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A b s t r a c t - - T h e  present paper deals with the problem of starting multistep methods. We take 
into consideration an Adams-Bashforth-Moulton PECE pair, with the predictor of order q and the 
corrector of order q + 1. To start this method, q - 1 starting values are necessary, in addition to Y0. 
A well-known result from theory says that the order of convergence of the whole integration is q + 1, 
if all those starting values are accurate of that same order. Present production codes start with a 
predictor of order 1 and a corrector of order 2 at the first step, and then proceed step by step, each 
time raising the order by 1, until all the necessary starting values have been obtained. But, in this 
manner, all the starting errors keep of order 3, and so the whole integration converges no faster than 
that order. This drawback is normally compensated for, by taking very small step sizes in the starting 
phase. The general algorithm we propose furnishes, at a reasonably low cost, the necessary number 
q - 1 of starting values, each of the appropriate order q + 1, whatever q might be; it is independent 
of the particular multistep formula considered, and is mainly designed to be used for high values of 
q (q _> 10), where the alternative strategies are too expensive or do not exist at all. The numerical 
results reported show the validity of our approach. © 2003 Elsevier Science Ltd. All rights reserved. 

K e y w o r d s - - O r d i n a r y  differential equations, Initial value problems, Multistep methods, Starting 
values. 

1. I N T R O D U C T I O N  

As it is well known, the mathematical formulation of many problems in science, engineering, and 
economics, leads to the necessity of solving a system of N first-order ODEs 

y'(x) = / [ x , y ( x ) ] ,  y(x0) = y0 <_ • <  F,y e R N ) .  

Among the various numerical methods developed to this end, multistep ones are especially 
useful and widely used in production codes. We consider an Adam-Bashforth-Moulton PECE 
pair, with the predictor of order q and the corrector of order q + 1. (See, for example, the popular 
code STEP [1], but what we shall say can be trivially adapted to the case when both the predictor 
and the corrector are of the same order.) 

To s t a r t  th i s  m e t h o d ,  q - 1 s t a r t i n g  values  Yn+l (n  = 0, 1 , . . . ,  q - 2) are  necessa ry  in ad d i t i o n  

to Y0, at the points x,~+l = xn + h. Now, a well-known result from theory says that  the order of 
convergence  of  t h e  whole  i n t e g r a t i o n  on [Xo, XF] is q + 1, if all t h e s e  s t a r t i n g  values  are  accu ra t e  

of o rde r  q + 1, t h a t  is if y (xn+l )  - yn+l = O(hq+l) .  

This work was supported by Italian MURST. 

0898-1221/03/$ - see front matter (~ 2003 Elsevier Science Ltd. All rights reserved. Typeset by Aj~-TFjX 
PII: S0898-1221 (02)00331-0 



124 R. TIRANI AND C. PARACELLI 

Present production codes (see again, for example, the already mentioned STEP [1]), start  with 
a predictor of order 1 and a corrector of order 2 at the first step, and then proceed step by step, 
each time raising the order by 1, until all the necessary starting values yn+l (n = 0, 1 , . . . ,  q - 2) 
have been obtained. But, in this manner, all the starting errors y(xn+l)  - Y~+I keep of order 3, 
and so the integration converges no faster than this order all over [Xo,XF] [2, p. 228]. This 
drawback is normally compensated for, by taking smaller step sizes in the starting phase [1, 
p. 52]. 

Alternatively, a discrete Runge-Kutta method could be used. This procedure is found in the 
early codes, but nowadays it is usually no longer employed, since it is expensive [2, p. 199]. 

Another more economical way is to resort to a continuous Runge-Kutta method (CRK method), 
that  is a polynomial p(x),  such that  y(x)  - p(x) = O(hq+l), (xo <_ x <_ Xq_l, h ---4 0).  The q - 1 
starting values yn+l(n = O, 1 , . . .  ,q - 2) are then given by yn+l = p(xn+l). This approach is 
efficient, but when employing Adams methods, the value of q can be very high. (For example, in 
the above-mentioned code STEP, it can arrive up to 12 [1, p. 178].) Now, as far as we know, no 
CRK methods of order > 9 has been published [3]. 

In this paper, we propose an algorithm, based on a cycle of operations, that, at reasonably 
low cost, furnishes the necessary number q - 1 of starting values, each of the appropriate order 
q + 1. Such an algorithm is mainly designed to be used when q is very high (q k 10), where the 
alternative methods are too expensive or do not exist at all; its implementation is very simple and 
its cost (in terms of derivative evaluations) is always known, whichever the value of q (see (6)). 
(We observe that  similar starting schemes can also be found in [4, p. 48], for low values of q.) 

2. T H E  A L G O R I T H M  

Such an algorithm essentially consists in the construction of a sequence 

S = {pj(x), j = 1 , 2 , . . . , q -  1}, (I) 

of polynomials (whose degree does not exceed the corresponding subscript j ) ,  each obtained from 
the previous one and such that  

y'(=) =v(m+l),  (2) 

(Xo <_ x < xq-1, h --* 0). 
Once the last element pq- l ( x )  of the above sequence (1) is generated, element for which esti- 

mate (2) yields 
W(x) - p _l(x) = V(hq), (3) 

we can consider the polynomial pq(X), of degree < q, 

Z 
x 

pq(x) = Yo + pq- l ( t )  dt, (4) 
o 

for which it is immediately seen that  

= o ( h q ÷ l ) ,  (5) 

(Xo <_ x < xq-1, h --* 0). (In fact, y(x)  - - pq (X)  = f :o  [y'(t)--pq_l(t)] dt  = O(hq+l),  recalling (3).) 
The q - 1 starting values Yn+I (n = O, 1 , . . . ,  q - 2), which we have mentioned in the previous 

section, are then given by 
Yn+l = p q ( X n + l ) ,  (6) 

and are of order q + 1, by virtue of (5). 
We have therefore to see how to produce the sequence (1) and then that  its elements satisfy (2). 
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The first element pl(x)  is the interpolant at the points (xo, f0) [)Co = f(xo,  Y0)] and (Xq-1, jq l J, 

where ~.(2) f ( X q - 1 ,  y~2_)1), with y~2_) 1 Yo + (q 1)hfo. But, y(xq-1) - ~  (2) = (.9(h~) as well Jq- - I  = ~-- -- ~]q--i 

as g'(Xq_l) - Jq-1,~(2) provided that the function f satisfies a Lipschitz condition in y. It is then 

trivial to see tha t  

(Z 0 ~__ 2C ~ 32q_1, h ----+ 0). 

As to the subsequent polynomials, p i ( x )  (i = 2 ,3 , . . .  ,q - 1) is obtained from p i - t ( x ) ,  by' 
~(i+1)~ 

interpolating the i + 1 points (xk, Jk ), where 

f(i+l) I x  ^ (~+1) xl 
k " = f l  k ,Yk  ; 

with 
y(~+l) j/z xk 

k = YO + p i - l ( X )  dx, (9) 
0 

(k = 0 , . . .  , i / 2 ,  q - i / 2 , . . . , q  - 1, when i is even; k = 0 , . . . , ( i  - 1)/2, q - (i + 1)/2 . . . .  ,q ~ 1, 

r(i+l) ( i = 2 , 3 , .  , q - l )  are to be set equal to f0 for al l i .  when i is odd). The values j0 " 
Now, move on to the verification of (2). We have already seen (7). If we now show that  

y ' ( x )  - p 2 ( x )  = o ( h 3 ) ,  (10) 

(xo <_ x <_ Xq-1,  h --* 0), the validity of (2) for the subsequent polynomials p , ( x )  (~ - 3, 4 . . . . .  

q - 1) follows by induction. 

The polynomial p2(x) interpolates the points (xk,  f(3)) (k = 0, 1 , . . . ,  q - 1; fo (3) = fo). where 

j":t) = f ( x a ,  y~3)), with y~3) = Yo + f~xok p l ( x ) d x  (see (8) and (9)). k 

it is now trivial to see tha t  y ( x k )  -- y(2 ) = 59(h3), and so fk (3), provided that  the function f 

satisfies a Lipschitz condition in y. (In fact, recalling (7), y (xa)  - y(k 3) = f~)k [y'(x) - p~ (x)} dx :: 

59(h3).) The validity of (10) then follows easily. 
As to the total cost (in terms of derivative evaluations) necessary to obtain all the q -  1 starting 

values Y~+I (n = 0, 1 , . . . ,  q - 2) given by (6), a straightforward calculation shows that  it is 

1 + ~(q - 1)q. ( l i )  

If we now compare such a cost with tha t  of the other two alternative strategies mentioned in 
Section 1, we see that  it is clearly lower than that  required by a discrete Runge-Kut ta  method 
for q >_ 3, while for a continuous one we remember tha t  Owren and Zennaro have determined the 
minimum number CEN (q) of stages needed by a CRK method of order q, for q _< 5 [51. It results 
that  CEN(1) = 1, CEN(2) = 2, CEN(3) = 4, CEN(4) = 6, and CEN(5) = 8. For 6 _< (t <- 9. we 
refer to Tables l a  and lb, respectively, on [3, p. 28,33]. 

In these cases, we see that  our method is slightly more expensive. But, when q > 9 (values of' q 
fbr which our algorithm is mainly designed to be employed, as we have already said), no formula. 
such as (11), has yet been provided [6] in order to compute the relevant cost. And this makes it 

impossible a comparison with our method, in this last case. 

3. N U M E R I C A L  R E S U L T S  

In this section, we show the performance of our method in the case of the two AB4-AM5 and 
AB10-AM11 pairs. As we have seen in Section 1, in addition to Yo we need three starting values 
accurate to order 5 in the first case, and nine starting values accurate to order 11 in the second. 
According to (11), the total cost (in terms of derivative evaluations) is 7 and 46. respectively. 
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The  formulae relevant to the AB4-AM5 pair are given in the  Appendix  to the paper,  while 
those relevat to the AB10-AMl l  pair  are not reported for space reasons. They  can be requested 
to the  authors.  

In both  cases, we give the results of our algorithm for the problems D1, D3, and D5 proposed 
by Enright et al. in [7]; for the mildly stiff problem 

( 1)  1 
(S) y '  = - 1 0 0  y x + 1 + (x + 1) - - - - - - - ~ '  y(O) = O, 

used by Decker et al. in [8], and finally for the problem 

y~ = 2xyl log [max (y2,10-3) ] , yl(0) = 1, 
(H) 

y~ = -2xy2  log [max (Yl, 10-3)] , y2(0) : e, 

quoted by Hairer et al. in [9, p. 174]. 
In the case of the AB4-AM5 pair, for each of the above problems, we have calculated, at the 

points x,~+l = x n + h  (n = 0, 1,2; h = 0.1,0.01, 0.001), the values Ilen+l[[oo, with en+l = y(x,~+l)-  
Y~+I, where Yn+l are the approximations given by formulae (12a)-(12c) in the Appendix.  

Such values of [[e~+l[[~ are reported in Tables 1-3, respectively, for the values h = 0.1, 0.01, 

and 0.001. 

Table 1. (h = 0.1). T~ble 2. (h = 0.01). 

S 
H 

D1 

D3 

D5 

3:1 3:2 x3 

0.93D+00 0.15D+02 0.77D+02 

0.60D-03 0.18D-03 0.15D-02 

0.30D-05 0.12D-03 0.55D-03 

0.15D-02 0.77D-02 0.26D-01 

0.26D+01 0.23D+01 0.26D-I-01 

S 
H 

D'I 

D3 
D5 

Xl X2 X3 

0.12D-04 0.19D-03 0.97D-03 

0.47D-09 0.15D-09 0.11D-08 
0.51D-10 0.14D-08 0.65D-08 

0.65D-08 0.19D-06 0.87D-06 

0.94D-02 0.25D-01 0.74D-01 

Table 3. (h = 0.001). 

S 
H 

D1 
D3 
D5 

2~1 x2 x3 

0.11D-09 0.19D-08 0.99D-08 
0.00D+00 0.00D+00 0.00D+00 
0.00D+00 0.13D-13 0.64D-13 
0.64D-13 0.18D-11 0.87D-11 
0.10D-06 0.85D-06 0.39D-05 

A comparison has also been made with the values given by the fourth-order continuous Runge- 
K u t t a  method  on [10, p. 205] (Tables 4-6) and with those given by the fourth-order formula of 

the classical (discrete) RKF4(5)  pair (Tables 7-9). 
As we have anticipated at  the beginning of this section, we have tested our method also for the 

AB10-AMl l  pair. We recall that ,  in this connection, we need nine s tar t ing values yn+l, accurate 
to order 11, at  the points xn+l  (n = 0, 1 , . . . , 8 ) ,  where the max-norm [len+l[[oo of the true 
errors y(xn+l) - Yn+l has been computed  for h = 0.01 and 0.001 and for each of the above-cited 

problems (Tables 10 and 11). 
Here, we have not compared  our algorithm with a tenth-order  discrete Runge-Kut ta  method,  

because its use would require too high a cost. For example,  the 17-stage formula by [9, p. 190], 
would require 153 derivative evaluations, instead of the 46 ones required by our technique. 

Neither we could make a comparison with a tenth-order  continuous Runge-Kut t a  method,  
since, as we have already said in Section 1, none is nowadays available. 
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S 

H 

D1 

D3 

D5 

S 

H 

D1 

D3 

D5 

S 

H 

D1 

D3 

D5 

Table 4. (h = 0.1). 

Xl x2 x3 

0 .13D+03 0.59D+03 0.17D+03 

0 .29D-04  0 .36D-03  0 . 1 2 D - 0 2  

0 . 2 5 D - 0 4  0 .24D-05  0 .17D-04  

0 . 2 3 D - 0 2  0 .11D-02  0 .76D-03  

0.30D+01 0.55D+00 0 .63D-01  

Table 6. (h = 0.001). 

Xl x2 x3 

0 . 6 5 D -  10 0 .45D-09  0 .76D-09  

0 .00D+00 0.00D+00 0.00D+00 

0 .00D+00 0.00D+00 0.00D+00 

0 .68D-12  0 .25D-12  0 .52D-12  

0 .45D-06  0 .22D-06  0 .30D-06  

Table 8. (h = 0.01). 

Xl x2 x3 

0 . 4 8 D - 0 6  0 .64D-06  0 .69D-06  

0 . 2 6 D - 1 2  0 .95D-12  0 .21D-11  

0 .28D-12  0 .28D-12  0 .28D-12  

0 . 3 9 D - 1 0  0 .39D-10  0 .38D-10  

0 .61D-04  0 .27D-04  0 .63D-05  

Table 5. (h = 0.01). 

S 

H 

D1 

D3 

D5 

Xl x2 x3 

0 .37D-04  0 .20D-03  0 .23D-03  

0 .88D-09  0 .66D-10  0 .19D-09  

0 .25D-09  0 .20D-10  0 .24D-09  

0 .66D-07  0 .24D-07  0 .50D-07  

0 .11D-01  0 .68D-02  0 .60D-02  

Table 7. (h = 0.1). 

Xl x2 x3 

0.26D+00 O17D+03 0.12D+06 

0 .28D-06  0 .14D-05  0 .46D-05  

0 .27D-07  0 .25D-07  0 .23D-07  

0 .85D-05  0 .51D-05  0 .23D-05  

0.92D+00 0 .64D-03  0 .15D-04  

S 

H 

D1 

D3 

D5 

Table 9. (h = 0.001). 

S 

H 

D1 

D3 

D5 

Xl x2 x3 

0 .26D-11  0 .50D-11  0 .72D-11  

0.00D+00 0.00D+00 0.00D+00 

0.00D+00 0.00D+00 0.00D+00 

0.00D+00 0.00D+00 0.00D+00 

0 .61D-04  0 .27D-04  0 .63D-05  

Table 10. (h = 0.01). 

i 

Xl x2 303 x4 x5 x6 x7 x8 x9 ! 
i 

S 0 . 21D-09  0 .22D-06  0 .13D-04  0 . 2 3 D - 0 3 ] 0 . 2 2 D - 0 2  0 .13D-01  0 .63D-01  0 .24D+00 0 . 7 8 D + 0 0  

H 0 .31D-02  0 .27D-02  0 .33D-02  0 .55D-02  

D1 0 .11D-01  0 .22D-01  0 .33D-01  0 . 4 4 D - 0 t  

D3 0 .36D-01  0 .72D-01  0 .10D-01  0.14D+00 

D5 0 .84D+00 0.14D+01 0.18D+01 0.18D+01 

Table 11. (h = 0.001). 

x l  x2 x3 x4 x5 x6 x7 

S 0 .32D-14  0 . 2 4 D - 1 4  0 .17D-14  0 .43D-14  0 .34D-13  0 .18D-12  0 .78D-12  

H 0.00D+00 0.00D+00 0.00D+00 0.00D+00 0.00D+00 0.00D+00 0.00D+00 

D1 0 .41D-14  0 . 3 2 D - 1 4 1 0 . 3 4 D - 1 4  0 .27D-14  0 .38D-14  0 .10D-14  0 . 2 3 D - 1 3  

0 .15D-01  0 .39D-01  0 .88D-01  0.17D+00 0.30D+00: 

0 .55D-01  ~0.67D-01 0 .78D-01  0 .89D-01  0 .99D-0k  

0.18D+00 0.21D+00 0.24D+00 0.28D+00 0 3 1 D + 0 0  

0.19D+01 0.22D+01 0.25D+01 0.26D+01 0.27D+0:L 

3?8 x9 

0 .24D-11  0 .90D-  ] 

0 .00D+00 0 .17D- ]  

0 . 4 7 D -  13 0 .16D- ]  

D3 0 .31D-13  0 .10D-13  0 .12D-13  0 .13D-13  0 .28D-13  0 .67D-13  0 .12D-12  0 .23D-12  0 . 4 1 D -  

D5 0 .81D-11  0 .72D-11  0 .83D-11  0 .90D-11  0 .10D-10  0 .12D-10  0 .18D-10  0 .60D-10  0 . 1 6 D -  

4. C O N C L U S I O N S  

A g e n e r a l  a l g o r i t h m ,  m a i n l y  d e s i g n e d  for  h i g h  v a l u e s  o f  q (q > 10) ,  h a s  b e e n  p r e s e n t e d ,  w h i c h  

f u r n i s h e s ,  in  a d d i t i o n  t o  Y0, a t  t h e  p o i n t s  x ,~+l  = x n  + h ,  ( n  = 0 , 1 , . . .  , q  - 2) ,  t h e  q - 1 v a l u e s  

Y,~+I n e c e s s a r y  t o  s t a r t  a P E C E  m e t h o d ,  w i t h  t h e  p r e d i c t o r  o f  o r d e r  q a n d  t h e  c o r r e c t o r  o f  o r d e r  
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q + 1. Such values Yn+l are accurate to order q + 1, which is appropriate to assure that the PECE 
scheme be uniformly convergent of that same order on the whole of the interval of integration. 

The bulk of such an algorithm consists in the construction of a polynomial pq_ 1 (X), such that 
yt(x) - P q - l ( X )  : O(hq), (xo <_ x <_ xq_:,  h --* 0). The values y~+: are then given by integration 
(see (4) and (6)). The relevant overall cost (in terms of derivative evaluations) is given by (11). 

A P P E N D I X  

Here, we give the formulae relevant to our technique in the case of an AB4-AM5 pair. As we 
have already said in Section 3, we need three starting values y=+: (n = 0, 1, 2), in addition to Y0, 
all of which accurate to order 5. 

To this purpose, having constructed the polynomial p3(x) such that y~(x) - p3(x) = O(h 4) 
(see (7)), relations (4)-(6) give, with q = 4, Yn+l = pa(xn+l) = Yo + f~o +~ p3(x) dx. Applying the 
algorithm of Section 2 and employing the normalized variable 8 ~ [0, 1], defined by x = x0 + 3h8, 
we successively have 

y:2) 
= Yo + 3hfo, 

C ) = s 

p:(8)  = (:  - 8)f0 + 8f~ 2), 

jo 1/3 h (  2)) yi3) = yo + 3h p1(8) ~8 = y0 + ~ s J0 + f~( , 

y(3) = y0 + 3h p: (8)  d0 = y0 + -~- ]o + I3 (2) , 

1 (383 _ 8) f3 (3), (8 2 - 8) Z~ 3) + : 

= Y0 ÷ ~ f0 ÷ ~Jl -- "i'~J3 ] '  

9 
p2(8)= (382-48+I)fo-: 

f 
l/3 

y~4) = Yo + 3h p2(O) dO 
.I0 

y~c~)=yo+3h p ~ ( e ) d e = y o +  T 3s~ + f c  , 

9 (3e~ _ se~ + 2e) s~ '~ 1 (9e~ _ 18e~ + : : e  - 2) So + p3(e) --- - ~  

: (983 - 982 + 28) sJ ') 9 (383 _ 482 + 8) f(4) + 
2 

The three starting values Yn+l (n = 0, 1, 2) accurate to order 5, are then given by 

J~O 1/3 h ( 19f~4) 5f(4) ÷ f~4)) Y : - - y 0 + 3 h  P3(8) d 0 - - Y 0 ÷ ~  9fo+ - 

Y 2 = Y o + 3 A  p3(8) d O = y o + - ~  f o +  

/01 ( Y3 : Yo + 3h p3(8) d0 : Yo + "~- fo + 3f~ a) + 

(12a) 

(12b) 

(12c) 
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