
Probability-density function for energy
perturbations of isolated optical pulses

C. J. McKinstrie
Bell Laboratories, Lucent Technologies, Holmdel, NJ 07733

mckinstrie@lucent.com

T. I. Lakoba
Department of Mathematics, University of Vermont, Burlington, VT 05405

lakobati@emba.uvm.edu

Abstract: The mathematical methods required to model simple stochastic
processes are reviewed briefly. These methods are used to determine the
probability-density function (PDF) for noise-induced energy perturbations
of isolated (solitary) optical pulses in fiber communication systems. The
analytical formula is consistent with the numerical solution of the energy-
moment equation. System failures are caused by large energy perturbations.
For such perturbations the actual PDF differs significantly from the (ideal-
ized) Gauss PDF that is often used to predict system performance.
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1. Introduction

In the last two decades there has been considerable interest in optical communication systems
based on return-to-zero (RZ) pulses. In amplitude-shift-keyed (ASK) systems [1, 2] information
is transmitted by the presence (or absence) of a pulse. In differential-phase-shift-keyed (DPSK)
systems [3, 4] information is transmitted by the phase difference between neighboring pulses.
Long-haul systems need amplifiers to compensate for fiber loss. Unfortunately, amplifier noise
causes the amplitude (energy), phase, frequency and arrival-time of the pulses to fluctuate (jit-
ter). These pulse-parameter fluctuations (perturbations) impair system performance. For ASK
systems the dominant impairment is arrival-time jitter [5, 6], in which noise-induced frequency
shifts are converted into arrival-time shifts by dispersion. For DPSK systems the dominant im-
pairment is phase jitter [7, 8], in which energy (power) shifts are converted into phase shifts by
nonlinearity. Although energy jitter is not the dominant impairment for either type of system, it
should be considered first because it affects both types of system and is the simplest jitter phe-
nomenon to model. Furthermore, the mathematical methods and physical insights developed in
the study of energy jitter can be applied to studies of the other jitter phenomena.

Light-wave propagation in a fiber is governed by the nonlinear Schrödinger equation (NSE).
The standard way to model pulse-parameter perturbations is to use the moment [9], variation
[10, 11] or soliton-perturbation [12, 13] method to convert the NSE into a set of stochastic
differential equations (SDEs) for the pulse parameters. If one assumes that the parameter per-
turbations are small, one can model their growth using linearized SDEs, which produce Gauss
probability-density functions (PDFs). This approach produces (approximate) formulas that de-



scribe how the means and variances of the PDFs depend on the system parameters (such as
length): One can use these formulas to distinguish reasonable system designs from bad ones.
However, system failures are caused by large parameter perturbations that occur infrequently.
For such parameter perturbations the linearized SDEs (and the associated Gauss PDFs) are not
valid: One cannot rely on the aforementioned formulas to make quantitative predictions about
system performance.

Non-Gauss PDFs are produced by two independent mechanisms: nonlinear propagation in
fibers and nonlinear (quadratic) detection at receivers. The effects of the latter mechanism on
the bit-error-ratios (BERs) of ASK systems with (idealized) integrate-and-dump receivers were
studied in detail [14, 15, 16]. Propagation was not analyzed, but characteristic functions were
used to calculate the BERs associated with specified signals and specified amounts of amplitude
noise. Subsequently, Karhunen–Loève expansions were used to extend these analyses to include
more-realistic receivers [17, 18]. Recent studies included the effects of propagation. Malomed
[19] used a probability-diffusion, or Fokker-Planck, equation (FPE) to study the statistics of
damped soliton systems driven by noise. (These systems are not like communication systems,
in which fiber loss is compensated by amplification.) The statistics of undamped soliton systems
perturbed by noise (which are like communication systems) were studied recently by Falkovich
[20], who used a path-integral formalism to predict a non-Gauss energy PDF. Non-Gauss energy
PDFs were observed in recent numerical simulations [21, 22, 23], and a non-Gauss phase PDF
(which is a manifestation of a non-Gauss energy PDF) was observed in a recent experiment
[24].

In this paper energy jitter is studied in detail. The paper is organized as follows: In Section
2 the mathematical methods required to model nonlinear stochastic processes are reviewed
briefly. These methods include stochastic calculus, which facilitates the solution of SDEs, and
the conversion of SDEs to FPEs, for which many solution methods exist. In Section 3 the
NSE is used to derive two (equivalent) SDEs for the energy in a bit period. Because the rate
at which amplifier noise changes the bit energy depends on the current energy, these SDEs
are nonlinear. Energy jitter is analyzed in Section 4, for (idealized) systems with uniformly-
distributed amplification (UDA). Formulas are obtained for the PDF of the output energies. In
Section 5 the analytical results are validated by numerical solutions of the energy SDEs and
their (common) associated FPE. The effects of nonuniformly-distributed amplification (NDA)
are studied in Section 6. Finally, in Section 7 the main results of this paper are summarized.

2. Simple stochastic process

The mathematical methods required to model stochastic processes were described in detail
by Gardiner [25]. Readers who are familiar with these methods should proceed to Section 3
directly. Others should consider a simple stochastic process that involves a single measurable
quantityX. Suppose that this process is modeled by the SDE

Ẋ = a(X,z)+b(X,z)r(z), (1)

whereẊ = dX/dz, a andb are deterministic functions ofX andz, andr is a random function
of z.

A common (idealized) model forr is white noise, which is characterized by the equations

〈r(z)〉 = 0, (2)

〈r(z)r(z′)〉 = δ (z−z′), (3)

where〈 〉 denotes an ensemble average andδ denotes a Dirac delta function. (Boldface was used
to distinguish the symbol for the delta function from the symbol for a small change in value.)



According to Eq. (3), the correlation distance of white noise is zero. The related function

W(z) =
∫ z

0
r(z′)dz′ (4)

defines a Wiener process [25]. It follows from Eqs. (2)–(4) that

〈W(z)〉 = 0, (5)

〈W(z)W(z′)〉 = min(z,z′). (6)

Let δz be a short, but finite, distance interval and letδW = W(δz). Then it follows from Eqs.
(5) and (6) that a typical noise incrementδW ∼ δz1/2.

Although the white-noise model is common (and convenient), white noise cannot exist in a
real physical system. To understand why not, recall that the space-autocorrelation function

Gz(ζ ) = lim
L→∞

∫ L/2

−L/2
r(z+ζ )r∗(z)dz/L (7)

and the ensemble-autocorrelation function

Ge(z,z′) = 〈r(z)r∗(z′)〉. (8)

If r(z) represents a stationary stochastic process, the ensemble-autocorrelation is a function of
ζ = z−z′ (rather thanzandz′ separately) and the space average (7) equals the ensemble average
(8): Ge = Gz = G [26]. Define the Fourier transform

r(k) =
∫ L/2

−L/2
r(z)exp(−i2πkz)dz (9)

and the spectral density
S(k) = lim

L→∞
|r(k)|2/L. (10)

[For cases in which|r|2 is (noise) power,S is the power per unit inverse-wavelength.] Then the
Wiener–Khinchin (statistical-autocorrelation) theorem [26] states that

S(k) =
∫ ∞

−∞
G(ζ )exp(−i2πkζ )dζ , (11)

G(ζ ) =
∫ ∞

−∞
S(k)exp(i2πkζ )dk. (12)

For white noise the autocorrelation functionG(ζ ) = δ (ζ ), so the associated spectral density
S(k) = 1: The spectrum has infinite bandwidth and contains infinite power. Such a spectrum
cannot exist. [In transmission systems the frequency spectra are limited by the amplifier (or
filter) bandwidths, which are finite. They are converted to wavenumber spectra by propagation.]

A more-realistic model forr is weakly-colored noise, the simplest example of which is the
rectangular spectral density

S(k) = rect(k/K). (13)

This spectrum has a bandwidth ofK (which we assume is much broader than any other relevant
bandwidth) and contains finite power. The associated autocorrelation function

G(ζ ) = Ksinc(πKζ ) (14)

has a correlation distance of order 1/K (which is much shorter than any other relevant distance
scale). One can still use Eqs. (2) and (3) to characterize weakly-colored noise, provided that



one interpretsδ as the sinc function in Eq. (14). For weakly-colored noise Eq. (4) does not
define a Wiener process. However, Eq. (5) is still satisfied exactly and Eq. (6) is satisfied ap-
proximately. In particular, the increment

∫
δz
0 r(z′)dz′ ∼ δz1/2, provided thatδz is much longer

than the correlation distance.
Because Eq. (1) has a random driving term, eachX(z) is one member of an ensemble of

solutions. This description of the stochastic process is based on an SDE for the dependent
variableX. An alternative description is based on the PDF for the independent variablex.
Let P(x,z)dx be the probability thatX(z) is in the range(x,x+ dx). ThenP(x,z) satisfies a
probability-diffusion equation, which is called the Fokker-Planck equation (FPE). (In the math-
ematics literature the probability-diffusion equation is called the Kolmogorov equation.)

The rules of stochastic calculus and the relation between an SDE and its associated FPE both
depend on an approximate formula for the small, but finite, increment

δX =
∫

δz

0
{a[X(z)]+b[X(z)]r(z)}dz, (15)

where, for simplicity of notation, the explicitz-dependence ofa andb was suppressed and the
initial position was denoted by 0 (rather thanz). The first term on the right side of Eq. (15) is
of orderδz, whereas the second term is of orderδz1/2. By omitting terms of orderδz3/2 and
higher, one can make the simplification∫

δz

0
a[X(z)]dz≈ a0δz, (16)

wherea0 = a(X0) = a[X(0)]: The first contribution only depends on the value ofX at the
beginning of the interval. In contrast, because the second term is larger than the first, one must
account for the cumulative change inX. By doing so, one finds that∫

δz

0
b[X(z)]r(z)dz≈

∫
δz

0

[
b0 +b′0b0

∫ z

0
r(z′)dz′

]
r(z)dz, (17)

whereb′ = ∂b/∂X. It follows from Eqs. (16) and (17) that

δX ≈ a0δz+b0

∫
δz

0
r(z)dz+b′0b0

∫
δz

0

∫ z

0
r(z)r(z′)dz′dz. (18)

The first term on the right side of Eq. (18) is deterministic and of orderδz. The second is random
(with zero mean) and of orderδz1/2. The third is also random, but of orderδz. Consequently,
its contribution to the random part ofδX is insignificant. However, its mean value, if nonzero,
is of orderδz. It follows from Eq. (18) that

〈δX〉 ≈ a0δz+b′0b0

∫
δz

0

∫ z

0
〈r(z)r(z′)〉dz′dz. (19)

According to Eq. (3), the double integral in Eq. (19) contains a delta function, which implies
that the noise correlation lengthlc = 0. As we explained above, no real physical process can
havelc = 0. The requirement thatlc be much shorter than the next-shortest lengthδz introduces
an ambiguity into the right side of Eq. (15), as viewed from the perspective of deterministic
calculus. Indeed, ifr were a deterministic function ofz Eq. (15) could be rewritten as

δX =
∫

δz

0
{a[X(z)+b[X(z)]r(z+ l)}dz+O(l). (20)



Equation (20) would be consistent with Eq. (15), provided only thatl � δz. The ambiguity,
which exists for stochastic processes, is whether one treatsl � lc or l � lc. The choice one
makes determines whether one obtains Ito or Stratonovich calculus, respectively.

In the Ito formalism the correlation in Eq. (19) vanishes:〈r(z+ l)r(z′)〉= 0 becausez′≤ zand
l � lc. One obtains the same result by making the intuitive argument that white noise emitted
at positionz is not correlated with noise emitted at any previous position, no matter how close,
and interpreting the upper limit of thez′-integral asz−. It follows from either approach that

〈δX〉 ≈ a0δz. (21)

It also follows (unambiguously) from Eqs. (3) and (18) that

〈δX2〉 ≈ b2
0

∫
δz

0

∫
δz

0
〈r(z)r(z′)〉dz′dz, (22)

= b2
0δz. (23)

In most physical models the functionsr andb are meant to be evaluated at the same position
z, so the parameterl , defined in Eq. (20), should satisfyl � lc. In the Stratonovich formalism
l = 0. Let I andJ denote the double integrals that appear in Eqs. (19) and (22), respectively.
Then, by using the sinc function in Eq. (14) to evaluate these integrals, one finds thatJ =
δz+ O(1/K) and I = J/2. Because the correlation distance is much shorter than the interval
under consideration (Kδz� 1)

〈δX〉 ≈ (a0 +b′0b0/2)δz, (24)

〈δX2〉 ≈ b2
0δz. (25)

In general, the short, but finite correlation distance associated with weakly-colored noise mod-
ifies the mean value ofδX (which is called the drift), but does not affect its variance. These
conclusions do not depend sensitively on the choice of autocorrelation function. For the special
case in which the noise is additive (b′ = 0), the drift formulas (21) and (24) are identical.

The simplest SDEs can be solved directly. (For example, linear SDEs with additive noise.)
However, most SDEs cannot. Just as changes of variables enable the solution of some deter-
ministic differential equations, so also do they enable the solution of some SDEs. In stochastic
calculus the change-of-variable rule depends on the relation between the SDE and the associ-
ated finite-difference equation (FDE).

In the Ito formulation Eq. (1) is equivalent to the FDE

δX = aδz+bδW. (26)

Consistent with Eqs. (5) and (6), the noise increment has mean〈δW〉= 0 and variance〈δW2〉=
δz. Furthermore, noise increments associated with different positions are uncorrelated. LetY =
f (X), where f is an arbitrary differentiable (and invertible) function. Then

δY ≈ fXδX + fXXδX2/2, (27)

where fX = d f/dX. It follows from the discussion of Eq. (18) that the larger deterministic
contribution toδX2 must be retained [Eq. (23)], whereas the other (smaller deterministic and
random) contributions need not. Consequently,

Ẏ = fXẊ + fXXb2/2. (28)

The change-of-variables rule in Ito calculus differs from the rule in deterministic calculus.



In the Stratonovich formulation Eq. (1) is equivalent to the FDE

δX = (a+bbX/2)δz+bδW, (29)

wherebX = ∂b/∂X. It follows from Eqs. (27) and (29) that

δY = fX(a+bbX/2)δz+ fXbδW+ fXXb2
δz/2. (30)

To complete the change of variables, one must replace theX-derivatives on the right side of Eq.
(30) byY-derivatives. Letg be the inverse off , so thatfX = 1/gY and fXX =−gYY/g3

Y. Then,
by using these facts, one can rewrite Eq. (30) in the canonical form

δY = [(a/gY)+(b/gY)(b/gY)Y/2]δz+(b/gY)δW. (31)

This FDE is equivalent to the SDE

Ẏ = (a+br)/gY, (32)

= fXẊ. (33)

The change-of-variables rule in Stratonovich calculus is the same as the deterministic rule.
Many SDEs resist solution by the change-of-variable method. However, it is sometimes pos-

sible to solve the FPEs associated with such SDEs. The derivation of these FPEs is based on
the Chapman–Kolmogorov equation [25]

P(x,δz) =
∫ ∞

−∞
T(δx,δz|x−δx,0)P(x−δx,0)d(δx), (34)

whereT is the transition-probability function and the initial position was denoted by 0 (rather
than z). Suppose thatX(0) has the valuex. ThenT(δx,δz|x,0)d(δx) is the probability that
X(δz) has a value betweenx+ δx andx+ δx+ d(δx). Becauseδx is a small increment (the
transition probability is only significant for small values ofδx), one can expand the integrand
TP in a Taylor series aboutx. The result is

P+δz∂zP ≈ P
∫ ∞

−∞
T(δx,δz)d(δx)

− ∂x

[
P

∫ ∞

−∞
δxT(δx,δz)d(δx)

]
+ ∂xx

[
P

∫ ∞

−∞
δx2T(δx,δz)d(δx)/2

]
, (35)

where the explicit dependence ofP andT onx andz= 0 was suppressed for simplicity of nota-
tion. For white noise the random contribution toδX is bδW [Eqs. (4) and (18)]. The increment
of a Wiener process (δW) has Gaussian statistics [25]. It follows from this fact and Eq. (18)
that the Ito transition probability

T(δx,δz) =
exp[−(δx−aδz)2/2b2δz]

(2πb2δz)1/2
. (36)

By substituting this formula in Eq. (35) one finds that the first integral is 1, the second isaδz
and the third isb2δz. By cancelling like terms one obtains the Ito FPE

∂zP =−∂x(aP)+∂xx(b2P)/2. (37)



For reference, notice that this derivation does not require the shape ofT to be known exactly:
The cumulative transition probability is always 1, and the mean and variance ofδX follow
directly from Eqs. (19) and (22), respectively.

If one repeats the preceding derivation, using Eqs. (24) and (25) instead of Eqs. (21) and
(23), one obtains the Stratonovich FPE

∂zP =−∂x[(a+b∂xb/2)P]+∂xx(b2P)/2, (38)

which one can rewrite in the canonical form

∂zP =−∂x(aP)+∂x[b∂x(bP)]/2. (39)

It is clear from Eqs. (37) and (38) that the Ito and Stratonovich FPEs associated with the
SDE (1) are formally distinct. However, for systems with additive noise the associated FPEs
are identical. [See the discussion after Eq. (25).] For such systems, letY be an arbitrary function
of X. Then the FPEs forP(y) are also identical. The proof of this statement is similar to the
derivations of the Ito and Stratonovich change-of-variables rules.

We end this section by noting another difference between the Ito and Stratonovich formula-
tions. Consider the ensemble average〈 f (X)r〉, wheref is an arbitrary function. At any position
z the quantityX depends on the noise emitted at all previous positions. The Ito formulation is
based on the assumption that noise emitted at positionz is not correlated with noise emitted at
any previous position, no matter how close. Consequently, in the Ito formulation

〈 f (X)r〉= 0 (40)

by assumption. In contrast, the Stratonovich formulation is based on the assumption that the
correlation distance of the noise is short, but finite. At any reference positionz= 0

X(0)≈ X(−δz)+b[X(−δz)]
∫ 0

−δz
r(z′)dz′, (41)

from which it follows that

〈 f [X(0)]r(0)〉 ≈ 〈 f [X(−δz)]r(0)〉+ f ′[X(−δz)]b[X(−δz)]
∫ 0

−δz
〈r(z′)r(0)〉dz′. (42)

Terms proportional toa, b′ and f ′′ were omitted from Eqs. (41) and (42) because they are of
higher order inδz. By assumption, the correlation distance of the noise is shorter thanδz, so
〈 f [X(−δz)]r(0)〉= 0. It follows from Eq. (14) that

∫ 0
−δz〈r(z′)r(0)〉dz′ = 1/2. Consequently, in

the Stratonovich formulation
〈 f (X)r〉= f ′(X)b(X)/2. (43)

Equations (40) and (43) are closely related to the finite-increment formulas (21) and (24). Sup-
pose that the SDE (1) is written in the forṁX = rx(X,z), whererx is the total rate of change. It
follows from the preceding results that in the Ito formulation

〈rx(z)〉= a(X), (44)

whereas in the Stratonovich formulation

〈rx(z)〉= a(X)+b′(X)b(X)/2. (45)

Let δ rx denote the deviatoric rate of changerx−〈rx〉. Then

〈δ rx(z)δ rx(z′)〉= b2(X)δ (z−z′). (46)

In the Ito formulation Eq. (46) is exact, whereas in the Stratonovich formulation it is approxi-
mate (non-delta-like terms of order 1 were omitted).



3. Energy equation

Light-wave propagation in a fiber is governed by the NSE [1, 2]

∂zA = [g(z)−α]A/2− iβ∂
2
ttA/2+ iγ|A|2A+R(z, t), (47)

where∂z = ∂/∂z, A is the (complex) electric-field amplitude,g is the amplifier gain rate,α, β

andγ are the fiber loss, dispersion and nonlinearity coefficients, respectively, andR is a random
driving (source) term that models the effects of amplifier noise. BecauseR is independent of
A, the noise is said to be additive. At each position the rate at which noise changes the ampli-
tude is a random function of time. Furthermore the rates of change at different positions are
independent. These properties are quantified by the equations

〈R(z, t)〉 = 0, (48)

〈R(z, t)R(z′, t ′)〉 = 0, (49)

〈R∗(z, t)R(z′, t ′)〉 = S(z)δ (z−z′)δ (t− t ′), (50)

where〈 〉 denotes an ensemble average andδ denotes a delta function. (Boldface was used to
distinguish the symbol for a delta function from the symbol for a small change in value.) The
source strengthS= nsph̄ωg, wherensp is the spontaneous noise factor (which has a typical
value in the range 1.1–1.3) and̄hω is the photon energy.

It is instructive to consider the noise energy that accumulates between the initial pointz= 0
and the neighboring pointz= δz, in the absence of a signal pulse. It follows from Eq. (47) that

δA =
∫

δz

0
R(z, t)dz+O(δz3/2). (51)

Let T be the bit period. Then the noise energy in a bit period is

δE =
∫ T/2

−T/2
|δA(t)|2dt. (52)

By combining formulas (51) and (52) one finds that the expected noise energy

〈δE〉=
∫ T/2

−T/2

∫
δz

0

∫
δz

0
〈R∗(z, t)R(z′, t)〉dz′dzdt. (53)

By using Eq. (50) to evaluate the integrals in Eq. (53), one finds that〈δE〉= SδzTδ (0). If one
tries to interpretδ (t) as the Dirac delta functionδD(t), one obtains the unphysical result that the
frequency bandwidth and energy of the noise are infinite. In real systems the noise bandwidth
and energy are limited by the (common) bandwidth of the amplifiers (or filters). Consequently,
one should interpretδ (t) as the delta-like functionFsinc(πFt), whereF is the amplifier (or
filter) bandwidth. By doing so, one obtains the physical result

〈δE〉= SδzFT, (54)

whereSδz is the energy per noise mode andFT is the number of modes [14, 15, 16].
In real systems the wavenumber bandwidth of the noise is also finite. However, when one

models the spatial evolution of the bit energy one can interpretδ (z) as the Dirac delta function
δD(z), and use Ito calculus, or one can interpretδ (z) as the delta-like functionKsinc(πKz),
whereK is the noise bandwidth, and use Stratonovich calculus. The former assumption implies
that the correlation distance of the noise is zero, whereas the latter assumption implies that the



correlation distance is short, but finite. We will illustrate both approaches in this section. The
required elements of stochastic calulus were reviewed in Section 2.

The total (signal and noise) energy in a bit period is

E =
∫ T/2

−T/2
|A(t)|2dt. (55)

The wave power depends quadratically onA. By applying the Ito change-of-variable rule [Eq.
(28)] to the real and imaginary parts of Eq. (47), combining the results and integrating the
transformed equation over a bit period, one can show that

dzE = [g(z)−α]E +S(z)FT +
∫ T/2

−T/2
[A∗(z, t)R(z, t)+A(z, t)R∗(z, t)]dt. (56)

The termSFT is present in Eq. (56) because the Ito rule differs from the deterministic rule. No
energy-flux terms are present. On average, the noise-energy flux at the time boundaries (−T/2
andT/2) is zero. The signal-energy flux can be neglected if the signal pulse is isolated (does
not interact with other pulses in the same channel or other channels).

Our goal is to rewrite Eq. (56) in the canonical form

dzE = a(E,z)+b(E,z)r(z), (57)

wherea andb are deterministic functions andr is a random driving term with unit strength
[〈r(z)〉 = 0 and〈r(z)r(z′)〉 = δ (z− z′)]. Henceforth, the explicit dependence ofa andb on z
will be suppressed. Letre denote the total rate of change of the bit energy [right side of Eq. (56)
or (57)] and letδ re denote the deviatoric rate of changere−〈re〉. Then, for an Ito SDE,re has
the canonical properties [Eqs. (44) and (46)]

〈re(z)〉 = a(E), (58)

〈δ re(z)δ re(z′)〉 = b2(E)δ (z−z′). (59)

One can deduce formulas fora andb by calculating the requisite moments of the right side of
Eq. (56). In the Ito formulation the correlation distance of the noise is zero andA(z, t) depends
only on the noise emitted at previous positions (z′ < z). It follows from these facts that

〈A∗(z, t)R(z, t)〉= 0. (60)

By applying this result to the right side of Eq. (56), one finds that

〈re(z)〉 = (g−α)E +SFT, (61)

〈δ re(z)δ re(z′)〉 = 2SEδ (z−z′). (62)

Thus, Eq. (56) is equivalent to the Ito SDE

dzE = (g−α)E +SFT+(2SE)1/2r(z), (63)

whereg andSdepend onz. Notice that the rate at which noise changes the bit energy depends
on the current energy. Equation (63) is valid for any combination of distributed and lumped
amplification.

The preceding description of the energy evolution is based on the Ito SDE (63) for the in-
dependent variableE. There is an alternative description, which is based on the PDF for the



independent variablee. Let P(e,z)de be the probability thatE(z) is in the range(e,e+ de).
Then [according to Eq. (37)] the energy PDF satisfies the Ito FPE

∂zP = (α−g)∂e(eP)−SFT∂eP+S∂
2
ee(eP). (64)

Now consider the Stratonovich analysis. It follows from Eqs. (47) and (55), and the
Stratonovich change-of-variable rule [Eq. (33)], that

dzE = [g(z)−α]E +
∫ T/2

−T/2
[A∗(z, t)R(z, t)+A(z, t)R∗(z, t)]dt. (65)

In contrast to Eq. (56), the termSFT is absent because the Stratonovich rule is the same as the
deterministic rule. Our goal is to rewrite Eq. (65) in the canonical form (57). For a Stratonovich
SDEre has the canonical properties [Eqs. (45) and (46)]

〈re(z)〉 = a(E)+b′(E)b(E)/2, (66)

〈δ re(z)δ re(z′)〉 = b2(E)δ (z−z′), (67)

whereb′ = ∂b/∂E and non-delta-like terms of order 1 were omitted. In the Stratonovich for-
mulation the correlation distance of the noise is short, but finite, andA(z, t) depends on the
noise emitted at all previous positions and the current position (z′ ≤ z). It follows from these
facts [and a short calculation similar to that which produced Eq. (43)] that

〈A∗(z, t)R(z, t)〉= SF/2. (68)

By applying this result to the right side of Eq. (65), one finds that

〈re(z)〉 = (g−α)E +SFT, (69)

〈δ re(z)δ re(z′)〉 = 2SEδ (z−z′). (70)

Thus, Eq. (65) is equivalent to the Stratonovich SDE

dzE = (g−α)E +S(FT−1/2)+(2SE)1/2r(z), (71)

whereg andSdepend onz. It follows from Eq. (71) [and Eq. (38)] that the energy PDF satisfies
the Stratonovich FPE

∂zP = (α−g)∂e(eP)−SFT∂eP+S∂
2
ee(eP). (72)

Although the Ito (63) and Stratonovich (71) SDEs differ slightly, the Ito (64) and Stratonovich
(72) FPEs are identical. This result was obtained because the noise term in the NSE (47) is
additive [see the discussion after Eq. (39)].

In this section the NSE was used to derive an (Ito or Stratonovich) SDE for the bit (pulse)
energy. Solitons in constant-dispersion systems are characterized by four shape parameters:
the energy, phase, frequency shift and time delay. Return-to-zero pulses in dispersion-managed
systems are characterized by the aforementioned shape parameters, together with the chirp and
width. By following a procedure similar to that described above (moment method), one can
derive a set of six coupled (Ito or Stratonovich) SDEs, one for each shape parameter. Not only
is energy jitter an important phenomenon in its own right, it is also a paradigm for a class of
jitter phenomena: Whatever mathematical tools and physical insights are developed in the study
of energy jitter can be applied to these other jitter phenomena.



4. Analysis of energy jitter

In the absence of noise the energy is constant. In the presence of noise it undergoes a random
walk. For the purposes of illustration, it is enough to consider systems with UDA (g = α). The
effects of NDA (g 6= α) will be discussed in Section 6. LetE0 denote the initial pulse energy,
and letX = E/E0, µ = FT andζ = Sz/E0 denote the normalized bit energy, mode number
and normalized distance, respectively. Then, for systems with UDA, the normalized energy is
governed by the Ito SDE

dζ X = µ +(2X)1/2r(ζ ), (73)

wherer is a random driving term with unit strength. (In the Stratonovich SDE the parameter
µ is replaced byµ − 1/2.) By definition, the initial condition isX(0) = 1. Equation (73) is
difficult to solve exactly.

For systems with high signal-to-noise ratios, the probability thatX differs significantly from
1 is small. By making the (standard) approximationX1/2 ≈ 1 in Eq. (73), one obtains the
linearized equation

dζ X ≈ µ +21/2r(ζ ). (74)

Equation (74) definesX (approximately) as a Gauss (normal) random variable with meanmn =
1+ µζ and variancevn = 2ζ . The associated PDF is

P(x,ζ )≈ exp[−(x−mn)2/2vn]/(2πvn)1/2. (75)

(From a logical standpoint the PDF of the non-negative quantityX cannot be exactly Gaussian,
because, if it were, the probability ofX < 0 would be finite for allζ > 0. From a practical
standpoint this inconsistency is tolerable if the probability ofX < 0 is exponentially small for
system lengths of interest.)

For example, consider a 10-Gb/s system with UDA,α = 0.21 dB/Km,β = −0.30 ps2/Km
(D = 0.38 ps/Km-nm) andγ = 1.7/Km-W. Then a soliton (sech pulse) with a full-width at
half-maximum of 30 ps has an input energy of 21 fJ (time-averaged power of 0.21 mW). If
the system lengthl = 10 Mm, the output noise power in both polarizations, in a frequency
bandwidth of 12 GHz (wavelength bandwidth of 0.1 nm), is 1.7µW: The (optical) signal-
to-noise ratio (SNR) is 21 dB. (Systems with NDA produce the same noise power in shorter
distances.) For this system the normalized output-energy variance 2Sl/E0 is 6.6×10−3 and the
output-energy deviation is 8.1×10−2.

Although the standard approximation facilitates the solution of Eq. (73), it constrains the
associated PDF (75) to be a symmetric function ofx (relative to the mean value). Equation (73)
definesX as the sum of independent random increments. Because the size of each increment
depends on the current value ofX, the actual PDF cannot be a symmetric function ofx. Thus,
the standard approximation is inadequate. One can remove the coefficientX1/2 from the random
term in Eq. (73) by making the change of variablesY = X1/2, in which case

dζY = µ/Y + r(ζ )/21/2, (76)

whereµ = (2µ −1)/4. By making the approximationY ≈ 1 in the drift term, one obtains the
linearized equation

dζY ≈ µ + r(ζ )/21/2. (77)

Equation (77) definesY (approximately) as a normal random variable with meanmn = 1+ µζ

and variancevn = ζ/2. It follows from this result thatX is a non-central chi-squared random
variable with meanmx = m2

n + vn and variancevx = 2v2
n + 4m2

nvn [27]. For the process under
considerationmx ≈ 1+ µζ andvx ≈ 2ζ . The associated PDF can be written approximately as

P(x,ζ )≈ exp[−(x1/2−mn)2/2vn]/(8πxvn)1/2. (78)



Formula (78) exhibits clearly the asymmetric and non-Gaussian nature of the energy PDF.
However, its accuracy remains to be determined.

Equation (73) and the initial conditionX(0) = 1 are equivalent to the FPE

∂ζ P =−µ∂xP+∂
2
xx(xP) (79)

and the initial conditionP(x,0) = δ (x−1). The moments ofx are defined by the formula

〈xn(ζ )〉=
∫ ∞

0
xnP(x,ζ )dζ . (80)

By multiplying Eq. (75) byx andx2, and integrating by parts, one can show that

dζ 〈x〉 = µ, (81)

dζ 〈x2〉 = 2(1+ µ)〈x〉, (82)

from which it follows that the mean is 1+ µζ and the variance is 2ζ + µζ 2 ≈ 2ζ . For typi-
cal systemsζ 2 ∼ 10−5, so the approximate PDF (78) predicts the energy mean and variance
accurately.

Because the diffusion term in Eq. (79) involves the first power ofx, one can solve Eq. (79)
by Laplace transforming inx, making thea priori assumption thatP(0,ζ ) = 0, and using the
method of characteristics to solve the transformed equation. The result is

P(s,ζ ) =
exp[−s/(1+sζ )]

(1+sζ )µ
. (83)

Solution (83) is also called the moment generating function [27], because

〈xn(ζ )〉= (−1)n lim
s→0

dnP(s,ζ )/dsn. (84)

It follows from Eqs. (83) and (84) that the mean and variance of the PDF are 1+ µζ and
2ζ + µζ 2, respectively, in agreement with the moment results. One can invert the transformed
solution by rewriting the numerator as exp(−1/ζ )exp[1/(ζ 2s+ζ )]. By using the shift theorem
and the relation [28]

exp(k/s)/sµ → (x/k)(µ−1)/2Iµ−1[2(kx)1/2], (85)

whereIn(z) is the modified Bessel function of ordern, one finds that

P(x,ζ ) = [x(µ−1)/2/ζ ]exp[−(1+x)/ζ ]Iµ−1(2x1/2/ζ ). (86)

Notice thatP(0,ζ ) = 0, as assumed. For short distances, one can use the relationIn(z) ∼
exp(z)/(2πz)1/2 asz→ ∞ to rewrite solution (86) as

P(x, t)≈ xµ/2exp[−(x1/2−1)2/ζ ]
(4πx3/2ζ )1/2

. (87)

The similarities between formulas (78) and (87) are evident. [The main effect of the termxµ/2

in formula (87) is to shift the mean from 1 to 1+ µζ .]
One can also use a Sturm–Liouville expansion to solve the FPE (79). Consider the evolution

of the conditional probabilityP(x,ζ |x0,0) of observing the valuex at the positionζ , provided
thatx0 was observed atζ = 0. (In this context one should consider the normalization energyE0

as a reference energy rather than the initial energy.) The conditional PDF satisfies the forward



FPE (79) with respect to the variablex. Moreover, it can be shown [25], similarly to Section 2,
that the backward FPE (or backward Kolmogorov equation), whichP(x,ζ |x0,0) satisfies with
respect tox0, has the form of the equation adjoint to (79). Specifically,

∂ζ P = (µ−2)∂x0P+∂
2
x0x0

(x0P). (88)

The initial condition for Eqs. (79) and (88) is

P(x,0|x0,0) = δ (x−x0). (89)

The boundary conditions belong to the natural type in the Gikhman–Skorokhod classification
[29], which means that one should not and cannot specify such conditions. However, one can
impose the normalization conditions∫ ∞

0
P(x,ζ |x0,0)dx= 1 =

∫ ∞

0
P(x,ζ |x0,0)dx0. (90)

Further discussion of the natural boundary conditions can be found in [30]. We will point out
issues relevant to our analysis as we proceed.

Following [29], we seek the solution to Eqs. (79) and (88) in the form

P(x,ζ |x0,0) =
∫ ∞

0
exp(−λζ )p(x,λ )p̃(x0,λ )dλ , (91)

wherep(x,λ ) andp̃(x0,λ ) are the original and adjoint eigenfunctions, which satisfy the related
eigenvalue equations

xd2
xxp− (µ−2)dxp = λ p, (92)

d2
xx(xp̃)+(µ−2)dx p̃ = λ p̃. (93)

According to the standard Sturm–Liouville theory of second-order differential operators, these
eigenfunctions form a bi-orthogonal set satisfying the orthogonality relation∫ ∞

0
p(x,λ )p̃(x,λ ′)dx= δ (λ −λ

′). (94)

It is the existence of the integral in Eq. (94) that plays the role of the boundary conditions for
Eqs. (92) and (93) [30]. One can also show thatp and p̃ are related by the simple equation

p(x,λ ) = q(x)p̃(x,λ ), (95)

whereq(x) is the particular (but not necessarily normalizable) solution of the FPE (79) satisfy-
ing

dx(xq)−µq = 0. (96)

In order that a function satisfying condition (90) be representable in the form of expansion
(91), the sets of eigenfunctionsp(x,λ ) andp̃(x,λ ) must be complete. The completeness relation
has the form ∫ ∞

0
p(x,λ )p̃(x′,λ )dλ = δ (x−x′). (97)

Indeed, if Eq. (97) is satisfied andf (x) is any function for which the following integrals exist,
then

f (x) =
∫ ∞

0
δ (x−x′) f (x′)dx′, (98)

=
∫ ∞

0
c(λ )p(x,λ )dλ , wherec(λ ) =

∫ ∞

0
f (x′)p̃(x′,λ )dx′, (99)

=
∫ ∞

0
c̃(λ )p̃(x,λ )dλ , wherec̃(λ ) =

∫ ∞

0
f (x′)p(x′,λ )dx′. (100)



Equations (98)–(100) are consistent with Eqs. (91) and (94). For a standard Sturm–Liouville
problem, in which the operator has real coefficients, the completeness relation (97) is known to
hold in a certain functional space [29, 31]. In more general problems, which might occur for
multi-variable FPEs, the completeness relations of the eigenfunctions must be established on
a case-by-case basis [30]. As we will show shortly, in the case of Eqs. (92) and (93), together
with the boundary conditions stated after Eq. (94), the completeness relation (97) is equivalent
to the orthogonality relation (94). We reiterate that, in general, the completeness relation has to
be established independently in order to justify the eigenfunction expansion (91).

We now return to the derivation of the conditional PDF. The eigenvalue problem (92)–(94)
has the well-known solution

p(x,λ ) = x(µ−1)/2J|µ−1|[2(λx)1/2], (101)

p̃(x,λ ) = x(1−µ)/2J|µ−1|[2(λx)1/2], (102)

where Jn(z) is the Bessel function of ordern. The completeness relation for the eigen-
functions (101) and (102) follows from the orthogonality relation (94), because the argu-
ments of the Bessel functions depend symmetrically onλ and x. Notice that the functions
x(µ−1)/2N|µ−1|[2(λx)1/2], whereNn(z) is the Neumann function of ordern, also solve (92)
and are bounded atx = 0. However, they are not included in the set of eigenfunctionsp(x,λ )
because they are not required for completeness. Notice also that forµ > 3/2 the individual
eigenfunctionsp(x,λ ) are not normalizable due to their divergence atx = ∞. This behavior
does not invalidate expansion (91), but does make its convergence non-uniform inζ : One can-
not interchange the limitsx→∞ andζ →∞ in the resulting solution [31]. By substituting Eqs.
(101) and (102) into Eq. (91), and using the relation [32]∫ ∞

0
exp(−γ

2u2)Jn(αu)Jn(βu)udu= exp[−(α2 +β
2)/4γ

2]In(αβ/2γ
2)/2γ

2, (103)

one finds that

P(x,ζ |x0,0) = (x/x0)(µ−1)/2exp[−(x0 +x)/ζ ]Iµ−1[2(x0x)1/2/ζ ]/ζ . (104)

Even though we did not impose boundary conditions on Eqs. (79) and (88), the eigenfunctions
(101) and the solution (104) satisfy the condition of vanishing probability flux,

−µP+∂x(xP) = 0, (105)

at the boundariesx = 0 andx = ∞. Not only does the Sturm–Liouville analysis validate the
Laplace-transform analysis (x0 = 1), it also obviates the need fora priori boundary conditions.

Solution (104) is identical to the solution obtained in previous studies [14, 15, 16] by a
different approach. We expect that the approach presented herein, which is based on a FPE, can
be generalized in a straightforward way to obtain the PDFs of other pulse parameters.

Energy PDFs are plotted in Fig. 1 forµ = 5 andζ = 3.3×10−3, which correspond to the
physical parameters described in Section 3. The solid, dot-dashed and dashed curves represent
the exact PDF (86), the approximate PDF (78) and the Gauss PDF (75), respectively. All three
PDFs have (approximately) the same mean and variance. When plotted on a linear scale (Fig.
1a), the differences between the PDFs are barely perceptible. When plotted on a logarithmic
scale (Fig. 1b), it is clear that the exact and approximate PDFs have enhanced high-energy tails
and diminished low-energy tails relative to the Gauss PDF. In particular, at high energies these
(logarithmic) PDFs decrease linearly with energy, rather than quadratically [20]. To compensate
for this distortion, their peaks of are shifted to slightly lower energies (Fig. 1a). For the stated
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Fig. 1. PDFs for the normalized energyE/E0. The solid, dot-dashed and dashed curves rep-
resent the exact PDF (86), the approximate PDF (78) and Gauss PDF (75), respectively. The
differences between the exact and approximate PDFs are barely perceptible. Because the
noise-induced energy perturbations depend on the pulse energy, the exact and approximate
PDFs (which account for this dependence) have enhanced high-energy tails and diminished
low-energy tails relative to the Gauss PDF (which does not).

parameters, the differences between the exact and approximate PDFs are insignificant. The
probability of observing the low (normalized) energyX = 0.5 is about three orders of magnitude
smaller than that predicted by the Gauss PDF and the probability of observing the high energy
X = 1.5 is about two orders of magnitude larger. As the energy deviation|E−E0| increases,
so also do the differences between the PDFs. These results show the danger of using Gaussian
statistics to predict system performance.

In the past, the Gauss approximation was made often to facilitate predictions of bit-error-
ratios (BERs). For ASK systems, or DPSK systems with unbalanced detectors, the Gauss ap-
proximation predicts BERs that are correct to within an order of magnitude [14, 15, 16, 33].
However, this agreement is fortuitous: The Gauss approximation overestimates the probability
of a 1 by several orders of magnitude (Fig. 1b), but underestimates the probability of a 0 by
a similar amount, and the two errors cancel. For DPSK systems with balanced detectors the
Gauss approximation overestimates the BER by several orders of magnitude [33].

5. Simulation of energy jitter

One can verify the results of Section 4 by solving the FPE (79) numerically. We did so by
using the Crank–Nicholson (CN) scheme [34], which is the standard finite-difference scheme
for diffusion equations.

One can also simulate energy jitter by solving the SDE (73) numerically, and using a random-
number generator to specify the noise increments. We will discuss finite-difference schemes for
the general SDE (1). Schemes for the energy SDE are special cases of the general schemes.

If one applies the Euler scheme to Eq. (1), one obtains the FDE

Xn+1 = Xn +a(Xn)δz+b(Xn)δWn+1, (106)

where the subscriptn denotes the distancenδz. The noise increments have zero mean and
satisfy the correlation equation

〈δWmδWn〉= δzδ mn, (107)

whereδ mn is the Kronecker delta function. It follows from Eqs. (106) and (107) thatδWn+1 is
not correlated withXn. Equation (106) is the Ito FDE (26).



In contrast, if one applies the Heun (predictor-corrector) scheme to Eq. (1), one obtains the
coupled FDEs

Xp
n+1 = Xn +a(Xn)δz+b(Xn)δWn+1, (108)

Xc
n+1 = Xn +[a(Xn)+a(Xp

n+1)]δz/2

+ [b(Xn)+b(Xp
n+1)]δWn+1/2. (109)

By using Eq. (108) to approximate the predicted terms in Eq. (109), one finds that

Xc
n+1 ≈ Xn +anδz+(bn +b′nbnδWn+1/2)δWn+1. (110)

Let δXn+1 = Xc
n+1−Xn. Then it follows from Eqs. (107) and (110) that

〈δXn+1〉 ≈ (an +b′nbn/2)δz, (111)

〈δX2
n+1〉 ≈ b2

nδz. (112)

Thus, the Heun scheme is equivalent to the FDE

Xn+1 = Xn +(an +b′nbn/2)δz+bnδWn+1. (113)

Equation (113) is the Stratonovich FDE (29).
Although the Heun scheme provides the means to simulate energy jitter in a manner that is

consistent with the Stratonovich formulation, it was motivated by mathematical considerations
(numerical accuracy), rather than physical considerations. One can also derive a Stratonovich
scheme from Eq. (106), by modifying the properties of the noise increments in accordance with
the discussion of Section 3 [Eq. (14)]. However, to do so accurately requires that each increment
be correlated with many of its neighboring increments: The scheme that results is physically
motivated, but cumbersome.

For some stochastic processes the Stratonovich SDE occurs naturally, whereas for others the
Ito SDE occurs naturally. The Heun scheme for the former is more accurate than the Euler
scheme for the latter [34]. If higher accuracy is required for an Ito SDE, one can convert it to
the equivalent Stratonovich SDE (which has a different drift term) and apply the Heun scheme
to the latter.
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Fig. 2. PDFs for the normalized energyE/E0. The solid curve represents the analytical
solution (86), whereas the dashed curve represents the numerical solution of the FPE (79)
and the dots represent the results of importance-sampled simulations based on the FDE
(113).

Energy PDFs are plotted in Fig. 2 forµ = 5 andζ = 3.3×10−3, which correspond to the
physical parameters described in Section 3. The solid curve denotes the analytical solution (86),



whereas the dashed curve denotes the numerical solution of the FPE (79) and the dots represent
the results of numerical simulations based on the Stratonovich FDE (113), witha= µ−1/2 and
b = (2X)1/2, and the correlation equation (107). The simulations were made with an ensemble
of 3×106 pulses. Importance sampling [22, 23] was used to improve the simulation statistics
(measure the probabilities of rare energy perturbations accurately). There is excellent agreement
between the analytical predictions and the numerical results. Simulations of energy jitter in
systems with lumped amplification were made recently by Moore [22]. There was excellent
agreement between the numerical solutions of the energy SDE and the NSE, on which the
energy SDE is based. Thus, there is no reason to doubt the accuracy of formula (86) for (model)
systems with UDA.

6. Effects of nonuniformly-distributed amplification

For systems with NDA, the normalized energyX = E/E(0) is governed by the Ito SDE

dzX = µσx(z)+ν(z)X +[2σx(z)X]1/2r(z), (114)

wherer is a random driving term with unit strength. The excess gain rateν(z) = g(z)−α and
the source strength

σx(z) = nsph̄ωg(z)/E(0) (115)

both depend onz.
In the absence of noise the energy varies periodically with distance (oscillates). The spatial

periodl is the distance between the Raman pumps (or the Erbium amplifiers). In the presence
of noise the energy undergoes an oscillatory random walk. Energy decision thresholds (for the
detection of 1s) are defined as fractions of the mean energy. In the context of such thresholds,
what is important is not the absolute energy variance, but the relative energy variance (which
is measured relative to the mean energy). Thus, one can simplify the mathematical analysis of
energy jitter and clarify the physical significance of the results by writing the energy variable
as a product of oscillatory and non-oscillatory factors. LetX = Yexp

[∫ z
0 ν(z′)dz′

]
. Then the

modified energyY is governed by the equation

dzY = µσy(z)+ [2σy(z)Y]1/2r(z), (116)

where the modified source strength

σy(z) = [nsph̄ω/E(0)]g(z)e−
∫ z
0 ν(z′)dz′ . (117)

Equation (116) is similar to Eq. (73). However, for systems with NDA, the source strength
(117) oscillates. One can account for these oscillations by defining the dimensionless distance
variable

ζ (z) =
∫ z

0
σy(z′)dz′. (118)

By using the fact thatδ (z− z′)/dzζ = δ (ζ − ζ ′), one can rewrite Eq. (116) in the canonical
form

dζY = µ +(2Y)1/2r(ζ ). (119)

Equation (119) is identical to Eq. (73): The modified energy in systems with NDA evolves in
the same way as the absolute energy in systems with UDA. Because the modified and absolute
energies only differ by a scale factor, their PDFs are similar: One can apply the results of
Section 4 to systems with NDA, provided that one modifies the definition ofζ and rescales the
energy variable.



Comparisons of different nonlinear systems are usually based on the equality of path-
averaged energies. For systems with UDA, the path-averaged energyEa equals the input en-
ergyE(0) and the path-averaged source strengthσa = (nsph̄ωα/Ea). For systems with NDA,
the path-averaged energy

Ea = E(0)
∫ l

0
e

∫ z
0 ν(z′)dz′dz

/
l . (120)

It follows from Eq. (118) that the distance increment

ζ (l) = σa

∫ l

0
e

∫ z
0 ν(z′)dz′dz

∫ l

0
e−

∫ z
0 ν(z′)dz′dz

/
l . (121)

For typical system parameters, energy jitter grows on a (long) distance scale of order 1 Mm,
whereas the (short) distance between pumps (amplifier spacing) is of order 0.1 Mm. In the
context of energy jitter, the slow (but steady) accumulation of the distance increments is more
important than the (small) rapid oscillations inζ , so one can make the approximation

ζ (z)≈ ρσaz, (122)

where the (dimensionless) ratioρ is the product of the integrals in Eq. (121) divided byl2. It
follows from this definition thatρ ≥ 1, which reflects the fact that NDA produces more noise
than UDA.

For example, consider a 10-Gb/s system withα = 0.21 dB/Km,β = −0.30 ps2/Km (D =
0.38 ps/Km-nm),γ = 1.7/Km-W and backward Raman amplification. The gain rate

g(z)≈
αpα l exp[αpmod(z, l)]

exp(αpl)−1
, (123)

whereαp = 0.25 dB/Km is the fiber loss rate at the pump wavelength. A soliton with a full-
width at half-maximum of 30 ps has a path-averaged energy of 21 fJ and an input energy of 75
fJ (time-averaged input power of 0.75 mW). If the system lengthl = 5 Mm the output noise
power in both polarizations, in a frequency bandwidth of 12 GHz (wavelength bandwidth of
0.1 nm), is 5.4µW: The (optical) SNR is 21 dB. (The SNR of this 5-Mm system with NDA is
comparable to the SNR of the 10-Mm system with UDA that was discussed in Section 4.)
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Fig. 3. Mean and variance of the normalized energyE/E(0) plotted as functions of dis-
tance. The curves were obtained by solving Eqs. (124) and (125) numerically.

The mean and variance of the normalized energyX are plotted as functions of distance in
Fig. 3 for the aforementioned physical parameters andµ = 5. One can determine the mean and
variance by using the formulas of Section 4, and evaluating the scale factor exp

[∫ z
0 ν(z′)dz′

]



and the distance variableζ numerically. One can also determine them by solving numerically
the moment equations

dzmx = ν(z)mx + µσx(z), (124)

dzvx = 2ν(z)vx +2σx(z)mx, (125)

which follow from Eq. (114) and the associated FPE. We used the latter approach. It is clear
from the figure that the oscillations in excess-gain cause the mean energy to oscillate and the en-
ergy variance to oscillate as it grows. These large oscillations obscure the underlying simplicity
of the energy-jitter phenomenon.
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Fig. 4. Relative energy variance plotted as a function of distance. The solid curve was
obtained by solving Eqs. (124) and (125) numerically, whereas the dashed line was obtained
from an approximate analytical formula.

The variance of the modified energyY is plotted as a function of distance in Fig. 4. The solid
curve was obtained by solving Eqs. (124) and (125) numerically, whereas the dashed line was
obtained from the formulavy = 2ζ + µζ 2. The distance variableζ was evaluated by using Eq.
(122), with ρ = 1.8. As stated above, the oscillations inζ and (hence)vy are small: From a
practical standpointvy grows monotonically.

7. Summary

There are two ways to model stochastic (noisy) processes. The first involves a stochastic dif-
ferential equation (SDE) for the physical quantityX, in whichX is the dependent variable. The
second involves a probability-diffusion, or Fokker-Planck, equation (FPE) for the probability-
density function (PDF)P(x), in whichx is an independent variable. This paper contained brief
descriptions of stochastic calculus, which facilitates the solution of SDEs, and the relation be-
tween SDEs and their associated FPEs, for which many solution methods exist. The Ito for-
mulation is based on the assumption that the correlation-time of the noise is zero, whereas the
Stratonovich formulation is based on the complementary assumption that the correlation-time
is nonzero, but short. Both formulations were described.

A detailed study was made of energy jitter in optical communication systems. The nonlin-
ear Schr̈odinger equation (NSE), which governs light-wave propagation in a fiber, was used to
derive exact (Ito and Stratonovich) SDEs for the energy of an isolated bit (pulse and noise).
Because the rate at which amplifier noise changes the bit energy depends on the current en-
ergy, these SDEs are nonlinear (multiplicative noise) and their (common) associated FPE has
variable coefficients. The linearized SDE (additive noise) predicts that the energy PDF is Gaus-
sian. Accurate formulas for the energy PDF were obtained from the nonlinear SDEs and their



associated FPE. For typical system parameters (which were listed in Secs. 4 and 6) the actual
PDF differs significantly from the Gauss PDF. LetE0 be the (unperturbed) output energy in a
noiseless system and letE be the (perturbed) output energy in a noisy system. Then the prob-
ability of observing the low energyE = 0.5E0 is about three orders of magnitude smaller than
that predicted by the Gauss PDF and the probability of observing the high energyE = 1.5E0

is about two orders of magnitude larger: One cannot predict system performance accurately by
linearizing the energy SDE (assuming Gaussian statistics). Reduced low-energy probabilities
bode well for ASK systems (because the receiver eyes are closed by low energies, which are
less likely), whereas increased high-energy probabilities bode ill for DPSK systems [because
energy (power) jitter drives phase jitter and phase shifts of either sign close the receiver eyes.]

In (idealized) systems with uniformly-distributed amplification (UDA) the energy variance
increases monotonically with distance. In systems with nonuniformly-distributed amplification
(NDA) the absolute energy variance oscillates as it grows. However, the relative energy variance
(which is measured relative to the mean energy) grows monotonically. The (relative) growth rate
in systems with NDA is higher than the (absolute) growth rate in systems with UDA because
more noise is emitted in the former.

Finally, the mathematical methods and physical insights developed in this study of energy
jitter can be applied to studies of other jitter phenomena (such as arrival-time and phase jitter).


