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AN ALTERNATING-DIRECTION IMPLICIT SCHEME FOR
PARABOLIC EQUATIONS WITH MIXED DERIVATIVES

I. J. D. CrAIG and A. D. SNEYD
Department of Mathematics, University of Waikato, Hamilton, New Zealand

(Received 8 February 1988)
Communicated by E. Y. Rodin

Abstract—An alternating-direction implicit method for N-dimensional parabolic equations with mixed
derivatives is considered. The method requires the solution of N tridiagonal matrix equations per time-step
and combines computational simplicity with the possibility of unconditional stability for any N. The
regimes of conditional stability for N < 6 show that the scheme is less effective for higher dimensional
problems, owing to the proliferation of mixed derivatives. An alternative scheme (requiring 2 N tridiagonal
operations) which involves a single iteration to time-centre the mixed derivatives is shown to improve
accuracy and stability. In particular the iterative scheme allows second-order accuracy and unconditional
stability in the important special cases of two and three space dimensions.

1. INTRODUCTION

We consider initial value problems of the form

E =Lu, (1)

where L is an elliptic partial differential operator

N N a
L= iz:_:l j; 4:;0:90; (ai_ 5xi> s (2
defined in some rectangular region R, 0 € x; < 1, and whose coefficients are functions of the x; and
¢t having continuous second partial derivatives. The parabolicity of problem (1) implies that the
symmetric matrix Q = (g,,) is positive definite so that problem (1) is well-posed [cf. 1].

Our present purpose is to construct an unconditionally stable finite difference approximation to
problem (1) that can be resolved in terms of alternating-direction implicit (ADI) methods in three
or more space dimensions. Although a variety of stable ADI schemes are available for multi-
dimensional parabolic equations in the absence of mixed derivatives, it is well-known that “cross
terms” can be difficult to handle implicitly using the ADI technique [2]. Lax and Richtmyer [3], for
example, resorted to relaxation methods to resolve the implicit system of equations that derive from
problem (1) in the case of two space dimensions. Russian authors however, invoking “fractional
step” methods, have shown that 2-D problems can be reduced to the solution of just two
tridiagonal matrix equations per time-step [e.g. 4], while McKee and Mitchell [5] have developed
an equally effective ADI scheme. Russian workers [6-9] have also considered extensions to N
dimensions but the stability criteria they employ are too crude to be of practical use (as discussed
in Sections 2 and 3). More recent work has established convergence results for N-dimensional
fractional step methods [10] and semi-discrete projection methods [11-13]. In this paper we consider
an ADI method applicable to any number N of space dimensions, and determine detailed stability
criteria up to N = 6—the dimensionality of the Fokker—Planck equation, for example.

The main motivation for this study is that complicated problems involving the solution of
parabolic systems of partial differential equations can often be tackled effectively with a sequence
of ADI operations [14]. In such applications it is vital to use robust numerical schemes that permit
a generous trade-off between computational accuracy and stability [15]. A specific application of
the present ADI method to an astrophysical problem involving the structure and stability of 3-D
fields over a non-rectangular region is described in Ref. {14].
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342 I. J. D. CralG and A. D. SNEYD

The numerical scheme is outlined in Section 2. We begin by discussing a simple scheme in which
the mixed derivatives are treated explicitly. It turns out that some advantage may be obtained in
terms of increased accuracy and stability by employing an iterative version of the scheme to
“time-centre” the mixed derivatives. In Section 3 the stability of the simple method is examined
in detail, and it appears that unconditional stability is always possible but entails some loss of
accuracy for N = 5. Domains of conditional stability are examined in all cases. Section 4 discusses
the stability of the iterated scheme, and we find that one iteration will lead to significant
improvements in stability and accuracy. In the important case of three space dimensions,
second-order accuracy and unconditional stability can be attained. In Section 5 some extensions
of the method to operators with lower-order space derivatives or non-constant coefficients, are
outlined.

In what follows we shall use the symbol u} _ ; to denote the finite difference solution at the
node point (j;Ax,,...,jyAxy, nAt) under the assumption that Ax; = A defines a uniform space
mesh. Operations such as (for example, in two space dimensions)

2
O F= Ui, j— 2u+uy_ g,
and
Oupliy = Uiy jyt — Yigr o1 — Wy jer F U1

define conventional central difference operators.

2. THE NUMERICAL SCHEME

The basic scheme we consider can be written in the “unsplit” form

Au"t'= (A4 + B)u", 3)
where
N
H —0rq,63) )
and
N i—-1
—r Z q“52 +2r Z Z ql] x,xj (5)
i=2j=1

r = At/A? and 6 is a real parameter that determines the implicitness of the method. In practice the
scheme is split into ADI form and resolved as a sequence of N tridiagonal matrix operations,
namely

N
(1- eq“réil)unﬂ(l) = [1 +r(l — 6)‘1”6){1 +r qun + r 22 Z 4 X‘xl] u,
i= i=2j=1
(a- 9‘]22’5;2c2)“"+ “2)_: urt o — 9‘122’5;2:2“
(1 — Bgyyré?, Yt U= gt Ogyyrol u”, 6

where u"*'® denotes the approximation to u"*! at split level (i).

We note, first of all that this scheme can be regarded as a natural extension of previous ADI
methods for parabolic equations. For example when N = 3 and the cross terms are absent (i.e.
q;;=0, i #j), the choice & =1 defines an unconditionally stable Douglas—Rachford method [16]
of O(At) + O(A?), whereas the choice =} yields a higher-order scheme [0(At?) + O(A?)] which
is again unconditionally stable [17]. When mixed derivatives are present however, the accuracy
remains [O(At) + O(A?)] independent of 6, owing to the one-sided time differencing of the cross
terms.

In the case of two space dimensions with mixed derivatives, scheme (6) has the same structure
as the stable (6 > 1) ADI scheme advocated by McKee and Mitchell [5 cf. 18]. Russian authors [6, 8]
have also considered schemes very similar to scheme (6) but have assumed very crude stability
bounds [cf. condition (16)].
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In applying the method it is essential that the boundary conditions be handled in a way which
involves no loss of accuracy. This can sometimes be difficult in split-level schemes since intermediate
values such as u"*'® often emerge as mathematical artifacts of the numerical method, bearing no
simple relation to the analytic solution at the advanced time level (n + 1). In the present case we
note that formal accuracy can always be maintained by expressing the intermediate boundary
values u7*'@ in terms of u;"' and u(, via

N
ug+l(i)= u"+ l‘[ a- qujr(sz )(un+l ul)
J=i+l
as discussed more generally in Ref. [19].
We also consider an iterative application of the basic scheme which includes a second step to
time-centre the mixed derivatives, namely

Auli = (4 + By (72)
and
Aunt = (A + B + AM(ul — un), (7o)
where the operator
N i—-1
M=iry Y 90y =B —D say. ®)
i=2j=1

Thus, D and M denote the diagonal and off-diagonal (or mixed derivative) components of the
operator B. The variable 4 is a positive weighting parameter, and the obvious choice of 1 =0 =1
yields a time-centred scheme of increased accuracy [0 (At)? + O (A?), see Section 4] but this selection
cannot be guaranteed to yield unconditional stability for arbitrary N. In Section 4 we show however
that this scheme yields an unconditionally stable, second-order method in the important special
case of three space dimensions. Some advantage in terms of accuracy and stability is also gained
for higher dimensional problems. The effect of repeated iterations is also considered.

3. STABILITY OF THE SIMPLE SCHEME (3)

In this section we derive the von Neumann condition for the simple scheme (3), which is
necessary and sufficient for stability in the case of constant coefficients g;;. This condition is used
to find estimates of the smallest value of @ necessary for unconditional stability for N =2 — 6. We
then find the (r, 6) regions of conditional stability in the “worst” possible case when all the g;; are
equal and the diagonal terms least dominant.

3.1. Stability conditions for constant coefficients

In the case of constant coefficients, stability can be established using the traditional von
Neumann method [e.g. 1]. Accordingly, we consider a single Fourier component,

u'l""(xl’ X251 ens xn) = énexp[i(wlxl + WX, +:+ wnxn)]v

where the w, are constant wavenumbers and £ an amplification factor. Substituting into scheme
(3) and using the identities

Aul = Au} and Bul= —Bu}, (9a,b)
where
N
=[1( +46rq;s?),  s,=sinGw,A). (10)
i=1

and

N N il
=4r ( Yausi+2) Y qijsicisjci> ’ ¢;= cos(,A), an

i=1 i=2j=1
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we find that the amplification factor is given by
A-B
[ pa—

A
Stability requires that |£| <1 for all w,, or equivalently
B>0 and 24-B3>0. (12a,b)

Requirement (12a) is always satisfied since Q is positive definite, and we can write
N
B=ar <xTQx +Y q,.,-s}‘> ,
i=1

where xT = (s,¢,, ..., sycy). Condition (12b) is more difficult since it depends on the parameters
r and 6, and will determine the regime of unconditional stability.

3.2. Sufficient conditions
Before the detailed stability discussion of subsection 3.3, we determine a simple analytic
condition that guarantees stability. We can write

N i—-1
2-B=Y, Z -+ positive terms, (13)
i=2j=
where
4 4r -
T, = (29 1)(q,:5? +gq;; ,)+329 r q,,q”s — 8rg,;5,¢:5,¢;. (14)

Y NN - 1) N -
It is clear that for 6 >3 only the last term in T}, can be negative, and

4
T, > 20 — N 320%x2, 15

NN -1 N—ﬁ x + (15
where x = r./q,q;,|s:5; and we have used the inequality g;,¢;, > ¢ which follows from the fact that
Q is positive definite. By retaining only the linear term we obtain the stability bound 6 >IN
adopted in Refs [6, 8]. The r.h.s. of inequality (15) is however a quadratic in x which will always
be positive if its discriminant in negative, i.e. if

1

0=0=, nN? " g Z:? (16)
2(—N:'5[(1+(N—2)/N) —1] 2 3.

Values of § for N =2 to 6 are given in Table 1. These results show that the scheme can always
be made unconditionally stable but that for N > 5 it is necessary to choose 8 > 1. As N increases,
6 increases almost linearly and accuracy will be lost progressively. Note that § =1 will guarantee
stability for all N in the absence of mixed derivatives (i.e. when M =0).

3.3. Necessary and sufficient conditions in the worst case

It is desirable to formulate a stability condition which depends on as little as possible detailed
knowledge of the g;;, and we can achieve this by considering the worst possible case.

Table 1. Stability limits for N =2 — 6. The symbol 6,
denotes the smallest value of 6 necessary for uncon-
ditional stability (see condition (24)). The symbols R,
and R, denotes the largest possible values of
R =r x the maximum of the ¢;;, which will give a stable
scheme for § =0 and 6 =1 respectively

N 4§ o, Ry(@=0 R(6=1)
2 0500 3=0.500 $=0250 ©

3 069 1-0666  5=0.148 o

4 0899 2 =0844  5=0093 ©

5 1104 % =1024 5=0064 21016
6 1309 3B-1206 %=0046 02163

2592
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The stability condition (12b) can be written as _
min(24 — B)>0, (17)
where the minimum is taken over all possible s,. The matrix g,; is positive definite so all g, >0,

q::9;; > qlzj9 and

N N N i-1
min(24 — B) > min [2 1 Q1+ 46rats?) —4r (2 als?+2y Y a,a,.s,.s,c,c,)]
=1 i=1 i=2j=1

=minf(a,...,ay,5,...,5v) say, (18)

where g, = /g, Clearly the minimum of f will occur when all 5; and c; are positive, so only such
values need be considered. We can further show that the worst possible case occurs when all the
a; are equal. Let

gla,s,....sy)=f(a,a,...,a,8,...,5),

where a is the maximum of the a;, and suppose we know that

g(a,sl’-"sSN)>0
Vsy,...,sy. Then writing a,=n,a, where 0 <n, <1, s; =n;s;, we find
N i-1
f(al’ L ,aNssh .. 9SN)=g(a! S;, e as;\l)+8r Z Z azs;s;(c;cj,_cicj)’
i=2jm]
where ¢ = (1 —n2s2?)'. Since ¢] 2 ¢ it follows that
f(al"-'aaNasla"-asN)>0
Vs;. Thus, stability is ensured if
N N N i—-1
lg(a,sy,...,5y)=]] (1 +40Rs})—2R (Z st+2Y s,sjc,cj> =0 (19)
i=1 i=1 i=2j=1

Vs;, where R =r x the maximum of the g;;.

It is not generally possible to locate the minimum of g ar*alytically but by symmetry there will
always be a local minimum on the “diagonal” s, =s, ="' =sy. Although other non-diagonal
minima can occur, we have verified numerically for N < 6 ithat condition (19) holds Vs;, iff the
diagonal minimum is non-negative.

Assuming then that we need consider only the diagonal minimum of g and writing s?2=s3=
-+« = 5% = x say, the stability criterion (19) becomes

min(0 < x <1)A(R,6,x) =0, (20)
where '
h(R, 8, x) = (1 + 4ROx)" — 2R[N*x — N(N — 1)x?]. 1)
Note that for 8 <2 and N > 2,
h.(R,0,0)=2R(20 —N*) <0
and
h.(R,0,1)=4RNO(1 +4RO)* '+ 2RN(N —2) >0,

so there must be at least one local minimum of 4 in the interval 0 <x < 1.
For N = 2 it is possible to find analytically the region of conditional stability in the (R, 8)-plane,
given by condition (20). In this case,

h =(1+4R0x)*+4R(x*— 2x)
and the minimum value, which occurs at x = (1 — 6)/(1 + 4R6?) is

0 _1—4R(1-26)
min =1 4+ 40%R

CAMWA, 16/4—F
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It follows that the region of conditional stability is

<1
a1 —20)

Note that this stability regime coincides with that of Richtmyer and Morton [1, Section 8.7] who
handle the mixed derivative implicitly via relaxation methods.

For N > 3 the stability region is found by locating numerically, for a given 0, the value of R
which makes the minimum value of 2(R, 6, x) equal to zero. Results up to N = 6 are shown in
Fig. 1. In each case there is a critical value of 8, say 6., beyond which the stability is unconditional
(for N =2, 6.=1). For N >3, 6, can also be determined as follows. Substituting y = 1 + 4R6x in
criterion (20) gives

R 0 <3). (22)

N? NN =1

h=y”—5§(y—1)+ Y TE (y — 1% (23)

For large R we ignore the last term in equation (23); the minimum then occurs at y = y,,
say = (N/26)"W-Y_ and its value is N[N — yo(N —1)]/26. Thus k is non-negative provided
YoSN/N —1), or

N—1)\""
0 >N <T> =0.. (24)

Values of 8, for N = 2 to 6 are given in Table 1. For N > 5, 6, > 1, which means that unconditional
stability is achieved at the expense of accuracy. The reason is that as N increases, the number of
cross terms increases faster than the number of diagonal terms—N(N — 1) compared with
N—which makes stability more difficult to achieve. (Note that §, - N/2e as N -» «.)
The stability condition on R when 6 =0 can be determined analytically. In this case
h=1—2RN?x +2RN(N — 1)x?
and the minimum is 1 — RN3/2(N — 1). The scheme will be stable if
< 2(N-1)
N3

Values of R, are given in Table 1. Note that R,= O(N ?) as N - 0.

R =R, say. (25)

2~

Instability Stability

[ Y
N I
T
|
I
|
RN
YRNANE
yans

/|

i
I
|
|
|
|
|
|
|
|
|
|
L

[o] 0.2 0.4 0.6 0.8 1.0 1

Fig. 1. Regions of conditional stability for the simple scheme (3). The solid curve for each N represents
the boundary between stability and instability. The dashed lines are the asymptotes to each curveat 6 =6,
beyond which value stability is unconditional.
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4. STABILITY OF THE ITERATED SCHEME (7a, b)

We now explore the extent to which the iterated scheme (7a, b ) is capable of relaxing the stability
restrictions established in Section 3. From equations (7a, b) it follows that

A" = A%y" + B(4 + AM)u". (26)

The second iteration leads to the possibility of time-centring the scheme. For example, in the case
N =2, 6 =1, expansion of the operators in scheme (3) shows that the leading error of O(Ar) is

2
qxy uxyt rA ’

whereas with a second iteration and 8 = 4 =! we can show from equation (26) that the leading
error is
2

12 (Gux e + 4G (s, + Uyree) + 4y Uyyy)-

(Note that in the above equations we have reverted to the use of x and y as independent variables.)
Using equations (9a, b) we find that the von Neumann amplification factor of scheme (26) is

given by
B AM
=1- =(1- -} 27
¢ y ( y ) 27
M being the mixed derivative component of B—i.e.
N i—1
M=B-D=8 Y Y g,scisq;.
i=2j=1
Since B is non-negative the stability conditions ¢ <1 and & > —1 yield, respectively,
IM<A and 24— B(A-iM)>0. ' (28a, b)

4.1. Analysis of condition (28a)

To analyse the implications of condition (28a) we use equation (10) and (11), making the
substitutions

A=20 and x,= 2,/r0q;ls;li ¢l
Then,

) N N i—1
A—-iM 2] +x}+48r0g,5H) 22 Y T xx;, (29)
i=1 i=2j=1
where we have again made use of the inequality ¢;,g;, > ¢7; which follows from the fact that (g;;)
is a positive definite matrix. For unconditional stability condition (28) must be valid for all possible
values of s5;, ¢, and r, so in view of inequality (29) a necessary and sufficient condition will be

N N i~1
PO % x) =1 +x) =21 3 T xx,20, (30)
i=1 i=2j=1
V positive x;.
We have verified numerically for N =3 to 6 that the minimum of the polynomial p always lies
on the “diagonal”, x, = x,=---=x,, so to decide if p is always positive we consider just

P x...,x)=(1+yy—IN(N — 1)y =p\(y)
say, where y = x2. Since p, is a function of a single variable it can be minimized easily, and one
finds that the condition for p to remain positive is
NN -1
-1
Values of the coefficient of # in condition (31) are given in Table 2 for N =2 to 6.

A< 0. 3n
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Table 2. Maximum permissible values of /6 for
unconditional stability. The last row of the table
gives values of 6, —the minimum value of 8 for

unconditional stability (1 =

N 2 3 4 5 6
2 9 o s 7
t 8 8 1024 15625
NN—I
— = 200 L125 0790 0610 0.498
N-1)
Opin 05 05 0633 0820 1.004

4.2. Analysis of condition (28b)
On making the substitution B = D + M into condition (28b) we find that this condition is
equivalent to
AQRA —D)—-M(A — AD)+ M*>0. (32)

Now on setting g;;=0, i #j, in equations (13) and (14) it follows that 24 ~D >0 when 0 >,
Also it is easily verified that A — 1D >0 provided A < 6, so then condition (32) can be violated
only if M > 0. In this case we can use condition (28a) to show that condition (32) will be satisfied
provided

A2~ 1)+ 1M >0.
i.e. if 2 >}. To summarize, condition (28b) will hold, provided
8>3, 3<i<6. (33)

4.3. Sufficient conditions for unconditional stability

It can be seen from Table 2 that for N = 2 and 3, condition (31) is redundant, so condition (33)
gives sufficient condition for unconditional stability. In particular, the choice 4 =8 = will yield
unconditional stability and second-order accuracy in two or three space dimensions. In four or
more dimensions, the condition will be

NN -1
—0,
WN-1
which becomes increasingly restrictive as N becomes large. In particular, for N > 6 we must choose
6 > 1, which entails loss of accuracy. Nonetheless the iterated scheme represents a considerable
improvement over the simple scheme (3) in that smaller values of 8 are necessary for unconditional
stability. The minimum necessary value 8, is given by
N -1

2 NN 1

6= <4< (34)

[SYE
N -

B

omin = %5 N = 2’ 3; gmm N > 3.

These values of 8,,, are shown in Table 2.

4.4. Further iterations

In view of the improved characteristics of the iterated version of the ADI scheme, it is interesting
to see if further iterations will permit more generous stability margins. Suppose that equation (7b)
is replaced by a k-stage iteration,

Auld'=(A + B+ AM i, — u"), k=1, 2,....
It is readily shown that the stability conditions £ <1 and ¢ > —1 are equivalent to
pB>0 and 24 -p B >0,

where

Pr= Z (=1

n=0

1YV(INS ] AN+
(AM) L+ (=D @M/AYT (35a.b)

14+ (M/A)
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These conditions clearly incorporate the simple and single-iterated schemes (k = 0, 1) discussed
previously.

Consider, the example, the case k = 2. Condition (35a) is satisfied automatically, since 8 > 0 and
P« is a positive definite quadratic in AM/A4. Condition (35b) can be expressed in the form

A*QA - B)+ IMB(A - IM) > 0.

The first term will be non-negative if § > 6, (see Section 3), and indeed it can be zero for this value
of 0 in the worst possible case. The second term will be non-negative iff

0<AM <A,

so the stability conditions are more stringent than for k = 1, when N > 2 and 6, > ;. Thus, it seems
there is no advantage to be gained by carrying out further iterations.

5. EXTENSIONS OF THE METHOD

5.1. Effect of lower-order derivatives
An equation of the form

a N
—u=(L+ Zpia,-+b)u
ot i=1

is easily accommodated in the general scheme by modifying the operator B in scheme (7a, b). If
we impose the von Neumann condition |£| < 1 + O(At), as required for solutions that possess a
legitimate exponential growth, then the previous stability conditions are unchanged for sufficiently
small At [cf. 1, p. 270; 18]

5.2. Extension to non-constant coefficients

To extend the stability analysis to the case of non-constant coefficients (g;; = ¢,;(x, t)) we may
invoke the analysis of Widlund [20; cf. 1, Chap. 5]. Following the steps of McKee and Mitchell [5]
we find that Widlund’s criterion reduces to the von Neumann conditions discussed previously.

6. CONCLUSIONS

We have presented an ADI method that combines computational simplicity with the possibility
of unrestricted stability for multi-dimensional parabolic equations in the presence of mixed
derivatives. In the simplest version of the scheme the mixed derivatives are treated entirely ex-
plicitly so the accuracy is O(At) + O(A?). The stability conditions for this scheme are summarized
in Table 1. In five or more space dimensions unconditional stability requires 0 > 1, which entails
some loss of accuracy. However, the scheme remains feasible provided the dominant matrix
coefficients are not too large—for example, in five space dimensions the fully backward method
(6 = 1) increases the stability boundary of the explicit scheme (8 = 0) by a factor of approx. 30.

In general however it seems worthwhile to perform a second iteration to time-centre the mixed
derivatives. This allows the possibility of second-order accuracy [0(Af?) + O(A?)] and permits a
relaxation of the stability conditions in Table 1 for N =3 (see Table 2). The choice 8 =1 will
guarantee unconditional stability for N <35, and for N =6 we need increase this value by only
0.004! Little advantage seems to be gained however by performing more than one iteration.

It should be emphasized that our stability arguments involve no assumptions about the
coefficient matrix (g;;), other than that it is positive definite. This property can often be guaranteed
[e.g. 14] even when the coefficients are non-linear functions of the dependent variable # and its first
derivatives, so one would expect the scheme to be feasible in such non-linear applications.

Finally, we note one apparent disadvantage of ADI schemes—that their application is restricted
to domains which are unions of rectangles with sides parallel to the co-ordinate axes. It is often
possible to transform an arbitrary domain to a rectangular one by a change of variable [e.g. 14],
which will not affect the parabolicity of the operator and hence the viability of the scheme.
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