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9 Concepts behind finite-element method

The power of the finite-element method (FEM) becomes evident when handling problems in
two or three spatial dimensions. In this lecture (and this course), we will only consider appli-
cations of the FEM to problems in one spatial dimension (i.e., BVPs on an interval), so as to
demonstrate some of the basic concepts behind this method.

9.1 General idea of FEM

Suppose we are looking for a solution of the BVP

y′′ +Q(x)y = R(x), y(0) = y(1) = 0 . (9.1)

This BVP has zero boundary conditions at both end points of the interval; however, this
does not restrict the generality of the subsequent exposition. Namely, a way to treat nonzero
boundary conditions is described in a homework problem.

The idea of the FEM is as follows. Select a set of linearly independent function {ϕj(x)}Mj=1

such that each ϕj satisfies the boundary conditions of the BVP, i.e.

ϕj(0) = ϕj(1) = 0, j = 1, . . . ,M . (9.2)

Then, look for an approximate solution of the BVP in the form

Y (x) =
M∑
j=1

cjϕj(x) , (9.3)

where coefficients cj are to be determined. Note that since the ϕj’s satisfy the boundary
conditions of the BVP, so does the solution Y (x). The problem has now become the following:
(i) decide which basis functions ϕj(x) to use and (ii) determine the coefficients cj so as to make
the error between Y (x) and the exact solution y(x) as small as possible.

The term ‘basis’ describing the set {ϕj} is used here to indicate that functions ϕj must be
linearly independent and, moreover, their linear superpositions (i.e., the r.h.s. of (9.3)) should
be able to approximate functions (i.e., solutions of the BVP) from a sufficiently large class
sufficiently closely. A quantitative characterization of the two ‘sufficiently’s in the previous
sentence is a serious mathematical task, which we will not attempt to undertake. Instead, we
will proceed at the intuitive level.

One possible set of basis functions which satisfy boundary conditions (9.2) is

ϕj(x) = sin(jπx), j = 1, . . . ,M . (9.4)

Another, more convenient, set will be introduced later on as we proceed. In general, there
may be many choices for {ϕj(x)}; the decision as to which one to use is usually made on a
problem-by-problem basis.

The problem of determining the coefficients cj can be handled in three different ways, which
we will now describe.
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9.2 Collocation method

Let us substitute expansion (9.3) into BVP (9.1):

M∑
j=1

cjϕ
′′
j (x) +Q(x)

M∑
j=1

cjϕj(x) = R(x) . (9.5)

Recall that due to the choice (9.2), the boundary conditions are satisfied automatically.
Now, ideally, we want Eq. (9.5) to hold identically, i.e. for all x ∈ [0, 1]. However, since we

only have M free parameters, {cj}Mj=1, at our disposal, we can only require that Eq. (9.5) be
satisfied at M points, called collocation points. That is, if {xk}Mk=1 is a set of such points on
[0, 1], then we require that the following system of (linear) equations hold:

M∑
j=1

(
ϕ′′
j (xk) +Q(xk)ϕj(xk)

)
cj = R(xk), k = 1, . . . ,M . (9.6)

Upon solving this system of M equations for the M unknowns cj and substituting their values
into (9.3), one finds the approximate solution Y (x) of the BVP.

Linear system (9.6) can be written in the standard form

Ac⃗ = r⃗ , (9.7)

where
(A)kj =

(
ϕ′′
j (xk) +Q(xk)ϕj(xk)

)
,

r⃗ = (R(x1), . . . , R(xM))T .
(9.8)

The coefficient matrix A is, in general, full (i.e. not tri- or pentadiagonal), whereas matrix
A that arose in the finite-difference approach of Lecture 8 was tridiagonal. Thus it appears
that the collocation methods leads to a system that is more difficult to solve than the system
produced by the finite-difference approach. However, one can make matrix A of the collocation
method to also be tridiagonal if one chooses the basis functions in a special form. Namely, for
j = 2, . . . ,M − 1, take ϕj’s to be the following cubic B-splines:

Bj(x) =



(∆xj−2)
3

4h3
, xj−2 ≤ x ≤ xj−1

1

4
+

3∆xj−1

4h

[
1 +

∆xj−1

h
−
(
∆xj−1

h

)2
]
, xj−1 ≤ x ≤ xj

1

4
− 3∆xj+1

4h

[
1− ∆xj+1

h
−

(
∆xj+1

h

)2
]
, xj ≤ x ≤ xj+1

−(∆xj+2)
3

4h3
, xj+1 ≤ x ≤ xj+2

0, otherwise

j = 2, . . . , M − 1,

(9.9)

where ∆xj = x−xj, and we have assumed for simplicity that all points are equidistant, so that
h = xj+1 − xj. Recall that x0 = 0 and xM+1 = 1 for BVP (9.1). Functions Bj(x) (9.9) have
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continuous first and second derivatives everywhere on [0, 1]; a typical such function is shown
in the middle plot of the accompanying figure.
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When j = 1 or j = M , these functions have to be slightly modified, so that, say, B1(x)
satisfies the boundary condition at x0: B1(x0) = 0, but no condition is placed on its derivative
at that point. The plots of B1 and BM are shown in the left and right plots of the figure; the
analytical expression for, say, B1 being:

B1(x) =


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h
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−
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1

4
− 3∆x2

4h

[
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h
−

(
∆x2
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, x1 ≤ x ≤ x2

−(∆x3)
3

4h3
, x2 ≤ x ≤ x3

0, otherwise.
(9.10)

Now, with ϕj(x) = Bj(x), system (9.6) has a tridiagonal matrix A because for any xk, only
Bk(xk) and Bk±1(xk) are nonzero, i.e. Bj(xk) = 0 for |k − j| ≥ 1. Then all one needs in order
to write out the explicit form of (9.6) are the values of Bk(xk) and Bk±1(xk). These can be
deduced from the entries in the table below.

xk−1 xk xk+1

Bk(x) 1/4 1 1/4

B′′
k(x) 3/(2h2) −3/h2 3/(2h2)

To conclude this subsection, we point out the advantage of the collocation method over the
finite-difference method of Lecture 8: Points xk do not need to be equidistant. This will have
no effect on the form of system (9.6); only the coefficients in (9.9) and (9.10) will be slightly
modified. One can use this freedom in distributing the collocation points over the interval so
that to place more of them in the region(s) where the solution is expected to change rapidly.
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9.3 Galerkin method

This method allows one to use basis functions that are simpler than the B-splines considered
in the previous subsection. The solution obtained, of course, will not be as smooth as that
obtained by the collocation method.

As we said above, the approximate solution Y (x) is sought as a linear combination of the
basis functions ϕj; see (9.3). We can now draw an analogy with Linear Algebra and call the
basis functions ϕj vectors which span (i.e., form) a linear, M -dimensional space SM . Then,
according to (9.3), Y (x) is a vector in that space.

Let us again substitute (9.3) into BVP (9.1) and write the result as

M∑
j=1

(
ϕ′′
j (x) +Q(x)ϕj(x)

)
cj − R(x) = ρ(x) . (9.11)

(Recall that in the collocation method, we required
that the residual vector ρ(xk) = 0 at all the collo-
cation points xk.) Now, the residual vector ρ(x)
does not, in general, belong to the linear space
SM (in other words, it is not a linear combination
of ϕj’s). Geometrically, we can represent this sit-
uation (for M = 2) as in the figure on the right.
Namely, vector ρ(x) has a component that belongs
to SM and the other component that lies outside
of SM .
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The idea of the Galerkin method is to select the coefficients cj so as to make the residual
vector ρ(x) orthogonal to all of the basis functions ϕj, j = 1, . . . ,M . In that case, the projection
of ρ(x) on SM is zero, and hence the “length” of ρ(x) is minimized, since

“length” ρ(x) =

√(
“length” ρ|| toSM

(x)
)2

+ (“length” ρ⊥ toSM
(x))2 .

Thus, we need to specify what we mean by ‘orthogonal’ and ‘length’ for functions. Two
functions f(x) and g(x) are called orthogonal if∫ 1

0

f(x)g(x)dx = 0 . (9.12)

Two remarks are in order. First, note that the integral in (9.12) is over [0, 1]. This is because
the BVP we are considering is defined over that interval. If a BVP is defined over [a, b], the

corresponding definition of orthogonality would contain
∫ b

a
instead of

∫ 1

0
. Second, (9.12) is not

the only definition of orthogonality of functions, but just one of those which are used frequently.
For different applications, different definitions of function orthogonality may prove to be more
convenient.

The definition of ‘length’ of a function is subordinate to that of orthogonality, namely:

||f(x)||2 =

√∫ 1

0

(f(x))2 dx. (9.13)

The subscript ‘2’ of ||...||2 is used because the l.h.s. of (9.13) is also known as the L2-norm of
a function, which is different from the ∞-norm that we have considered so far.
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Thus, the Galerkin method requires that∫ 1

0

ρ(x)ϕk(x) dx = 0 for k = 1, . . . ,M. (9.14)

With the account of (9.11), this gives:

M∑
j=1

cj

∫ 1

0

(
ϕ′′
j (x) +Q(x)ϕj(x)

)
ϕk(x) dx =

∫ 1

0

R(x)ϕk(x) dx ; k = 1, . . . ,M. (9.15)

If we now define a matrix A to have the coefficients

akj =

∫ 1

0

(
ϕ′′
j (x) +Q(x)ϕj(x)

)
ϕk(x) dx (9.16)

and the vector r⃗ to be

r⃗ =

(∫ 1

0

R(x)ϕ1(x) dx, . . . ,

∫ 1

0

R(x)ϕM(x) dx

)T

, (9.17)

then the system of linear equations (9.15) takes on the familiar form (9.7).

So far, there has been no real advantage of the Galerkin method over the collocation method.
Such an advantage arises when we use integration by parts to rewrite (9.16) in the form

akj = −
∫ 1

0

ϕ′
j(x)ϕ

′
k(x) dx +

∫ 1

0

Q(x)ϕj(x)ϕk(x) dx . (9.18)

In deriving (9.18), we have used the boundary conditions (9.2). From (9.18), which is equivalent
to (9.16), we immediately observe two things, which were not evident from (9.16).
• akj = ajk, i.e. the coefficient matrix in the Galerkin method is symmetric.
• To calculate akj, one only requires ϕ′

j, but not ϕ
′′
j , to exist. Moreover, one does not require

ϕ′
j to be continuous; it suffices that it be integrable.

Then, the following simple choice of ϕj(x) can be made:

ϕj(x) =

 1− |∆xj|
h

, xj−1 ≤ x ≤ xj+1

0 otherwise,

(9.19)

where ∆xj is defined after (9.9). These functions ϕj(x)
are called hat-functions, or linear B-splines.
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With this choice for ϕj’s, matrix A is tridiagonal. In-
deed, in this case ϕ′

j is as shown on the right, whence
one can calculate that

∫ 1

0

ϕ′
j(x)ϕ

′
k(x) dx =


−1

h
, k = j ± 1

2

h
, k = j

0, otherwise.

(9.20)

Quantities
∫ 1

0
Q(x)ϕj(x)ϕk(x) dx are nonzero also only

for k = j − 1, j, j + 1, as is evident from the figure
above.
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To conclude this subsection, let us remark on the issue of the calculation of the second inte-
gral in (9.18) and the integrals in (9.17). For brevity, we will only speak here about the former
type of integrals; the same will apply to the latter ones. The integrals

∫ 1

0
Q(x)ϕj(x)ϕk(x) dx

may be evaluated in one of the following ways. First, if their analytical expressions for all
required pairs of k and j can be obtained (e.g., with Mathematica or another computer algebra
package), the numeric values of these expressions should be used. If such expressions are not
available, then the computation may differ depending on whether the ϕj’s are smooth and non-
vanishing over the entire interval [0, 1], as, say, functions (9.4), or they are the hat-functions
(or any other highly localized functions). In the former case, the integrals in question may be
computed by one of the standard methods (say, Simpson’s) using the existing subdivision of
[0, 1], or by Matlab’s built-in integrators (quad or quadl). In the latter case, i.e. for highly
localized ϕj’s, the integrals can be approximated as∫ 1

0

Q(x)ϕj(x)ϕk(x) dx ≈ Q(xmid)

∫ 1

0

ϕj(x)ϕk(x) dx , (9.21)

where xmid is the middle of the interval over which the product ϕj(x)ϕk(x) is nonzero. One
can show that the accuracy of approximation (9.21) is O(h2). In the case when ϕj’s are the
hat-functions (9.19), the integral on the r.h.s. of (9.21) can be explicitly calculated to be:

∫ 1

0

ϕj(x)ϕk(x) dx =


h

6
, k = j ± 1

2h

3
, k = j

0, otherwise.

(9.22)

9.4 Rayleigh-Ritz method

This method replaces the problem of solving BVP (9.1) by a problem of finding the minimum
of a certain functional. We will not consider this method in more detail, but only mention
that: (i) Rayleigh-Ritz method can be shown to be equivalent to Galerkin method, and (ii)
the functional mentioned in the previous sentence is the “length” of the residual vector ρ(x),
defined according to (9.13).

9.5 Questions for self-assessment

1. Describe the idea behind the collocation method.

2. What condition (or conditions) should the basis functions in the collocation method
satisfy?

3. In addition to the above condition(s), what other condition should the basis functions
satisfy in order to make the corresponding coefficient matrix tridiagonal?

4. What is the advantage of the collocation method over the finite-difference method?

5. Write down the explicit form of BM .
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6. Verify the entries in the Table in Sec. 9.2.

7. Show how these entries are related to Bk±1(xk).

8. Describe the idea behind the Galerkin method.

9. Try to explain the analogy between definition (9.12) of orthogonality of functions and the
definition of orthogonality of vectors in Rn. Hint: Interpret the integral as (the limit of)
a finite, say, Riemann, sum. (The fact that it is the limit is not really important here.)

10. Consequently, explain why (9.13) is analogous to the Euclidean length of a vector.

11. Continuing from the last two questions, try to explain the close analogy between the
Galerkin method and the least-squares solution of inconsistent linear systems.

12. What is the advantage of the Galerkin method over the collocation method?


