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Polarization-mode dispersion of a circulating loop
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We derive an analytic expression for the evolution of the differential group delay (DGD) in a fiber-optic circu-
lating loop. We distill a simple analytic solution for the average DGD and show that it accumulates approxi-
mately linearly with transmission distance. The scaling of this linear function is confirmed experimentally
using a long-haul fiber-optic transmission test-bed. This result is contrasted with DGD accumulation in a
long straight-line transmission system, where the average DGD accumulates as a square root of the system’s
length. © 2004 Optical Society of America
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1. INTRODUCTION
Polarization-mode dispersion (PMD) is one of the main
factors limiting fiber-optic transmission at 40 Gb/s over
distances of a thousand kilometers and longer. First-
order PMD splits the pulse into two orthogonally polar-
ized components that are delayed relative to each other.1

The differential group delay (DGD) between these compo-
nents can often be directly related to the transmission
penalty occurring due to PMD.2 Moreover, the mean
DGD uniquely determines the statistics of all orders of
PMD.3–6 In an actual transmission link of length L, the
mean DGD is known to grow as AL and have a Maxwell-
ian probability distribution.

However, the main tool of testing transmission perfor-
mance in a laboratory is a circulating loop (CL), where the
signal passes through the same loop of fiber several times
before being detected. In most instances, CL system
tests are performed without polarization scrambling from
one loop passage to the next, and hence the polarization
state of the signal undergoes the same transformation af-
ter each passage. For this situation, numerical simula-
tions showed7 nearly linear dependence of the mean DGD
on the number of passages over the CL (or, equivalently,
on the total transmission distance). To emulate a
straight-line system by restoring a square-root depen-
dence of the average DGD on the propagation distance,
the authors of Ref. 7 proposed to scramble the polariza-
tion of the signal at the beginning of each circulation. Ref-
erence 8 reports experimental measurements suggesting
that the PMD affects the bit error rate (BER) of a CL-
based transmission system much stronger than it would
in a straight-line system. Experimental results reported
in Ref. 8 also show that scrambling the signal’s polariza-
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tion after each circulation restores the bit-error-rate prob-
ability distribution to that expected for a straight-line
system.

In Section 2 of this paper, we use the Jones matrix ap-
proach to derive analytical expressions for both a particu-
lar realization and the mean value of the DGD of a CL
without polarization scrambling and confirm that, for
more than four or five passages around the loop, the mean
DGD scales almost linearly with distance. We carry out
the analysis without taking into account possible
polarization-dependent loss of the CL, assuming that it is
sufficiently small.

In Section 3, we present results of experimental mea-
surements of PMD of a CL, which confirm the above the-
oretical derivation. Although many different techniques
exist to quantitatively assess PMD in a device,9 most of
them cannot be efficiently used in a CL. Techniques
based on the propagation of a broadband source signal in
the device under test, or the wide tuning of a cw source,
are compromised by spectral shaping either outside the
loop (for example, by a multiplexer and demultiplexer) or
inside the loop (by the spectral dependence of the gain of
the amplifiers and the gain-equalization filters). There-
fore the DGD in a CL must be obtained from a spectrally
narrow-band measurement. Also, when one considers
the photons at the output of the loop, different instants in
time correspond to different number of circulations in the
loop. Therefore any measurement technique must tem-
porally resolve the signal at the output of the loop. In ad-
dition, the measurement of DGD must be performed
faster than the time for significant changes of the polar-
ization state of the system under test. The approach that
we used and that we describe in detail in Section 3 meets
2004 Optical Society of America
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all of the aforementioned requirements. We also experi-
mentally confirm both the almost linear and square-root
dependences of the average DGD on the number of circu-
lations for the respective cases where the signal’s polar-
ization is not, and is, scrambled after each circulation
around the loop.

In Section 4, we provide an intuitive explanation of the
almost linear dependence of the average DGD on the
number of circulations in a loop without polarization
scrambling. We also point to an implication that our re-
sults have for the statistics of higher orders of PMD in a
CL.

2. THEORY
Let the two-component electric field vector Ein(v) be a
continuous-wave input to the CL, and Eout(v) be the out-
put after one passage around the loop. Then Eout(v)
5 T(v)Ein(v), where T(v) is the loop’s frequency-
dependent transfer matrix. (Below we omit the explicit
dependence of quantities on v.) Since we ignore
polarization-dependent loss, T is a unitary matrix, i.e.,
T1 5 T21, where the superscript 1 stands for Hermitian
conjugation. As was shown in the original work by Poole
and Wagner,1 the eigenvalue problem

@T21T8 2 it1#e1 5 0 (1)

determines the polarization of, and a DGD between, the
two components into which an input pulse is split by
PMD. Namely, the two eigenvectors, e11 and e12 , deter-
mine the polarization of those components, while the dif-
ference between their eigenvalues, (t11 2 t12), equals
the DGD. In Eq. (1), T8 [ dT/dv, and we use the sub-
script ‘‘1’’ to denote quantities pertaining to one passage
around the CL. One can show that the eigenvectors e16

of Eq. (1), referred to as principal states of polarization,
are orthogonal, and t11 5 2t12 [ t1 .1 We refer to the
matrix T21T8 as the PMD matrix of (one circulation
about) the loop.

Our goal is to find the DGD after N passages around
the CL, i.e., 2tN [ (tN1 2 tN2), where tN6 are the eigen-
values of

@~TN!21~TN!8 2 itN#eN 5 0. (2)

Equation (2) can be rewritten as

@~T2~N21 !~T21T8!TN21 1 T2~N22 !~T21T8!TN22

1 ¯ 1 T21T8) 2 itN]eN 5 0. (3)

Each term of the form T2k(T21T8)Tk in Eq. (3) has eigen-
vectors vk6 5 T2ke16 , whence one can deduce that that
term represents a contribution of the kth passage around
the loop to the total PMD matrix (TN)21(TN)8. In order
to compute this contribution, one needs to know how the
rotation matrix T transforms the principal states of polar-
ization e16 . To this end, we first introduce eigenvectors
of T that satisfy Tt6 5 l6t6 . The most general form of
the unitary matrix T is

T 5 F cos w exp~iu1! 2sin w exp~iu2!

sin w exp~2iu2! cos w exp~2iu1!
G , (4)
with its eigenvalues being l6 5 cos u1 cos w
6 iA1 2 cos2 u1 cos2 w. One can show by direct calcula-
tion that t1 and t2 are orthogonal: t1* • t2 5 0. Thus
we have two sets of orthogonal pairs of vectors: e6 and
t6 , of which the former are the principal states of polar-
ization and the latter are the eigenvectors, of the CL.
They can be related by a unitary transformation F:

~e11 , e12! 5 ~t1 , t2!F, (5a)

~t1 , t2! 5 ~e11 , e12!F1. (5b)

Since F is unitary, it can be written in a form similar to T:

F 5 F cos j exp~ic1! 2sin j exp~ic2!

sin j exp~2ic2! cos j exp~2ic1!
G . (6)

It is an easy matter to show that (2j) equals the angle be-
tween the PMD vector and the loop eigenvector on the
Poincaré sphere.

We now expand the input field as Ein 5 E1t1 1 E2t2 ,
where E6 are the expansion coefficients. Substituting
this equation into Eq. (3) and using the definition of t6 ,
one finds

E1@~T2~N21 !~T21T8!l1
N21 1 T2~N22 !~T21T8!l1

N22

1 ¯ 1 T21T8!#t1 1 E2@~T2~N21 !~T21T8!l 2
N21

1 T2~N22 !~T21T8!l 2
N22 1 ¯ 1 T21T8!#t2

5 itN~E1t1 1 E2t2!. (7)

Now, in each term on the left-hand side of Eq. (7), there is
a product of the form T2m(T21T8), with 0 < m < N
2 1, acting on t6 . Therefore it is convenient to use Eq.
(5b) to expand t6 over the basis of the matrix T21T8 [see
Eq. (1)] and then use the inverse relation, Eq. (5a), to
switch back to the basis of the matrix T2m. Implement-
ing these steps and using Eq. (6), we find

it1FE1N cos 2j 1 E2

1 2 exp~iLN !

1 2 exp~iL!

3 exp~ic!sin 2jGt1 2 it1FE2N cos 2j

2 E1S 1 2 exp~iLN !

1 2 exp~iL!
exp~ic!D *

sin 2jGt2

5 itN~E1t1 1 E2t2!, (8)

where exp(iL) [ l2 /l1 (or, equivalently, cos L/2
5 cos u1 cos w) and c 5 c1 1 c2 . Equation (8) yields a
system of two scalar homogeneous equations on the coef-
ficients E6 , from which both their ratio and the eigen-
value tN can be determined. For the latter, we find

tN
2 5 t1

2FN2 cos2 2j 1 sin2 2j
sin2~NL/2!

sin2~L/2!
G . (9)

Equation (9) determines a relation between the DGDs,
2tN and 2t1 , of N passages and a single passage around
the CL for a particular realization of the loop’s transfer
matrix T. We note that the same result could also be ob-
tained using the PMD concatenation rule of Ref. 10.
That reference uses the Muller matrix representation for
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rotation of (real-valued, three-component) Stokes vectors
on the Poincaré sphere, whereas our analysis uses Jones
matrices to represent rotations in the space of complex-
valued, two-component vectors of polarized electric fields.

We now proceed to calculation of the average of the
right-hand side of Eq. (9). It contains three random
quantities: t1 , j, and L. Recall that L depends only on
the transfer matrix T, while t1 and j, characterizing the
magnitude and direction of the loop’s PMD vector, depend
on T21T8. Therefore t1 are j are statistically indepen-
dent of L, because T8, and hence the product T21T8, are
independent of T itself. Furthermore, although the mag-
nitude and direction of the PMD vector are not exactly in-
dependent of each other,11 their interdependence can be
ignored for all practically interesting situations. There-
fore in what follows, we treat t1 , j, and L as independent
random variables.

Since the PMD vector attains the uniform distribution
over the Poincaré sphere for transmission distances
longer than a few kilometers, the two angles that charac-
terize it, 2j and c 5 c1 1 c2 , have probability distribu-
tions p(2j) 5 1/2 sin 2j, 0 < 2j , p, and p( c)
5 1/(2p), 0 < c , 2p (see, e.g., Ref. 12). That is, an
average of any function f(2j, c) is calculated as

^ f~2j, c!& 5
1

4p
E

0

2p

dcE
2j50

2j5p

d~2j!sin 2jf~2j, c!.

(10)

Therefore ^cos2 2j& 5 1/3, ^sin2 2j& 5 2/3. It was recently
shown that the Stokes vector describing the transfer ma-
trix T is also uniformly distributed on the Poincaré
sphere,13 and probability distributions of the angles 2w
and u1 satisfy p( w) 5 1/2u sin 2wu, 0 < w , p, and p(u1)
5 1/p, 0 < u1 , p. Then

K sin2~NL/2!

sin2~L/2!
L 5

1

2p
E

0

p

du1E
0

p

dw sin 2w

3
sin2~N arccos@cos u1 cos w#!

sin2~arccos@cos u1 cos w#!
.

(11)

We have been unable to find a value for the above integral
analytically and therefore evaluated it numerically for
different N. The numeric value of the integral was al-
ways found to equal 1 within the accuracy of numerical
integration; hence we concluded that

K sin2~NL/2!

sin2~L/2!
L 5 1 (118)

for any integer N. Substituting this average value and
the average values found immediately after Eq. (10) into
Eq. (9), we obtain the main result of this paper:

^tN
2 & 5 ^t1

2&~N2 1 2 !/3. (12)

The analytic formula (12) compares well with the results
of a physical experiment that is presented in the next sec-
tion.
3. EXPERIMENT
A. Background
We measure the DGD as a function of the number of
round trips by means of a difference-frequency technique
adapted to the conditions of a gated circulating loop. The
instantaneous DGD is obtained by averaging the length of
the arc described on the Poincaré sphere by the Stokes
vectors at two frequencies v1 ' v2 ' v:

dS/dv 5 t 3 S. (13)

Here S is the Stokes vector at the output of the system
under test and t is the PMD vector, whose norm t is the
instantaneous DGD at frequency v.3 In this section, all
quantities pertain to a given number N of circulations
around the CL, and therefore we omit the subindex N
used in Section 2. Instead, below we use the subindices
$1, 2% to denote the Stokes vectors pertaining to different
frequencies v1 and v2 . Equation (13) can be discretized
using the midpoint rule of integration, resulting in

iS2 2 S1i2 5 ~Dv!2t 2I 1

2
~S1 1 S2!I 2

sin2 a, (14)

where Dv 5 (v2 2 v1), i...i denotes the norm of the vec-
tor, and a is the angle between t and 1/2(S1 1 S2).

We note that the above discretization of Eq. (13) is
strictly valid as long as Dvt ! p (Ref. 14) (note that
other PMD measurement techniques impose similar re-
quirements; see, e.g., Ref. 15). In our setup, Dv ' 2p
3 19 GHz, which for the maximum DGD we measure
yields Dvt ' 1.3. Although the strong inequality 1.3
! p does not hold, the quantity Dvt still turns out to be
small enough to ensure that our results are consistent
with the theory, as shown below. Taking the average of
Eq. (14) and using the facts, pointed out in Section 2, that
the DGD is not correlated to the angle of the PMD vector
and that the output Stokes vector and the PMD vector are
not correlated, we get

A^t 2& 5
A6

Dv
KAiS2 2 S1i2

iS2 1 S1i2L . (15)

In obtaining this equation, we have averaged over all pos-
sible polarization states of the system and used the rela-
tion ^sin2 a& 5 2/3, which follows upon noticing that
angles a and 2j in Section 2 have the same probability
distributions. Thus the average DGD of the system
around the optical frequency v can be obtained from mea-
surements of the Stokes vectors S1,2 at frequencies v1,2
around v.

B. Experimental Setup
Our setup is depicted in Fig. 1. The two wavelengths
used for measuring the DGD are provided by two tunable
lasers set at v1 and v2 . These wavelengths are symmet-
ric about one channel in the spectral grid defined by our
interleavers; the corresponding channel as well as the two
adjacent channels are turned off, leaving 61 channels at
100-GHz spacing running through the loop. These 61
support channels maintain the gain profile as used in
transmission experiments. Each source can be turned on
or off using an acousto-optic switch [AOS1 and AOS2 in
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Fig. 1(a)]. The signal paths are combined with a 3-dB
coupler, and individual polarization controllers (PC1 and
PC2) are used to align each signal to the input polarizer of
an HP8169A polarization controller (HP-PC); the latter
allows one to dial in the polarization state of the light that
is injected into the loop. The output of the polarization
controller is then combined with the 61 cw channels.

An AOS [LS1 in Fig. 1(b)] controls the loading of the
signals into the circulating loop; the signals are loaded for
the entire loop-transit time of 1.8 ms, and then blocked
for 19.8 ms to accommodate 11 circulations. An intraloop
AOS (LS2) is triggered with the inverse gating pattern to
allow the signal to circulate around the loop. In this
standard configuration, the signal (passing through LS1
or LS2) continuously flows from both output arms of the
3-dB coupler, into the receiver arm and into the first span.
The loop is composed of four 80-km standard single-mode
fiber (SSMF) Raman-pumped transmission spans. Each
span is forward- and backward-Raman pumped, and is
followed by a backward-pumped dispersion compensation
module.16 An erbium-doped fiber amplifier (EDFA) is
used to overcome the loss of the intraloop AOS and 3-dB
coupler. Intraloop polarization controllers (PCA, B and
C) can be used to obtain the desired statistical measure-
ment, as described in Subsections 3.D and 3.E below.

After the loop, the signal is filtered by means of a 100-
to-200 GHz slicer and 0.6-nm optical filter centered be-
tween the frequencies under test. The state of polariza-
tion is measured by an HP8509B lightwave polarization
analyzer. This polarimeter has four analog outputs that

Fig. 1. Experimental setup: (a) General setup; AOS, acousto-
optic switch; PC, manual polarization controller; HP-PC, HP8169
polarization controller; Mux, multiplexer; Demux, demultiplexer;
Filter, 0.6-nm-wide spectral filter; HP-Pol, HP8509B polarime-
ter; AtoD, National Instruments PCI 1610 AtoD converter. (b)
Close-up on the loop: LS1, load acousto-optic switch; LS2, loop
acousto-optic switch; PCB and PCC, manual polarization control-
lers; PCA, voltage-controlled Polarite polarization controller.
provide the degree of polarization and the three compo-
nents of the Stokes vector of the light under test. These
four outputs are sent to a National Instruments PCI 1610
analog-to-digital converter triggered by the load switch
gating signal. A sampling rate of 100 kHz is sufficient to
temporally resolve the Stokes vector during each round
trip, as the loop round-trip time is 1.8 ms. An example of
a measured component of the Stokes vector as a function
of number of samples taken is shown in Fig. 2.

C. Temporally Resolved Stokes Vector
We first measured the Stokes vector at a fixed wavelength
as a function of time. The AOS of one of the cw lasers
was held in a passing state with the other blocking. All
polarization controllers were fixed throughout this test.
The Stokes vector, measured every 20 seconds over the to-
tal time of 1 hour and 20 minutes, is plotted in Fig. 3 for
back-to-back operation (a), one (b), five (c), and ten (d)
round trips. Note that for ten round trips (3200 km), the
Stokes vector varies significantly (by about 20 degrees)
over 20 seconds; thus accurately quantifying PMD re-
quires a measurement technique that is much faster than
this time interval. The output Stokes vector does not
uniformly map the Poincaré sphere for any number of cir-
culations, even during the measurement time of more
than one hour. Therefore randomly tweaking the loop
between each measurement of the DGD is necessary to
average over all the polarization states of the loop. An-
other set of measurements performed every one second
shows no significant change of the Stokes vector over 1
second, which justifies the averaging described in the
next subsection to reduce noise.

D. Differential Group Delay in a Circulating Loop
The average DGD of the system was then measured.
AOS1 and AOS2 were used to alternate between frequen-
cies and every 21.6 ms (i.e., the loading plus transit time
for 11 circulations). The Stokes vector for a given num-
ber of round trips was obtained by averaging over 50 data
points within the associated 1.8-ms temporal window.
Further averaging to reduce noise was performed over the
Stokes vectors of 10 successive pairs of launches; each
432-ms (10 3 2 3 21.6 ms) averaging window consti-
tutes a measurement over a single polarization state of

Fig. 2. Example of a time-resolved measurement of one coordi-
nate of the Stokes vector. The lower scale corresponds to
samples taken by the analog-to-digital board at a sampling rate
of 100 kHz. The upper scale corresponds to time.
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the loop. Proper averaging over the possible polarization
states of the loop is ensured by manually tweaking the po-
larization controllers PCB and PCC [Fig. 1(b)] between
each measurement of the DGD. The input Stokes vector

Fig. 3. Stokes vector on the Poincaré sphere at frequency mea-
sured every 20 seconds for (a) back-to-back, (b) one round trip, (c)
five round trips, and (d) ten round trips. The measurement pe-
riod was 1 hour and 20 minutes.
was also randomly changed using the HP 8169A driven by
a computer through a general purpose interface bus con-
nection.

The DGD of the loop as a function of the number of cir-
culations averaged over 100 measurements is plotted in
Fig. 4 (triangular markers). It is close to linear, as ex-
pected from numerical simulations of Ref. 7 and the ana-
lytical formula (12) of Section 2. The solid curve is a fit
using Eq. (12), which gives a value of the single-pass DGD
A^t1

2& 5 1.79 ps, in reasonable agreement with the value
of 1.5 ps obtained using the DGD of the individual stan-
dard single-mode fiber spans, dispersion compensation
modules, in-loop EDFA, and gain-flattening filter while
ignoring contributions from other in-loop components
such as isolators and wavelength-division multiplexing
couplers for Raman pumping. We also benchmarked
measurements obtained with our technique against those
obtained by a commercial, broadband PMD test set, using
as a sample a one-meter length of polarization-
maintaining fiber. For this case, our measurements
yielded a three-percent larger value of DGD than that de-
rived from the commercial set.

E. Differential Group Delay in a Randomized Loop
In order to obtain in a CL the square-root dependence of
the mean DGD on the traveled distance, typical of
straight-line systems, we have implemented an idea of
Ref. 7 and randomized the polarization state of the signal
at the beginning of each circulation around the CL, while
not perturbing the PMD vector for a given round trip.
This randomization is achieved by a General Photonics
Polarite II low-loss polarization controller [PCA in Fig.
1(b)], which receives a set of 12 random voltage levels at
the beginning of each load cycle; this set of 12 levels ac-
commodates the 11 round trips plus initial loading time
and is repeated for each load cycle. The measured aver-
age DGD as a function of the round-trip number for the
randomized loop is plotted in Fig. 4 (square markers).
The measurement can be fitted with a square root of the
number of round trips as A^tN

2 & ' A^t1
2&AN, giving a

single-pass average DGD of 1.53 ps, in good agreement
with the value obtained for the nonscrambled loop and
the value calculated from the independent measurement
of the DGD of each element in the loop. Note that for a

Fig. 4. Average DGD as a function of the number of circulations
in the loop (triangular markers) and a fit using the analytic deri-
vation (continuous line) for the nonscrambled loop; average DGD
as a function of the number of circulations in the loop (square
markers) and a fit using the analytic derivation (dotted curve) for
the randomized loop.
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large number of circulations, the average DGD of a ran-
domized loop is significantly smaller than for the same
physical loop without randomization.

4. DISCUSSION AND CONCLUSION
We begin this discussion by providing an intuitive expla-
nation to the almost linear dependence of the mean DGD
on the number of circulations, which follows from Eq. (12)
and the experimental results of Section 3. Consider first
a scalar counterpart of the PMD vector evolution. This is
a Brownian motion, B, driven by a source that is random
in the interval 0 < z , L and repeats itself in each inter-
val nL < z , (n 1 1)L, n > 1. If the standard devia-
tion of B at z 5 L equals s1 , then, obviously, it equals
Ns1 at z 5 NL, where N is an integer. One may say
that increments of B in each interval nL < z , (n
1 1)L add up coherently. Now the magnitudes of the
PMD vector increments acquired after each passage
around the CL equal t1 (i.e., the DGD of a single passage).
However, only projections of these increments onto, say,
the direction of the PMD vector after the first passage,
add coherently. The root-mean square value of such a
projection is A^cos2 fn& 5 1/A3, where fn is an angle be-
tween the PMD vector increments after the first and nth
passages around the loop. Hence the magnitude of the
total PMD vector after the Nth passage is A^tN

2 &
5 A^t1

2& 3 N 3 1/A3. This intuitively derived formula
differs from the exact Eq. (12) by less than 5% when N
. 5.

Another conclusion that can be drawn from Eq. (12)
pertains to higher orders of PMD in a CL. Since the
mean-square value of the mth order of PMD, ^ut (m)u2&, is
proportional to ^t 2&m,4 then in a CL, ^ut (m)u2& accumu-
lates with the number of passage as N2m.

In conclusion, we have shown, both analytically and ex-
perimentally, that DGD of a circulating loop grows with
the number of passages around the loop, or total trans-
mission distance, approximately linearly; see Eq. (12) and
Fig. 4. This dependence should be contrasted with the
square-root dependence typical of straight-line transmis-
sion systems. We also experimentally verified the idea of
Ref. 7, whereby by appropriate randomization of the sig-
nal’s polarization at the beginning of each circulation
around the CL, the average DGD was made to scale like
the square-root of the number of circulations. These re-
sults are significant because of the utmost importance of
circulating loops for the development of long-haul fiber-
optic communication systems.
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