Our immediate goal is to determine for what c the coefficient multiplying
∥∥ε⃗ (k)

∥∥ in (8.77)
is the smallest: this will yield the fastest convergence of the modified Picard iterations (8.72).
The entire analysis of this question is a little teduious, since one will have to consider separately
the cases where c ∈ [L−, L+] and c��∈ [L−, L+]. Since we have announced that the answer,
(8.75), corresponds to the former case, we will present the details only for it. Details for the
case c��∈ [L−, L+] are similar, but will not yield an optimal value of c, and so we will omit
them.

Thus, we are looking to determine

K ≡ min
L− ≤ c≤L+

(
h2 ||(A− h2c I)−1|| max{|c− L−|, |L+ − c|}

)
, (8.79)

for which we will first need to find the norm ||(A− h2c I)−1||. Since A is a symmetric matrix
(see (8.53)), so are matrices (A − h2c I) and (A − h2c I)−1. (Theorems to that effect were
presented in your undergraduate Linear Algebra course.) In graduate-level courses on Linear
Algebra it is shown that the norm of a real symmetric matrix B equals |λB|max, where λB are
the eigenvalues of B. Since (an eigenvalue of B−1) = 1/(an eigenvalue of B), then

||(A− h2c I)−1|| = 1

min |eigenvalue of (A− h2c I) |
. (8.80a)

To find the lower bound for the latter eigenvalue, we use the result of Problem 2 of HW 8 (which
is based on the Gerschgorin Circles Theorem of Section 8.1). Using this result, one finds:

||(A− h2c I)−1|| = 1

h2c
(8.80b)

MATH 337, by T. Lakoba, University of Vermont 102

(recall that c > 0 because we assumed in (8.76) that L± > 0 and also since c ∈ [L−, L+]).
Combining (8.79) and (8.80b), we will now determine

K = min
L− ≤ c≤L+

(
max

{∣∣∣∣c− L−

c

∣∣∣∣ , ∣∣∣∣L+ − c

c

∣∣∣∣})
= min

L− ≤ c≤L+

(
max

{
1− L−

c
,
L+

c
− 1

})
. (8.81)

c = L− c = L+ c = c
opt

1 − (L−/c)

(L+/c)−1
The corresponding optimal c is found as shown in
the figure on the left:

1− L−

copt
=

L+

copt
− 1

⇒ copt =
1

2

(
L− + L+

)
,

which is (8.75).

Substituting (8.75) into (8.81) and then using the result in (8.77), one finally obtains:

||ε⃗(k+1)|| ≤
(
L+ − L−

L+ + L−

)
||ε⃗(k)|| . (8.82)

Since according to our assumption (8.76) L± > 0, then the factor (L+ − L−)/(L+ + L−) < 1.
Thus, the absolute value of the error of the iterated solution Y⃗ (k) decreases with each iterations,
and the modified Picard scheme (8.72), (8.75) converges.

The issues of using the modified Picard iterations on BVPs where conditions (8.76) are
not met, or using scheme (8.72) with a non-optimal constant c, are considered in homework
problems. Let us only emphasize that the modified Picard iterations can sometimes converge
even when (8.76) and/or (8.75) do not hold.

Method 3 (Newton–Raphson method)
Although this method can be described for a general BVP of the form (7.1), we will only do so
for a BVP of the more restricted form (8.26):

y′′ = f(x, y), y(a) = α, y(b) = β. (8.26)

Let us begin by writing down the system of second-order accurate discrete equations for this
BVP for internal (i.e., non-boundary) points 0 < n < N :

Yn+1 − 2Yn + Yn−1 = f(xn, Yn) (8.83a)

Soon, we will need its equivalent form:

Yn+1 − 2Yn + Yn−1 − f(xn, Yn) = 0. (8.83b)

Let Y
(0)
n be the initial guess for the solution of (8.83) at xn. Similarly to (8.59), we relate it

to the exact solution {Yn} of (8.83):

Y (0)
n = Yn + ε(0)n , |ε(0)n | ≪ 1 . (8.84a)

MATH 337, by T. Lakoba, University of Vermont 103

Equivalently:
Yn = Y (0)

n − ε(0)n . (8.84b)

Substituting (8.84b) into (8.83b) and using Taylor expansion, we obtain:

{
Y

(0)
n+1 − 2Y (0)

n + Y
(0)
n−1 − f(xn, Y

(0)
n)

}
−

{
ε
(0)
n+1 − 2ε(0)n + ε

(0)
n−1 − ε(0)n

∂f(xn, Y
(0)
n)

∂Y
(0)
n

}
+O(∥ε⃗(0)∥2) = 0.

(8.85a)
For example, for f(x, y) = y2/(2 + x), used in one of the homework problems in HW 7 and

also in HW 8, ∂f(x, Y)/∂Y = 2Y/(2 + x). Now, recall that we know the initial guess Y
(0)
n

and seek the correction term (−ε
(0)
n) that will bring it closer to the exact solution; see (8.84b).

Therefore, following the convention for linear systems, we keep the unknown variables on the
l.h.s. and move all known quantities on the r.h.s. Also, we will neglect the quadratically small
terms. The result is:{

ε
(0)
n+1 − 2ε(0)n + ε

(0)
n−1 − ε(0)n

∂f(xn, Y
(0)
n

∂Y
(0)
n

}
=

{
Y

(0)
n+1 − 2Y (0)

n + Y
(0)
n−1 − f(xn, Y

(0)
n)

}
(8.85b)

If our initial guess satisfies the boundary conditions of the BVP (8.26), then we also have

ε
(0)
0 = 0, ε

(0)
N = 0. (8.86)

System (8.85b), (8.86) is linear and tridiagonal, and so it can be solved time-efficiently by

the Thomas algorithm. Thus we obtain ϵ
(0)
n . According to (8.84), this gives the next iteration

for our solution {Yn}:
Yn ≈ Y (1)

n = Y (0)
n − ε(0)n . (8.87)

Remark 4: The reason that the r.h.s. of (8.87) does not equal the exact solution Yn exactly
is that we had to neglect the O(ε⃗(0)) term in (8.85b). We had no choice but do that because,
while one knows how to solve linear systems of equations, there is no formula or algorithm for
solving nonlinear systems of equations.

We now substitute
Y (1)
n = Yn + ε(1)n (8.88)

into (8.83), obtain a system analogous to (8.85), and then solve it for ε
(1)
n in the same way we

have solved that system for ε
(0)
n . Repeating these steps, we stop when the process converges,

i.e.
∥∥Y⃗(k+1) − Y⃗(k)

∥∥ becomes less than a given tolerance.

Remark 5 (brief comparison of Methods 1 – 3): The goal of all these Methods is to
solve the nonlinear system of equations (8.56). In each Method, this is done by solving a linear
system. The Methods differ in which linear system they solve.

Using iterative methods in more complicated situations

First, let us note that iterative methods, which we have described above for ODEs, are
equally applicable to partial differential equations (PDEs), where the function f(x⃗, y) is defined
not on an interval x ∈ [a, b] as above, but over a two- or three-dimensional region in the space
where x⃗ “lives”. This distinguishes iterative methods from the shooting method considered in
Lecture 7. Indeed, as we stressed at the end of that Lecture, the shooting method cannot be

MATH 337, by T. Lakoba, University of Vermont 104

extended to solving BVPs for PDEs. Thus, iterative methods remain the only group of method
for solving nonlinear BVPs for PDEs. The ideas of these methods are the same as we have
described above for ODEs.

Second, the fixed-point iteration methods (i.e., counterparts of the Picard and modified
Picard described above) are not used (or are rarely used) in commercial software. The main
reason is that they are considerably slower than the Newton–Raphson method and its variations
and also than so-called Krylov subspace methods, studied in advanced courses on Numerical
Linear Algebra. We will only mention that the most famous of those Krylov subspace methods
is the Conjugate Gradient method (CGM) for solving symmetric positive (or negative) definite
linear systems. An introduction to this method can be found in many textbooks and also in an
online paper by J.R. Shewchuk, “An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain”.36 An extension of the CGM to nonlinear BVPs whose linearization yields
symmetric matrices is known as the Newton–CGM or, more generally, as a class of Newton–
Krylov methods.

Another reason why Krylov subspace methods are used much more widely than fixed-point
iterative methods is that convergence conditions of the latter methods are typically restricted
by a condition analogous to (8.76). Some of Krylov subspace methods either do not have
restrictions, or are less sensitive to them. Also, the Newton–Raphson method does not have
any restrictions similar to (8.76). Yet, this method also has its own issues, and a number of
books are written about application of the Newton–Raphson method to systems of nonlinear
equations.

8.7 Questions for self-assessment

1. Verify that (8.4) follows from (8.1)–(8.3).

2. Explain why the form of the first and last terms of r⃗ in (8.7) is different from the form of
the other terms.

3. What does the Gerschgorin Circles Theorem allow one to do?

4. What is the difference between a diagonally dominant and strictly diagonally dominant
matrices?

5. Make sure you can follow the derivations in the Example about the Gerschgorin Circles
Theorem.

6. Make sure you can follow the proof of Theorem 8.2.

7. What can you say about a solution of a linear system (8.5) where A is SDD?

8. Under what condition(s) on h is the discretized BVP (8.4) guaranteed to have a unique
solution?

9. Verify (8.20).

10. Verify (8.21) through (8.23).

11. What causes the local truncation error of the discretized BVP to be multiplied by a factor
O(1

h2) to give the error of the solution?

36Some pain, however, is to be expected.

MATH 337, by T. Lakoba, University of Vermont 105

12. Describe the idea of Method 1 for handling non-Dirichlet boundary conditions.

13. Derive (8.34).

14. Describe the idea of Method 2 for handling non-Dirichlet boundary conditions.

15. Suppose that you need to solve a BVP with a mixed-type boundary condition and such
that (8.42) does not hold. Will you even attempt to solve such a BVP? What should your
expectations be?

16. Suppose that the BVP has a non-Dirichlet boundary condition of the form (8.29) at
x = b (the right end point of the interval) rather than at x = a. What will the analog of
condition (8.42) be in this case?
Hint 1: Remember that this is a QSA and not an exercise requiring calculations.
Hint 2: To better visualize the situation, suppose [a, b] = [−1, 1], so that −1 ≤ x ≤ 1.
What simple mathematical operation, when applied to x, will swap the left and right end
points of this interval? How will this operation transform each of the terms on the l.h.s.
of (8.29)?

17. Convince yourself (and be prepared to convince the instructor) that the statements in
Remark 2 in Sec. 8.4 about the coefficient matrices for the second-order methods being
tridiagonal, are correct.

18. Describe the idea of the Picard iterations.

19. Derive (8.64) as explained in the text.

20. What is the condition for the Picard iterations to converge? Is this a necessary or sufficient
condition? In other words, if that condition does not hold, should one still attempt to
solve the BVP?

21. Describe the idea behind the modified Picard iterations.

22. Make sure you can obtain (8.73).

23. How is the finite-difference implementation of (8.72) different from that of (8.56)? That
is, to solve (8.72), will you need to define a matrix and a vector differently than when
solving (8.56)? You will need to answer this question in order to do a homework problem.

24. Make sure you can obtain (8.77) and (8.78).

25. Explain how the result of Problem 1 of HW 8 leads to (8.80b).

26. Derive (8.75) from the explanation found after (8.81).

27. Obtain (8.82) as explained in the text.

28. Are (8.76) and (8.75) necessary or sufficient conditions for convergence of the modified
Picard iterations (8.72)?

29. Make sure you can follow the derivation of (8.85).

30. Write down a linear system satisfied by ϵ
(1)
n defined in (8.88).

31. Describe the idea behind the Newton–Raphson method.

MATH 337, by T. Lakoba, University of Vermont 106

32. Give equation numbers of the three linear systems referred to in Remark 5.

33. Can one use iterative methods when solving nonlinear BVPs for PDEs?

