
Applied Numerical Mathematics 57 (2007) 19–35

www.elsevier.com/locate/apnum

Stability of ADI schemes applied to convection–diffusion equations
with mixed derivative terms

K.J. in ’t Hout, B.D. Welfert ∗

Department of Mathematics and Statistics, Arizona State University, Tempe, Arizona 85287, USA

Available online 10 January 2006

Abstract

We consider Alternating Direction Implicit (ADI) schemes for the numerical solution of initial-boundary value problems for
convection–diffusion equations with cross derivative terms. We derive new linear stability results for three ADI schemes that have
previously been studied in the literature. These results are subsequently used to show that the ADI schemes under consideration are
unconditionally stable when applied to finite difference discretizations of general parabolic two-dimensional convection–diffusion
equations. Supporting numerical evidence is included.
© 2005 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Three alternating direction implicit schemes

We consider the large system of ordinary differential equations (ODEs)

U ′(t) = F
(
t,U(t)

)
(t � 0), (1.1)

with given function F and initial value U(0) = U0, arising from the semi-discretization of an initial-boundary value
problem for a multi-dimensional convection–diffusion equation. In splitting methods for the numerical solution of
(1.1), the function F is decomposed into a sum

F(t, v) = F0(t, v) + F1(t, v) + · · · + Fk(t, v), (1.2)

where the terms Fj are simpler to handle than F itself. We assume in this paper that F0 is treated explicitly in
time-integration schemes, whereas F1,F2, . . . ,Fk represent stiff, unidirectional contributions in F that are treated
implicitly.

The analysis to be presented in this paper is mostly relevant to ODE systems (1.1) originating from convection–
diffusion problems in two spatial variables. For the formulation of the splitting schemes below, however, the particular
spatial dimension of the problem is not yet important.
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Let time step �t > 0. The Douglas scheme defines an approximation Un ≈ U(tn), with tn = n�t , successively for
n = 1,2,3, . . . by⎧⎪⎨⎪⎩

Y0 = Un−1 + �tF(tn−1,Un−1),

Yj = Yj−1 + θ�t(Fj (tn, Yj ) − Fj (tn−1,Un−1)), j = 1,2, . . . , k,

Un = Yk.

(1.3)

Here θ > 0 denotes a real parameter, which specifies the scheme. In (1.3), the forward Euler predictor step is followed
by k implicit but unidirectional corrector steps, whose purpose is to stabilize the predictor step.

In the general form above, the scheme (1.3) has been considered for example in [8,10,11]. Special instances of (1.3)
include the well-known Alternating Direction Implicit (ADI) methods of Douglas and Rachford [4], with F0 = 0 and
θ = 1, and of Brian [1] and Douglas [3], with F0 = 0 and θ = 1

2 . These special ADI methods were initially developed
for application in the case of the two- and three-dimensional heat equations. For a survey of their development, see
e.g. Peaceman [17].

It can be verified that the classical order1 of the scheme (1.3) is equal to 2 whenever F0 = 0 and θ = 1
2 , and it

is of order 1 otherwise. In our application we will always have F0 �= 0 and, consequently, the order of the Douglas
scheme (1.3) reduces to just 1, for any given θ . In the following we formulate two ADI schemes that attain order 2
also if F0 �= 0.

The subsequent scheme can be regarded as an extension of (1.3):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Y0 = Un−1 + �tF(tn−1,Un−1),

Yj = Yj−1 + θ�t(Fj (tn, Yj ) − Fj (tn−1,Un−1)), j = 1,2, . . . , k,

Ỹ0 = Y0 + σ�t(F0(tn, Yk) − F0(tn−1,Un−1)),

Ỹj = Ỹj−1 + θ�t(Fj (tn, Ỹj ) − Fj (tn−1,Un−1)), j = 1,2, . . . , k,

Un = Ỹk.

(1.4)

Here σ > 0 denotes a second real parameter. If F0 = 0, then (1.4) reduces to the Douglas scheme (1.3). Clearly, (1.4)
uses the (stable) approximation Yk to U(tn) obtained from the Douglas method so as to introduce a correction with
respect to the F0 part as well. The scheme (1.4) is of classical order 2 whenever {F0 = 0 and θ = 1

2 } or {θ = σ = 1
2 },

and it has order 1 otherwise. Hence, contrary to (1.3), with the scheme (1.4) order 2 can be attained independently
of F0—upon taking θ = σ = 1

2 .
The so-called “iterated scheme” that was proposed by Craig and Sneyd [2] can be reformulated as (1.4). Corre-

spondingly, we shall refer in this paper to (1.4) as the Craig & Sneyd scheme. These authors studied the scheme (1.4)
in the application to pure diffusion problems where mixed spatial derivative terms are present. We note that a version
of the Douglas scheme (1.3) was considered in [2] as well, where it was called the “simple scheme”. It is interesting to
remark that a variant of (1.4) is used in financial option pricing, cf. [18]. When applied to linear autonomous problems
(1.1), this variant is readily seen to reduce to (1.4) with k = 2 and θ = σ = 1

2 .
The following scheme can be regarded as a second, different extension of the Douglas scheme:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Y0 = Un−1 + �tF(tn−1,Un−1),

Yj = Yj−1 + θ�t(Fj (tn, Yj ) − Fj (tn−1,Un−1)), j = 1,2, . . . , k,

Ỹ0 = Y0 + σ�t(F (tn, Yk) − F(tn−1,Un−1)),

Ỹj = Ỹj−1 + θ�t (Fj (tn, Ỹj ) − Fj (tn, Yk)), j = 1,2, . . . , k,

Un = Ỹk.

(1.5)

If σ = 1
2 the scheme (1.5) is identical to a scheme formulated by Hundsdorfer [10, p. 222]. Furthermore, in the case

of linear autonomous problems (1.1) it is equivalent to a Rosenbrock type method discussed e.g. in Hundsdorfer and
Verwer [11, p. 400]. In view of this, we shall refer in this paper to (1.5) as the Hundsdorfer & Verwer scheme. This
scheme has been considered in [10,11] for the application to convection–diffusion–reaction problems without mixed
derivative terms.

1 I.e., the order for fixed non-stiff ODEs.
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For any given θ , the scheme (1.5) is of classical order 2 if σ = 1
2 and of order 1 otherwise, independently of F0.

Compared to (1.4), note e.g. that (1.5) uses the full right-hand side function F from (1.1) for the update Ỹ0 , instead
of just F0 alone.

We mention that all three schemes (1.3)–(1.5) above are closely related to so-called Approximate Matrix Factor-
ization methods, cf. e.g. [11].

When applied to the linear scalar test equation

U ′(t) = (λ0 + λ1 + · · · + λk)U(t), (1.6)

with complex constants λj (0 � j � k), the Douglas scheme (1.3) reduces to

Un = R(z0, z1, . . . , zk)Un−1 (1.7)

with zj = λj�t (0 � j � k) and

R(z0, z1, . . . , zk) = 1 + z0 + z

p
. (1.8)

Here, and throughout this paper, we adopt the notation

z = z1 + z2 + · · · + zk and p = (1 − θz1)(1 − θz2) · · · (1 − θzk). (1.9)

The Craig & Sneyd scheme (1.4) reduces in the case of (1.6) to

Un = S(z0, z1, . . . , zk)Un−1 (1.10)

with

S(z0, z1, . . . , zk) = 1 + z0 + z

p
+ σ

z0(z0 + z)

p2
. (1.11)

Finally, the Hundsdorfer & Verwer scheme (1.5) reduces, in the case of (1.6), to

Un = T (z0, z1, . . . , zk)Un−1 (1.12)

with

T (z0, z1, . . . , zk) = 1 + 2
z0 + z

p
− z0 + z

p2
+ σ

(z0 + z)2

p2
. (1.13)

The iterations (1.7), (1.10), (1.12) are stable if∣∣R(z0, z1, . . . , zk)
∣∣ � 1, (1.14)∣∣S(z0, z1, . . . , zk)
∣∣ � 1, (1.15)

and ∣∣T (z0, z1, . . . , zk)
∣∣ � 1, (1.16)

respectively.

1.2. Stability of the three ADI schemes in the application to multi-dimensional convection–diffusion equations

We are interested in the stability of the three schemes (1.3)–(1.5) when applied to the semi-discretized k-
dimensional convection–diffusion equation

∂u

∂t
= c · ∇u + ∇ · (D∇u) (1.17)

on a rectangular domain, supplemented with initial and boundary conditions. Here c denotes a given convection vector
and D is a given diffusion matrix, which is always assumed to be positive semi-definite. If D is positive definite, then
(1.17) is parabolic. Our interest is in the general equation (1.17), where D is a full (non-diagonal) matrix and c is non-
zero. Thus, both mixed derivative and convection terms are present in (1.17). Multi-dimensional convection–diffusion
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equations of this kind arise in many applied areas, for example mathematical biology (cf. e.g. [5]) and financial math-
ematics (cf. e.g. [19]). We also note that full matrices D arise when converting, by coordinate transformation, from
convection–diffusion equations with diagonal matrices D on non-rectangular domains to equations on rectangular
domains (cf. e.g. [15]).

The stability results derived in the present paper for the three schemes (1.3)–(1.5) are primarily relevant to the two-
dimensional case of (1.17), i.e., k = 2. These results for k = 2 however do represent a substantial improvement over
known results existing in literature. Moreover, our analysis covers the above three ADI schemes together with a large
variety of spatial discretizations under one single umbrella. We mention that results for arbitrary spatial dimensions
k > 2 will be given in a forthcoming paper [7], where pure diffusion problems with mixed derivative terms are
considered.

We shall analyze the stability of (1.3)–(1.5) in the application to semi-discrete versions of (1.17) using the well-
known von Neumann method (Fourier transformation). Here, we adopt the usual assumption that c and D are constant
and that the boundary condition for (1.17) is periodic. This leads to the conditions (1.14), (1.15) and (1.16), respec-
tively, where each zj = λj�t with λj an eigenvalue of the linear operator Fj that is obtained after semi-discretization.

We are interested in this paper in unconditional stability, i.e., stability without any restriction on the time step
�t > 0. In line with the von Neumann method, stability is always understood here to be with respect to the l2-norm.

At present only few, partial results appear to be known in the literature concerning the application and the stability
of the schemes (1.3)–(1.5) relevant to general convection–diffusion problems with mixed derivative terms. In the
remainder of this section, we will review results that are currently available.

Craig and Sneyd [2] performed a von Neumann stability analysis of the two schemes (1.3), (1.4) relevant to
Eqs. (1.17) with c = 0 and D a full matrix, i.e., no convection, only diffusion. The semi-discretization was done
using standard, centered finite differencing and a splitting (1.2) was considered where F0 contains all the discretized
cross derivative terms and Fj , for 1 � j � k, represents the discretized diffusion operator in the j th spatial direction.
With these choices, it was proved in [2] that the Douglas scheme (1.3) is unconditionally stable whenever the para-
meter θ is sufficiently large, with a lower bound on θ that only depends on k. In particular, for k = 2, unconditional
stability of (1.3) was obtained whenever θ � 1

2 (see also McKee and Mitchell [14] if θ = 1
2 ). For the scheme (1.4),

Craig and Sneyd [2] arrived at a similar result, under an additional condition on the parameter σ . In particular, for
k = 2, they showed that (1.4) is unconditionally stable whenever θ � σ � 1

2 .
The above, favorable, stability results are surprising in view of the fact that the F0 part is integrated explicitly,

whereas its scaled eigenvalues z0, which lie on the real axis, range from large negative to large positive values (cf. also
Section 3).

McKee et al. [15] examined the unconditional stability of an equivalent version of the Douglas scheme (1.3) when
applied to a standard finite difference discretization of (1.17) in the two-dimensional case (k = 2) with convection
(c �= 0) and a cross derivative term (D non-diagonal). The F0 part in their case represents again the discretized cross
derivative term. Next, Fj , for j = 1,2, contains the discretized first- and second-order derivatives in the j th spatial
direction. The positive result was proved in [15] that, in the presence of convection, unconditional stability of the
Douglas scheme (1.3) is maintained whenever k = 2 and θ = 1

2 .
Hundsdorfer [9] considered general, necessary and sufficient, conditions on the zj (0 � j � k) with regard to the

stability requirement (1.14). It was proved in [9] that if k � 2, θ � 1
2 and z0 = 0, then (1.14) holds for all zj (1 � j � k)

lying in a wedge {ζ ∈ C: | arg(−ζ )| � α} if and only if the angle α � 1
k−1

π
2 . In particular, if k = 2 and θ � 1

2 , the
condition (1.14) is thus fulfilled whenever �z1,�z2 � 0 and z0 = 0. Note that if z0 = 0, all conclusions about (1.14)
are directly valid for the requirement (1.15) as well. Additional results on (1.14) under the assumption that z0 belongs
to the stability region of the forward Euler method, i.e. |1 + z0| � 1, were also derived in [9].

The above stability bound on the angle α was proved by Hundsdorfer [10] for a very general type of rational
functions, including also (1.13) with z0 = 0. Correspondingly, it is not clear at present whether useful ADI splitting
schemes exist that are unconditionally stable when applied to general (semi-discrete) convection–diffusion problems
in dimensions k � 3. We remark that in the case of pure diffusion problems, without convection, there is no such
limitation on the dimension, cf. [2,7]. In the latter case all eigenvalues z0, z1, . . . , zk are real.

The requirement (1.16) with σ = 1
2 was investigated numerically in Hundsdorfer [10]. The numerical experiments

in [10] suggested that if k = 2, z0 = 0 and θ is larger than a certain threshold value, then (1.16) is fulfilled whenever
�z1,�z2 � 0. This conjecture was proved by Lanser et al. [13], with threshold value θ = 1

2 + 1
6

√
3. Additional

numerical results regarding (1.16) were presented in [10] under the assumption that z0 belongs to the stability region of
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the explicit improved Euler method, i.e., |1+ z0 + 1
2z2

0| � 1. In our application, however, z0 represents the eigenvalues
of the discretized cross derivative terms, which may lie anywhere along the real axis, and we shall need a different
kind of condition on z0 than |1 + z0 + 1

2z2
0| � 1, or |1 + z0| � 1, to assess the stability of the three ADI schemes.

1.3. Outline of this paper

In Section 2 we consider conditions on general complex numbers z0, z1, . . . , zk that imply stability of the Douglas
scheme (1.3), the Craig & Sneyd scheme (1.4) and the Hundsdorfer & Verwer scheme (1.5) in the sense that (1.14),
(1.15) and (1.16) hold, respectively. Each of these conditions consists of an upper bound on the modulus of z0 in terms
of z1, . . . , zk . A particularly useful sufficient condition is introduced for the case k = 2, see (2.4) and Theorem 2.8.

In Section 3 it is shown that the condition (2.4) is fulfilled for the eigenvalues z0, z1, z2 which correspond to
standard finite difference discretizations of (1.17) in two spatial dimensions, with general (positive semi-definite)
diffusion matrix D and general convection vector c. By applying Theorem 2.8, this directly leads to the main results
of our paper, Theorems 3.1 and 3.2. These two theorems give positive conclusions concerning the unconditional
stability of the ADI schemes (1.3), (1.4), (1.5) in the application to general two-dimensional convection–diffusion
equations (1.17) with a wide range of spatial discretizations.

Numerical experiments are conducted in Section 4. The experiments agree with our two stability theorems from
Section 3. In addition, they provide insight into the actual convergence behavior of the three ADI schemes.

Final comments about extensions and future research directions are given in Section 5.

2. General sufficient conditions for (1.14)–(1.16)

2.1. General sufficient conditions for (1.14) and (1.15)

For given θ , consider the following condition on z0, z1, . . . , zk ∈ C:

p �= 0 and |z0| �
∣∣∣∣ p

2θ

∣∣∣∣ −
∣∣∣∣ p

2θ
+ z

∣∣∣∣. (2.1)

Recall that z, p are given by (1.9). Our first lemma concerns the requirement (1.14). Note that if z0 = 0 and θ = 1
2 ,

then (2.1) is equivalent to (1.14).

Lemma 2.1. Assume (2.1) holds and θ � 1
2 . Then∣∣R(z0, z1, . . . , zk)

∣∣ � 1.

Proof. Define

R̃ = R̃(z0, z1, . . . , zk) = 1

2θ
+ z + z0

p
. (2.2)

We have

|R̃| =
∣∣∣∣ 1

2θ
+ z

p
+ z0

p

∣∣∣∣ �
∣∣∣∣ 1

2θ
+ z

p

∣∣∣∣ +
∣∣∣∣z0

p

∣∣∣∣ � 1

2θ
. (2.3)

Subsequently,∣∣R(z0, z1, . . . , zk)
∣∣ =

∣∣∣∣1 − 1

2θ
+ R̃

∣∣∣∣ � 1 − 1

2θ
+ |R̃| � 1 − 1

2θ
+ 1

2θ
= 1. �

The next lemma deals with the requirement (1.15).

Lemma 2.2. Assume (2.1) holds and θ � 1
2 , σ � 2θ . Then∣∣S(z0, z1, . . . , zk)

∣∣ � 1.
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Proof. Consider R̃ given by (2.2) and let

S̃ = S̃(z0, z1, . . . , zk) = 1

2θ
+ z + z0

p
+ σ

z0(z0 + z)

p2
.

Using (2.3), we obtain

|S̃| =
∣∣∣∣ 1

2θ
+ z

p
+ z0

p
+ σ

z0

p

(
R̃ − 1

2θ

)∣∣∣∣
�

∣∣∣∣ 1

2θ
+ z

p

∣∣∣∣ +
(

1 − σ

2θ

)∣∣∣∣z0

p

∣∣∣∣ + σ

∣∣∣∣z0

p

∣∣∣∣|R̃|

�
∣∣∣∣ 1

2θ
+ z

p

∣∣∣∣ +
∣∣∣∣z0

p

∣∣∣∣
� 1

2θ
.

Then we have∣∣S(z0, z1, . . . , zk)
∣∣ =

∣∣∣∣1 − 1

2θ
+ S̃

∣∣∣∣ � 1 − 1

2θ
+ |S̃| � 1 − 1

2θ
+ 1

2θ
= 1. �

The direct verification of condition (2.1) is not straightforward in general, in view of the non-trivial formulas one
has for the eigenvalues zj (cf. (3.4)). We introduce next a condition which is much easier to verify when k = 2:

�z1 � 0, �z2 � 0 and |z0| � 2
√�z1�z2. (2.4)

Observe that, contrary to (2.1), condition (2.4) is independent of the parameter θ . Also, note that (2.4) reduces to
�z1,�z2 � 0 whenever z0 = 0. We have:

Lemma 2.3. Assume k = 2. Then (2.4) ⇒ (2.1).

Proof. Define the vectors

vj =
[√−2�zj

| 1+θzj√
2θ

|

]
, j = 1,2.

Then

‖vj‖2 =
√

−2�zj + |1 + θzj |2
2θ

= |1 − θzj |√
2θ

.

Condition (2.4) implies p �= 0. Next, we obtain

|z0| +
∣∣∣∣ p

2θ
+ z

∣∣∣∣ = |z0| +
∣∣∣∣ (1 − θz1)(1 − θz2)

2θ
+ z1 + z2

∣∣∣∣
= |z0| +

∣∣∣∣ (1 + θz1)(1 + θz2)

2θ

∣∣∣∣
� 2

√�z1�z2 +
∣∣∣∣ (1 + θz1)(1 + θz2)

2θ

∣∣∣∣
= v1 · v2 � ‖v1‖2‖v2‖2

= |1 − θz1||1 − θz2|
2θ

=
∣∣∣∣ p

2θ

∣∣∣∣,
which shows that (2.1) holds. �
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We note that the result of Lemma 2.3 is sharp in the sense that if z1 = z2 = ζ with ζ any given negative real
number, then conditions (2.4) and (2.1) are (both) equivalent to |z0| � −2ζ . Further, it is easily seen in this case that
if z0 is any real number with z0 > −2ζ , then R(z0, z1, z2) > 1 and S(z0, z1, z2) > 1, for any given θ , σ . This shows
that Lemmas 2.1 and 2.2 are sharp, in a certain sense, as well.

In Section 3 we shall give a simple proof that condition (2.4) holds in the case of 2D convection–diffusion equations
(1.17) and a wide range of spatial discretizations.

2.2. General sufficient conditions for (1.16)

We first consider whether the stability requirement (1.16) is fulfilled under the condition (2.1). The following
lemma gives a partial result, namely for the case of real, non-positive zj with j � 1.

Lemma 2.4. Assume z1, z2, . . . , zk are non-positive real numbers, condition (2.1) holds and 4θ(1− θ) � σ � θ . Then∣∣T (z0, z1, . . . , zk)
∣∣ � 1.

Proof. The assumptions imply

p � 1, 1 − 1

θ
+ σ

4θ2
+ 1

2θp
� 0 and 2 − σ

θ
− 1

p
� 0.

Consider R̃ given by (2.2) and write T = T (z0, z1, . . . , zk). Using (2.3), we obtain

|T | =
∣∣∣∣1 + 2

(
R̃ − 1

2θ

)
− 1

p

(
R̃ − 1

2θ

)
+ σ

(
R̃ − 1

2θ

)2∣∣∣∣
�

∣∣∣∣1 − 1

θ
+ σ

4θ2
+ 1

2θp

∣∣∣∣ +
∣∣∣∣2 − σ

θ
− 1

p

∣∣∣∣|R̃| + σ |R̃|2

�
(

1 − 1

θ
+ σ

4θ2
+ 1

2θp

)
+

(
2 − σ

θ
− 1

p

)
1

2θ
+ σ

4θ2

= 1. �
In the most interesting case of σ = 1

2 , the assumption on θ in Lemma 2.4 becomes θ � 1
2 + 1

4

√
2 ≈ 0.8536.

For general complex z1, z2, . . . , zk however, the condition (2.1) does not guarantee (1.16). To see this, consider
k = 2 and σ = 1

2 , and take

z0 = 6

5θ
+ 1

θ
I, z1 = −1

θ
, z2 = − 6

5θ
I (2.5)

with I = √−1. It is readily verified that the inequality in (2.1) becomes an equality, and a calculation yields∣∣T (z0, z1, z2)
∣∣2 = 1 + 888θ3 + 1041θ2 + (9θ − 1)2

(244θ2)2
> 1.

A counterexample for k > 2 is obtained using (2.5) and z3 = · · · = zk = 0.
We next examine whether (1.16) is fulfilled for k = 2 under the condition (2.4). Note that the above counterexample

does not apply in this case. In view of Lemma 2.3, we can (directly) replace condition (2.1) by (2.4) in Lemma 2.4.
This yields a partial result on the question of whether the condition (2.4) implies (1.16) for k = 2. In the following we
shall improve upon this result by taking a different approach than above to derive (1.16) from (2.4). To this end we
introduce the quantities

q = p2 + 2pz − z + σz2, w = 2p − 1 + 2σz

and consider the following condition on z0, z1, . . . , zk ∈ C:

p �= 0 and |q| + |w||z0| + σ |z0|2 � |p|2. (2.6)
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Lemma 2.5. Assume (2.6) holds. Then∣∣T (z0, z1, . . . , zk)
∣∣ � 1.

Proof. Write T = T (z0, z1, . . . , zk). Then

|T | =
∣∣∣∣p2 + 2p(z + z0) − (z + z0) + σ(z + z0)

2

p2

∣∣∣∣
=

∣∣∣∣q + wz0 + σz2
0

p2

∣∣∣∣
� |q| + |w||z0| + σ |z0|2

|p|2
� 1. �

Subsequently, we have

Lemma 2.6. Let k = 2. Assume z1, z2 are real numbers, condition (2.4) holds and

2(1 − θ) � σ �
(

1 + 1

2

√
2

)
θ.

Then (2.6) holds.

Combined, Lemmas 2.5 and 2.6 yield an improved result on (1.16) under the condition (2.4) with z1, z2 real, in
that the set of allowable parameters θ , σ is substantially enlarged. If σ = 1

2 the assumption on θ given by Lemma 2.6
becomes θ � 3

4 . Contrary to Lemma 2.4 with σ = 1
2 , this now includes the range θ � 1

2 + 1
6

√
3 ≈ 0.7887 for which it

is known [13] that (1.16) is fulfilled whenever k = 2, z0 = 0 and �z1,�z2 � 0 (cf. also Section 1.2).

Proof. In order to keep the presentation concise, we will assume that σ = 1
2 . The proof for general σ is more technical,

but follows the same lines. Note that with σ = 1
2 we have θ � 3

4 .
Let z1, z2 � 0 and define y = 2

√
z1z2. Then z = z1 + z2 � 0 and y + z = −(

√−z1 − √−z2 )2 � 0. Next, p =
1 − θz + 1

4θ2y2 � 1, w = 2p − 1 + z = 1 + (1 − 2θ)z + 1
2θ2y2 � 1. By condition (2.4), we further have |z0| � y.

Consequently, condition (2.6) is fulfilled if

|q| + wy + 1

2
y2 � p2. (2.7)

If q � 0, then (2.7) is equivalent to p � 1
2 − 1

4 (y + z), which is easily seen to hold. If q < 0, then (2.7) is equivalent to

2p2 − 2(y − z)p +
(

y − z + 1

2
z2 − yz − 1

2
y2

)
� 0,

which is true if the discriminant 8(y2 − y + z) � 0, or if y2 − y + z > 0 and p � 1
2 (y − z + √

2y2 − 2y + 2z ). From
z � −y it is readily seen that y2 − y + z > 0 can only occur if y > 2 and, next, that the latter inequality for p is
fulfilled if

1 +
(

θ − 1

2

)
y + 1

4
θ2y2 � 1

2

(
y +

√
2y2 − 4y

)
.

It follows that (2.7) holds if θ � Φ(y) for all y > 2 with

Φ(y) =
√

4y + 2
√

2y2 − 4y − 2
.

y
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A numerical calculation shows that maxy>2 Φ(y) ≈ 0.7249 (reached for y ≈ 4). The bound

Φ(y) �

√
4y + 2

√
2

9 + ( 3
4y − 2

3 (1 + 2
√

2 ))2 + 2
√

2y2 − 4y + 2 − 2

y
= 3

4
(y > 2)

shows that θ � Φ(y) whenever y > 2. Hence, condition (2.7) holds and this concludes the proof. �
Similarly as in Section 2.1 we have a sharpness result: if z1 = z2 = ζ with ζ any negative real number, and z0 is

any real number with z0 > −2ζ , then T (z0, z1, z2) > 1, for any given θ , σ .
If σ � 1

2 , the condition on the parameter θ given by Lemma 2.6 can be further weakened when z0 is assumed to be
real as well and one aims at proving (1.16) directly:

Lemma 2.7. Let k = 2. Assume z0, z1, z2 are real numbers, condition (2.4) holds and

1

2
� σ �

(
1 + 1

2

√
2

)
θ.

Then (1.16) holds.

Proof. First note that (2.4) implies p � 1 and

z + z0 � z1 + z2 + 2
√

z1z2 = −(√−z1 − √−z2
)2 � 0. (2.8)

The condition T � −1 is equivalent to

2p2 + (2p − 1)(z + z0) + σ(z + z0)
2 � 0,

which is true since the discriminant is (2p − 1)2 − 8σp2 = 4(1 − 2σ)p2 − 4p + 1 < 0. In view of (2.8), the condition
T � 1 is equivalent to

1 − (2θ − σ)z + 2θ2z1z2 + σz0 � 0.

Write A = (
√−z1 − √−z2 )2 and B = (

√−z1 + √−z2 )2. Then, we have

1 − (2θ − σ)z + 2θ2z1z2 + σz0

� 1 − (2θ − σ)z + 2θ2z1z2 − 2σ
√

z1z2

= (1 − θ
√

2z1z2 )2 +
(

1 − 1

2

√
2

)
θA +

[(
1 + 1

2

√
2

)
θ − σ

]
B � 0. �

If σ = 1
2 the assumption on θ given by Lemma 2.7 becomes θ � 1/(2+√

2 ) ≈ 0.2929. In comparison, the Douglas
and Craig & Sneyd schemes require θ � 1

2 for (1.14), (1.15) to hold, respectively, under the same condition on z0, z1,
z2 (consider z0 = 0).

The important question remains whether (1.16) is fulfilled with k = 2 for general complex z0, z1, z2 satisfying
(2.4). Note that real z1, z2 are just relevant to the case of (semi-discretized) pure diffusion equations (1.17), where
c = 0. An analytical answer to our question appears hard to obtain. For example, it does not seem possible to apply
the maximum modulus principle as is done in [13] for the (special) case of z0 = 0. We therefore conducted a numerical
test to gain insight into the possible result.

Let ri,j for i, j = 0,1,2 denote independent, uniformly distributed random numbers in the interval [0,1]. In the
experiment, we consider complex (random) points

zj = −101−5r1,j ± I 101−5r2,j

for j = 1,2 and

z0 = 2
√�z1�z2 r1,0e

2πIr2,0
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Fig. 1. The values T (z0, z1, z2) for random points (z0, z1, z2) satisfying (2.4).

so that (2.4) holds. The values T (z0, z1, z2) are then plotted in the complex plane, together with the unit circle, for the
three cases θ = 1

2 , θ = 1
2 + 1

6

√
3 and θ = 1 with always σ = 1

2 , see Fig. 1. In each case, 106 random triplets (z0, z1, z2)

were used.2

The results of Fig. 1 support the interesting conjecture that, if σ = 1
2 and θ � 1

2 + 1
6

√
3, then (1.16) is fulfilled

for k = 2 whenever (2.4) holds (with general complex z0, z1, z2). On the other hand, this conclusion does clearly not
appear to be valid when σ = 1

2 and θ = 1
2 .

2.3. Main conclusions of Section 2 relevant to k = 2

In the following theorem, we summarize the main results from Sections 2.1, 2.2 on the stability requirements
(1.14)–(1.16) relevant to k = 2. Unless stated otherwise, z0, z1, z2 are assumed to be complex numbers here.

Theorem 2.8. Assume k = 2 and (2.4) holds. Let c = 1 + 1
2

√
2. Then

(a) (1.14) is fulfilled whenever θ � 1
2 ,

(b) (1.15) is fulfilled whenever θ � 1
2 and σ � 2θ ,

(c) (1.16) is fulfilled for real z1, z2 whenever 2(1 − θ) � σ � c θ ,
(d) (1.16) is fulfilled for real z0, z1, z2 whenever min{ 1

2 ,2(1 − θ)} � σ � c θ .

Next, we have

Conjecture 2.9. If k = 2 and (2.4) holds, then (1.16) is fulfilled whenever σ = 1
2 and θ � 1

2 + 1
6

√
3.

3. Application to two-dimensional convection–diffusion equations

We consider Eq. (1.17) with k = 2 in the unit square [0,1] × [0,1] and write

c =
[

c1
c2

]
and D =

[
d11 d12
d21 d22

]
.

We rearrange it as

∂u

∂t
= (d12 + d21)uxy + (c1ux + d11uxx) + (c2uy + d22uyy). (3.1)

We require that D be positive semi-definite. This is equivalent to

d11 � 0, d22 � 0 and (d12 + d21)
2 � 4d11d22. (3.2)

We approximate all spatial derivatives in (3.1) using second-order central discretizations on a rectangular grid with
mesh widths �x and �y in the x and y directions, respectively:

2 Considering values zj of larger modulus does not affect the visual appearance of the figure.
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(ux)i,j ≈ δxui,j = ui+1,j − ui−1,j

2�x
, (3.3a)

(uy)i,j ≈ δyui,j = ui,j+1 − ui,j−1

2�y
, (3.3b)

(uxx)i,j ≈ �xui,j = ui+1,j − 2ui,j + ui−1,j

(�x)2
, (3.3c)

(uyy)i,j ≈ �yui,j = ui,j+1 − 2ui,j + ui,j−1

(�y)2
, (3.3d)

(uxy)i,j ≈ (1 + β)(ui+1,j+1 + ui−1,j−1) − (1 − β)(ui−1,j+1 + ui+1,j−1)

4�x�y

+ 4βui,j − 2β(ui+1,j + ui,j+1 + ui−1,j + ui,j−1)

4�x�y
, (3.3e)

where β denotes a real parameter with −1 � β � 1 and we use the notation ui,j = u(i�x, j�y, t). The right-hand
side of (3.3e) is the most general form of a second-order approximation for the cross derivative uxy based on a centered
9-point stencil. When β = 0, (3.3e) reduces to the standard 4-point stencil (see e.g. [16, p. 81])

(uxy)i,j ≈ δxδyui,j = ui+1,j+1 + ui−1,j−1 − ui−1,j+1 − ui+1,j−1

4�x�y
.

The arrangement (3.1) naturally leads to a splitted, semi-discrete system of the form (1.1), (1.2) where Fj (t, v) =
Ajv for j = 0,1,2 with constant matrices Aj . The matrix A0 represents the cross derivative term in (3.1) and A1, A2
represent the spatial derivatives in the x and y directions, respectively.

When the boundary condition is periodic, the Aj are Kronecker products of circulant (thus normal) matrices and
commute with each other. In this case stability can be investigated using the model scalar equation (1.6) with k = 2 and
with λj an eigenvalue of Aj for j = 0,1,2; this is equivalent to a von Neumann stability analysis. Write I = √−1. It
is readily verified, upon inserting discrete Fourier modes, that the scaled eigenvalues zj = λj�t are given by

zj = cj qj

(
1

2
eIφj − 1

2
e−Iφj

)
+ djj aj

(
eIφj − 2 + e−Iφj

)
= −2djj aj (1 − cosφj ) + Icj qj sinφj (3.4a)

for j = 1,2, and

z0 = (d12 + d21)b
[− sinφ1 sinφ2 + β(1 − cosφ1)(1 − cosφ2)

]
, (3.4b)

where

q1 = �t

�x
, q2 = �t

�y
, a1 = �t

(�x)2
, a2 = �t

(�y)2
and b = �t

�x�y
.

The angles φj are integer multiples of 2π/mj (j = 1,2) where m1, m2 are the dimensions of the grid in the x and y

directions, respectively.
By (3.2) we have djj � 0 and consequently �zj � 0 (j = 1,2). Using the condition (3.2), the Cauchy–Schwarz

inequality applied to the vectors

v1 =
[ − sinφ1

β(1 − cosφ1)

]
, v2 =

[
sinφ2

1 − cosφ2

]
,

and β2 � 1, we obtain

|z0|2 � 4d11d22 · b2 · ‖v1‖2
2 ‖v2‖2

2

� 4d11d22 · a1a2 · 2(1 − cosφ1) · 2(1 − cosφ2)

= 4 · 2d11a1(1 − cosφ1) · 2d22a2(1 − cosφ2)

= 4 · �z1 · �z2. (3.5)

Thus we have shown that the condition (2.4) is fulfilled, independently of �t , �x, �y > 0. By invoking Theorem 2.8,
parts a and b, we arrive at the following result for the Douglas and Craig & Sneyd schemes:
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Theorem 3.1. Consider equation (1.17) for k = 2 with (3.2) and periodic boundary condition. Assume (1.1), (1.2) is
obtained after semi-discretization and splitting of (1.17) as described in this section. Let the parameters θ , σ be such
that θ � 1

2 and σ � 2θ . Then the two schemes (1.3), (1.4) are both unconditionally stable when applied to (1.1), (1.2).
Moreover, this conclusion remains valid when any other, stable finite difference discretizations for ux , uy are used in
place of (3.3a), (3.3b).

The last part of Theorem 3.1 follows easily from the fact that with any other given stable3 finite difference dis-
cretizations of ux , uy one obtains the bound

�zj � −2djj aj (1 − cosφj ) � 0, j = 1,2.

As a consequence, the above proof of (2.4) is still valid, except that in (3.5) one needs to replace the last equality “=”
by an inequality “�”.

Theorem 3.1 substantially extends and improves the results from the literature for k = 2 reviewed in Section 1.2. In
particular, for the Craig & Sneyd scheme (1.4) we have unconditional stability in the case of general 2D convection–
diffusion equations, instead of pure diffusion equations [2], and simultaneously, for a larger set of parameters θ , σ than
in [2]. Furthermore, our result for the two schemes (1.3), (1.4) is valid for a much wider range of spatial discretizations
of the mixed derivative and convection terms than considered in [2,15].

By application of part d of Theorem 2.8, we arrive at the following result for the Hundsdorfer & Verwer scheme:

Theorem 3.2. Consider Eq. (1.17) for k = 2 with c = 0 and (3.2) and with periodic boundary condition. Assume (1.1),
(1.2) is obtained after semi-discretization and splitting of (1.17) as described in this section. Assume the parameters
θ , σ are such that min{ 1

2 ,2(1− θ)} � σ � (1+ 1
2

√
2 )θ . Then the scheme (1.5) is unconditionally stable when applied

to (1.1), (1.2).

Theorem 3.2 appears to be the first result in the literature on the (unconditional) stability of the scheme (1.5) in the
case of diffusion equations with mixed derivative terms. We currently do not have a proof of whether the unconditional
stability is maintained in the presence of convection, but, in view of Conjecture 2.9, we suspect that a result completely
similar to Theorem 3.1 will hold for the scheme (1.5), at least when σ = 1

2 and θ � 1
2 + 1

6

√
3.

4. Numerical experiments

We discuss numerical experiments in the case of the 2D convection–diffusion equation (1.17) on the unit square
Ω = [0,1] × [0,1] with

c = −
[

2
3

]
, D = 0.025

[
1 2
2 4

]
(4.1)

and with initial condition

u(x, y,0) = e−4(sin2 πx+cos2 πy) (0 � x, y � 1). (4.2)

Note that the requirement (3.2) is fulfilled for the matrix D above. In fact, the last inequality in (3.2) becomes an equal-
ity for D given by (4.1). Hence, for the given diagonal entries of the diffusion matrix, the coefficient corresponding to
the mixed derivative term is the largest possible.

In our experiments we consider a periodic boundary condition, i.e., u(x ± 1, y ± 1, t) = u(x, y, t) for all x, y, t .
The semi-discretization of the initial-boundary value problem is performed as in Section 3, with the parameter β in
(3.3e) taken equal to zero. The exact solution U to the obtained initial value problem for (1.1), with F(t, v) = Av and
constant matrix A, is given by U(t) = etAU0. Fig. 2 shows the solution values U(0) and U(2) displayed on the grid
in Ω , so that they represent the exact solution to the initial-boundary value problem for (1.17) at t = 0 and t = 2 (we
chose �x = �y = 1/40).

We subsequently employ a splitting (1.2) of the semi-discrete system (1.1) as given in Section 3. To the result-
ing splitted semi-discrete problem, with k = 2, we have applied each of the three ADI schemes from Section 1.1:

3 I.e., the corresponding semi-discretizations of the 1D scalar equations ut = cux for c = c1, c2, with periodic boundary condition, are stable.
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Fig. 2. Exact solution U(t) at t = 0,2.

the Douglas scheme (1.3) with θ = 1
2 , the Craig & Sneyd scheme (1.4) with θ = σ = 1

2 , and the Hundsdorfer &
Verwer scheme (1.5) with σ = 1

2 and the two values θ = 1
2 , θ = 1

2 + 1
6

√
3, respectively.

For the Douglas and Craig & Sneyd schemes under consideration, the assumption on the parameters θ , σ from
Theorem 3.1 is fulfilled. For the two Hundsdorfer & Verwer schemes, the requirement on θ , σ from Conjecture 2.9
and the related discussion following Theorem 3.2 is fulfilled if θ = 1

2 + 1
6

√
3, but not if θ = 1

2 .
Fig. 3 displays, for two choices of the spatial mesh width, the normalized global error

e = 1√
m1m2

∥∥U(2) − U2N

∥∥
2 (4.3)

as a function of �t = 1/N , where m1 and m2 denote the grid dimensions in the x and y directions, respectively. For
the (only) purpose of indicating the stiffness of the initial value problems (1.1), we have added in Fig. 3 the global
errors obtained with the explicit Euler method, RK1, and the second-order explicit improved Euler method, RK2.

The results of Fig. 3 are clearly consistent with an unconditionally stable behavior of the Douglas and Craig
& Sneyd schemes, cf. Theorem 3.1. Furthermore, Fig. 3 provides additional support for the conjecture following
Theorem 3.2 on the unconditional stability of the Hundsdorfer & Verwer scheme when applied to general parabolic
2D convection–diffusion equations: for θ = 1

2 + 1
6

√
3 the error curve is consistent with an unconditionally stable

behavior of the scheme, whereas for θ = 1
2 it is not.

To gain more insight in the latter case of θ = 1
2 , we have displayed in Fig. 4 the spectral radii (norms) of the

numerical time-step iteration matrices, arising in the experiments, versus the time step �t . Clearly, the regions of
time steps in Fig. 3 where the scheme (1.5) with θ = σ = 1

2 has large global errors—relative to the other three ADI
schemes—correspond exactly to the regions in Fig. 4 where the spectral radius of the numerical iteration matrix is
greater than 1. Thus this strongly indicates that the large errors in Fig. 3 for the scheme (1.5) with θ = σ = 1

2 are
indeed caused by a lack of unconditional stability.4 For the other three ADI schemes, the spectral radii are always
equal to 1, and this agrees with a presence of unconditional stability.

It is interesting to consider in Fig. 3 also the convergence behavior of the ADI schemes. When the time step is
sufficiently small, the Douglas scheme is clearly outperformed by the Craig & Sneyd and the Hundsdorfer & Verwer
schemes. Fig. 3 suggests that the global errors for the Douglas scheme behave like C�t , whereas for the Craig &
Sneyd and Hundsdorfer & Verwer schemes they behave like C(�t)2, with certain constants C that only depend
weakly on the spatial mesh widths.5

We remark that we have also performed numerical experiments in the case where the periodic boundary condition
is replaced by the Dirichlet boundary condition u(x, y, t) = u(x, y,0) for (x, y) ∈ ∂Ω and t � 0, with u(x, y,0) given
by (4.2). The semi-discretization was again done as in Section 3, except that, in order to avoid unwanted oscillations,
the convection terms were discretized using upwind differencing near the outflow part of the boundary. In the Dirichlet
case, we obtained exactly the same conclusions concerning unconditional stability as in the periodic case above. Note,

4 Clearly, there does appear to be conditional stability.
5 Even though this agrees with the “non-stiff” classical orders of the schemes, cf. Section 1.1, it is a non-trivial result to prove and we leave this

issue for future research.
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Fig. 3. Convergence curves e vs. �t in the case of the semi-discretized problem (1.17) with (4.1), (4.2) and periodic boundary condition for
�x = �y = 1

20 (top) and �x = �y = 1
40 (bottom).

however, that the stability analysis in this paper is not directly relevant to the Dirichlet case, since the present matrix A

is not normal. Hence, we have some evidence that the positive stability results for the ADI schemes (1.3)–(1.5) derived
in this paper extend to cases beyond the von Neumann framework.

5. Concluding remarks and extensions

We have presented in this paper several linear stability results for the three ADI schemes (1.3)–(1.5) formulated in
Section 1.1. In particular:

• Our proof of the unconditional stability of the Douglas scheme (1.3) when applied to general parabolic two-
dimensional convection–diffusion equations (1.17) substantially simplifies the proof given in [15], while also
holding for a wider range of spatial discretizations.
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Fig. 4. Spectral radii of the numerical time-step iteration matrices vs. �t in the case of the semi-discretized problem (1.17) with (4.1), (4.2) and
periodic boundary condition for �x = �y = 1

20 (top) and �x = �y = 1
40 (bottom).

• To our knowledge the unconditional stability result proved in this paper for the Craig & Sneyd scheme (1.4) when
applied to general parabolic two-dimensional convection–diffusion equations is new in the literature.

• To our knowledge the unconditional stability result proved in this paper for the Hundsdorfer & Verwer scheme
(1.5) when applied to general parabolic two-dimensional diffusion equations (1.17) (with c = 0) is new in the
literature.

The strength of condition (2.4) in proving (1.14)–(1.16) extends to certain higher-order multi-dimensional partial
differential equations, for which the ADI approach becomes even more appealing in view of the increasingly more
stringent stability restrictions on the time step for explicit integrators. For example, the two-dimensional, fourth-order
problem

∂u

∂t
= −�2u = −2uxxyy − uxxxx − uyyyy, (5.1)

naturally involves a cross derivative term. The biharmonic operator �2 arises in many important linear and nonlin-
ear problems (e.g. the Kuramoto–Sivashinsky equation modelling thermal diffusive instabilities). Approximating the
spatial derivatives using second-order central discretizations

(uxxxx)i,j ≈ �2
xui,j , (uyyyy)i,j ≈ �2

yui,j , (uxxyy)i,j ≈ �x�yui,j
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on a uniform rectangular grid (cf. (3.3c,d)) yields, with the cross derivative term in F0 and the derivatives in the x and
y directions in F1 and F2, respectively, the following formulas for the scaled eigenvalues z0, z1, z2:

z0 = −8b̃(1 − cosφ1)(1 − cosφ2)

and

zj = −4ãj (1 − cosφj )
2, j = 1,2,

where

ã1 = �t

(�x)4
, ã2 = �t

(�y)4
, b̃ = �t

(�x)2(�y)2
.

Note that these eigenvalues are real. Clearly, z1 � 0, z2 � 0 and |z0| = 2
√

z1z2, so that condition (2.4) holds. In
particular, all the ADI schemes discussed in this paper can be applied to solve (5.1) with suitable values θ , σ .

Finally, we mention some important issues which are currently under investigation:

• Similar to the analysis in [2] for the schemes (1.3) and (1.4), we are considering [7] the unconditional stability of
the Hundsdorfer & Verwer scheme (1.5) when applied to semi-discrete pure diffusion equations with full matrix D

in arbitrary spatial dimensions k � 2. It appears that the results for the scheme (1.5) are more favorable compared
to (1.3) and (1.4).

• A proof of Conjecture 2.9 concerning the Hundsdorfer & Verwer scheme. Numerical experiments indicate that
the condition (2.4) implies condition (2.6), for the relevant parameter values θ , σ . Current efforts are aimed at
establishing this implication, which would yield a proof of the conjecture using Lemma 2.5.

• An analysis of the convergence behavior of the ADI schemes when applied to semi-discrete convection–diffusion
equations with full diffusion matrix D, cf. Section 4. Here the interest is in bounds on the global error of the
type C(�t)r with r � 1 and a constant C that is independent of the mesh widths in the semi-discretization. For
various time-integration schemes, including (1.3) and (1.5), global error bounds of this type have been derived in
the literature for the case of equations with diagonal matrix D, see e.g. [10,11].

• The numerical experiments mentioned at the end of Section 4 on a two-dimensional convection–diffusion equation
with a Dirichlet boundary condition suggest that the stability results derived in this paper extend to cases beyond
the von Neumann framework. A rigorous proof of stability for k = 2 and Fj (t, v) = Ajv, j = 0,1,2, with non-
normal and/or non-commuting matrices Aj , requires bounding matrix norms such as, for Craig & Sneyd’s scheme,∥∥I + (

I + σ�tP −1A0
)
�tP −1A

∥∥
where A = A0 + A1 + A2, P = (I − θ�tA1)(I − θ�tA2), and I is the identity matrix. Contractivity results
relevant to non-normal, commuting matrices may be obtained along the lines of [6,12].
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