
Modifications of the Helbing-Molnár-
Farkas-Vicsek Social Force Model
for Pedestrian Evolution
Taras I. Lakoba
D. J. Kaup
Institute for Simulation and Training
University of Central Florida, Orlando, FL 32826
dkaup@ist.ucf.edu

Neal M. Finkelstein
Simulation Technology Center
12423 Research Parkway
Orlando, FL 32826

A model of crowd motion that considers each pedestrian as a Newtonian particle subject to both
physical and social forces was reported by Helbing, Farkas, and Vicsek in 2000. Subsequent nu-
merical simulations of this model, performed by its authors, showed that it exhibits realistic crowd
behavior. In this article, the authors point out that numerical values of certain parameters in that
model may produce counterintuitive results when applied to the motion of an isolated pedestrian or a
small number of pedestrians. They have considered modifications of the original model, which allow
them to use parameter values that, in the aforementioned sense, are more realistic. However, this is
achieved by introducing more features and parameters into the original model. These features are
described, and some results of the numerical simulations of the modified model are presented. Two
major results of their study need to be mentioned. First, they developed an algorithm, based on an
explicit numerical integration scheme, which prevents simulated pedestrians from overlapping with
one another in physical space. Second, they demonstrated how the form of the social repulsive force
between two pedestrians may be deduced from certain measured characteristics of pedestrian flows.
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1. Introduction

1.1 Background

Recently, a considerable amount of research has been
done on simulating collective behavior of pedestrians in
the street or people finding their way inside a building or a
room. Comprehensive reviews of the state of the art can be
found [1-5]. Existing models can be broadly separated into
the following two categories: (1) discrete-space models
and (2) continuous-space ones. Discrete-space, or cellular
automata-based, models allow pedestrians to be located at
nodes of a fixed or adaptive grid, and pedestrian coordi-
nates are updated at discrete time intervals. Particular mod-
els of this category are described in Schadschneider [1];
Blue and Adler [2]; Dijkstra, Jesurun, and Timmermans
[3]; Kessel et al. [4]; and Batty, DeSyllas, and Duxbury
[5]. The models of the second category allow pedestrians
to move continuously in a part of the 2-D surface rep-
resenting a street, a room, and so forth. The continuous-
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space models can further be subdivided into the following
groups. Some models, such as the ones considered in Hel-
bing [6] and AlGadhi, Mahmassani, and Herman [7], are
based on a similarity between the dynamics of a crowd and
that of a fluid or gas. Other models of the second category
allow pedestrians to choose their paths by optimizing a
certain cost function [8]. An interesting model combining
the fluid dynamics approach with that of a cost function is
considered in Hughes [9]; there the role of the cost func-
tion is played by the pedestrian’s estimated travel time.
Finally, the model considered in other sources [10-12] in-
troduces social and physical forces among pedestrians and
then treats each pedestrian as a particle abiding the laws of
Newtonian mechanics.

In this report, we focus our attention on the latter model,
which we refer to as the Helbing-Molnár-Farkas-Vicsek
(HMFV) model. We begin by summarizing the main fea-
tures of this model, as described in Helbing, Farkas, and
Vicsek [11]. In the HMFV model, each pedestrian feels and
exerts on others two kinds of forces, “social” and physi-
cal. The social forces do not have a physical source; rather,
they reflect the intentions of a pedestrian not to collide
with other people in the room or with walls and also to
move in a specific direction (e.g., toward an exit) at a given
speed. When the crowd’s density becomes so high that



Lakoba and Kaup

pedestrians are forced to collide, the physical forces of
pushing and friction enter the picture. Thus, the force ex-
erted on pedestrian i by pedestrian j has the following
form:

�fij = �fsocial repulsion + �fpushing + �ffriction ,

where

�fsocial repulsion = A e(Rij −dij )/B �nij ,

�fpushing = k η(Rij − dij ) �nij ,

�ffriction = κ | �fpushing| �tij , (1)

Here, A, B, k are constant parameters of the model. In
the original study [11], κ was a function of the relative
tangential velocity of the two pedestrians; however, in this
study, we set it also to a constant. Continuing, Rij = ri +rj

is the sum of the “radii” of pedestrians i and j ; dij is the
distance between their centers; �nij and �tij are the vectors
pointing, respectively, from i to j and in the tangential
direction (directed opposite to the velocity of i); and the
function η(x) is defined by

η(x) =
{

x , x ≥ 0 ;
0 , x < 0 .

The first term in equation (1) describes the social force,
while the second and third terms describe the physical
forces of pushing and sliding friction between the two
pedestrian bodies. The form of the function η, multiply-
ing the latter two terms, ensures that they vanish when the
pedestrian bodies are not in physical contact. An expres-
sion similar to (1) holds for a force between a pedestrian
and a wall or another immobile obstacle (e.g., a column)
in the room:

�fio = A e(ri−dio)/B �nio +k η(ri −dio) �nio +κ k η(ri −dio) �tio .
(1′)

Here, dio is the distance between the pedestrian’s center
and the surface of the obstacle (hence o is used for the
subindex), and �nio and �tio are the vectors normal and tangen-
tial to the obstacle’s surface at the point where the pedes-
trian comes in contact with it.

Two additional forces, which arise from the pedestrian’s
personal considerations, also affect his motion. (Note: Here
and below, we refer, for brevity of notations, to the pedes-
trian as “him” rather than “him or her.”) The first force is
an attraction force, which makes pedestrians move toward
(one of) the exit(s). Following Helbing and Molnár [10],
we took this force to have the same functional form as that
of �fsocial repulsion (see equation (1)) but with different numer-
ical values of A and B (see Table 1, presented later) and
the opposite sign of A, corresponding to attraction rather
than repulsion. If there is more than one exit, we assumed
that the pedestrian is attracted to the nearest exit that he
“sees” (see a discussion about the pedestrian “seeing,” or
perception, in section 3).

The second of the aforementioned “personal” forces
makes pedestrians attempt, at all times, to move at their
own preferred velocities. The preferred velocity of a pedes-
trian is a weighed average between his “own” velocity (hav-
ing a specified direction) and a “collective" velocity that
he perceives around himself. This force has the following
form:

�fpreferred = −m
�v − �v0

τ
, �v0 = (1 − p)V0�ei + p〈�vj 〉i ,

(2)

where m and �v are the mass and current velocity of the
pedestrian, τ is his “reaction time,” �v0 is the preferred ve-
locity, V0 is the speed with which the isolated pedestrian
would prefer to move, �ei is the unit vector along his direc-
tion of motion, and 〈�vj 〉i is the average velocity that the ith
person perceives within the radius of 2 to 3 meters around
himself. The constant parameter p, referred to in Helbing,
Farkas, and Vicsek [11] as a “panic parameter,” determines
the relative weights of the “own” and “collective” contribu-
tions to the preferred velocity. It characterizes how strongly
a pedestrian aligns his preferred velocity with the motion
of the crowd around him; it might more aptly be called a
“co-motion” parameter.

As summarized in Helbing, Farkas, and Vicsek [11],
the HMFV model is able to reproduce such phenomena
as (1) formation of lanes in both uni- and bidirectional
traffic, (2) arc-shaped clogging at an exit when the crowd’s
desired speed of leaving the room is “too high” (the “faster
is slower" effect, explained in detail below) [11, 13], (3)
inefficient use of alternative exits when the panic parameter
p is either too small or too large, and (4) oscillations of the
pedestrian flux at a door through which pedestrians are
trying to pass in opposite directions. The reader is referred
to aWeb site, http://angel.elte.hu/∼panic, for an impressive
collection of interactive Java applets illustrating the above
phenomena. The source code used to obtain the results at
this Web site has recently been made available to the public
[14]. It is also interesting to point out that a quite different
discrete space model, described in Burstedde et al. [15], is
also reported to be capable of reproducing the effects of
lane formation and periodic oscillations in the pedestrian
flux at a door. We emphasize that both the HMFV model
and that of Burstedde et al. do not provide pedestrians with
any “intelligence” or decision-making capabilities.

1.2 Problems to Be Addressed

In this report, we address two issues concerning the HMFV
model and provide solutions to them. The first issue is that
the social and physical repulsion forces among pedestrians,
defined by equation (1), do not automatically guarantee that
any two pedestrians will not overlap during their evolution.
By overlapping, we mean the following. A pedestrian can
be modeled as a circle of radius ri , which can be squeezed,
by the outside pushing forces, to a circle of a smaller ra-
dius r = ri − smax, where smax is the maximum allowed
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magnitude of squeezing. (We take smax = 20% of ri .) Note
that the second and third terms on the right-hand side of
equations (1) and (1′) are nonzero only for pedestrians who
have been squeezed against each other or a wall. However,
the forces as given by equation (1) do not limit the depth of
this squeezing to smax. That is, during an evolution, based on
equation (1), a pedestrian may be squeezed by more than
smax. In this case, we say that the pedestrian is “overlapped”
(either with another person or with a wall or a column). In
other words, overlapping occurs when pedestrians either
“walk through each other” or “share the same space.”

One way to impose a maximum value on the magnitude
of squeezing, and hence eliminate the possibility of pedes-
trian overlapping in the numerical simulations, would be
to take a form of the contact force that creates an impen-
etrable “potential barrier” between pedestrians i and j .
An example of such a force is considered in section 2.1.
However, as we explain there, using such a force would
cause substantial numerical difficulties in the simulations.
Therefore, we need to examine other ways of preventing
pedestrian overlapping in the model.

In Helbing, Farkas, and Vicsek [11], where the HMFV
model was proposed, the aforementioned overlapping
problem was circumvented by choosing a very high value
for the elasticity constant, k = 1.2 · 105 kg/sec2. This,
effectively, turns human bodies into very rigid structures,
or very stiff springs, that are resistant to penetration and
thereby directly prevent the overlapping among pedestri-
ans. We point out, however, that such a high value of k can
result in an unrealistically high contact force: for example,
two pedestrians squeezed by 5 cm each would feel the force
of 6000 N, or more than seven times their weight (80 kg).
Such a large force would likely crush a person. Thus, the
first question that we address in this study is the following:
can we keep the form of the contact force the same as in the
HMFV model (and in equation (1)) and, at the same time,
eliminate the possibility of pedestrian overlapping using a
significantly lower value of k than that used in Helbing,
Farkas, and Vicsek [11]?

The second issue of the HMFV model that we address
is related to the choice of numerical values of parameters
of the social force used in Helbing, Farkas, and Vicsek [11]
and at http://angel.elte.hu/∼panic. There, the magnitude A
and fall-off length B (see equation (1) of that force were
chosen to equal

A = 2000 N, B = 0.08 m . (3)

The small value of the fall-off length implies that social
forces are substantially different from zero only when two
people are on the order of 8 cm apart. We argue that the
latter value is unrealistically small. To this end, consider
the equations of motion [11] of a single pedestrian moving
in a straight line toward a wall:

dx

dt
= v,

dv

dt
= −v − v0

τ
− A

m
e−|x|/B , (4)

where x is the distance the pedestrian is from the wall. Let
us assume that the reaction time of an 80-kg pedestrian is
τ = 0.5 sec, and his preferred speed is 1.5 m/sec (5.4 km/h).
Solving equations (3) and (4) numerically with the initial
conditions x|t=0 � B, v|t=0 = v0 produces a plot shown in
Figure 1a. The feature to note here is the maximum pedes-
trian’s deceleration: it exceeds the acceleration of gravity,
g = 9.8 m/sec2, by almost 40%. This does not appear real-
istic; see, for example, Figure 12 in Weidmann [16], which
suggests that an instantaneous acceleration during normal
walking does not exceed 0.2 g. The source of unrealisti-
cally high acceleration here is the very small fall-off length,
B, rather than a large value of the maximum force, A. To
illustrate this point, we show in Figure 1b the result of solv-
ing equation (4) with B = 0.5 m and the other parameters
being the same as above. The maximum deceleration in this
case is less than 0.3g. Moreover, the very small value of
B = 0.08 m, used in Helbing, Farkas, and Vicsek [11] and
at http://angel.elte.hu/∼panic, implies that the social force
between pedestrians who are located only 50 cm away is
(2000 N)·e−0.5/0.08 < 5 N (i.e., is only on the order of the
weight of a baseball). It is clear that such a small force
cannot explain why, in a not too dense crowd, the typical
distance that people prefer to keep among themselves is
on the order of 50 cm. Thus, the second question that we
address in this study is the following: will the (possibly
modified) HMFV model still produce realistic simulations
of crowd motion if the value of B is taken on the order of
0.5 m instead of 0.08 m?

Let us now summarize the motivation and objectives of
our work. Our starting point was an observation that the
HMFV model made use of “unrealistic” numerical val-
ues of certain physical parameters to produce the realistic
simulations of crowd motion. We have called these param-
eter values “unrealistic” because, when they are applied
to the motion of a single pedestrian or a pair of pedestri-
ans, they produce counterintuitive results, as explained in
detail in the preceding paragraphs. The objective of our
work is thus to find a modification of the HMFV model
that would satisfy two criteria: (1) it must retain the re-
alism of the HMFV model in crowd motion simulations
while, at the same time, (2) it must more realistically de-
scribe the behavior of a small number of pedestrians, who
are the “building blocks” of a crowd. By a modification to
the model, we mean both changing the numerical values of
its parameters as compared to those reported in Helbing,
Farkas, and Vicsek [11] and introducing new features into
the model.

In practice, the way we eventually devised these specific
modifications was that of a typical genetic algorithm: we
introduced a “seed” modification (e.g., took B = 0.50 m)
and then observed the results of the ensuing simulations.
Those results would normally contain some feature(s) that
went counter to (our personal experience of) what a realis-
tic crowd behavior should be. Then, we would include fur-
ther modifications to make that particular feature appear
realistic (in the above sense) again. It is, therefore, only
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Figure 1. Results of solution of equation (5) with A = 2000 N and B = 0.08 m (a) and 0.5 m (b)

natural that the modifications that we had to introduce are
interrelated and thus most likely need to be considered as
a single unit.

In a heavy panic situation, one would expect many of
the parameters in our modified HMFV model, and perhaps
even their functional form, to undergo a dramatic change,
wherein the individuals will tend to seek to obtain their own
self-survival and may even abandon respect for others. We
simply note that at this time, this study does not consider
or apply to that situation.

1.3 Outline of the Article

We now give a preview of the results obtained in this study.
In section 2, we address the first of the aforementioned is-
sues with the HMFV model: how to prevent overlapping
among pedestrians while using a smaller value of the elas-
ticity parameter than the one used in Helbing, Farkas, and
Vicsek [11]. First, we demonstrate that equations of mo-
tion with a force that creates an impenetrable “potential
barrier” between any two pedestrians, thereby automati-
cally guaranteeing the absence of overlapping, cannot be
time-efficiently solved by commonly available explicit or
implicit integration routines. Then, we describe an original
algorithm that we have devised to eliminate overlapping
among pedestrians while using the contact forces of the
form (1) and a value of parameter k that is substantially
smaller than that used in Helbing, Farkas, and Vicsek [11].
We note that our algorithm does not depend on a particular
form of the contact force acting on a pedestrian. There-
fore, we expect that this method, or some modification of
it, would be found useful in other situations dealing with
parallel updating of quantities, among which there acts a
contact force and some exclusion rules (e.g., as in the case
where two pedestrians cannot occupy the same location or

two “very close” locations and, as a result, the “stronger”
pedestrian pushes the “weaker” one out of that location).

In section 3, we address the second issue with the
HMFV model—that is, using a larger value of the fall-
off length B of the social repulsive force between any two
pedestrians than the value used in Helbing, Farkas, and
Vicsek [11]. First, we present an argument that the actual
fall-off length must be on the order of 0.5 m. We empha-
size that the focus of our discussion is on the methodology
that allows one to deduce an approximate value of B from
certain empirical data, rather than on its precise value per
se. Indeed, the aforementioned value of 0.5 m is deduced
from data reported in Weidmannn [16] for, apparently, a
crowd in a German city. A crowd in another country is
likely, due to a different cultural behavior, to exhibit dif-
ferent quantitative characteristics and thus could lead to a
different estimate for B.

Once we have established an approximate realistic value
for the fall-off length of the social force, we then turn to
discussing its maximum magnitude. In doing so, we ex-
plain the need for introducing three modifications to the
HMFV model: (1) a dependence of the social force on the
crowd’s density, (2) distinguishing between face-to-back
and face-to-face social repulsion forces between any two
pedestrians, and (3) allowing a pedestrian to learn and for-
get the location of the exit(s) and/or obstacles in the room
and use this knowledge for selecting his own direction of
motion. We emphasize that the above three modifications
(and, in fact, complexifications) of the HMFV model were
found to be essential to maintain realism of the simulated
crowd behavior, which was the remarkable feature of the
original model.

Finally, we need to verify results produced by our mod-
ified model against some criterion that would indicate
whether those results are realistic. Having such a criterion
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would allow us to fine-tune the model parameters so as to
satisfy it. The criterion we made use of in this study is the
“faster is slower” effect [11]. This effect is summarized
by the observation that if people in an excited condition
are trying to get out of the room too fast, they actually
slow down their own egress due to pushing and clogging
at the door [13]. In section 4, we present results of numer-
ical simulations, based on the modified HMFV model, for
the number of pedestrians exiting a room within a speci-
fied time interval. From these results, we find a parameter
regime where our modified HMFV model does exhibit the
“faster is slower” effect.

Conclusions of our work are presented in section 5.

2. Overlap-Eliminating Algorithm

In this section, we achieve the following two main goals.
First, we explain why implementing any model with a
physical repulsion force that eliminates overlapping by cre-
ating an impenetrable barrier between pedestrians in close
contact must always be numerically inefficient. Second,
we propose and give a detailed description of a novel and
relatively time-efficient algorithm that allows one to imple-
ment a crowd model using the repulsive forces of the form
(1) (which does not create an impenetrable barrier) and
still avoid overlapping among pedestrians, as explained in
section 1. To emphasize the visible consequence of this
overlapping, we will sometimes refer to it as being “inva-
sive.” Along with the details of the algorithm, we explain
the procedure of adaptive selection of the time step in our
simulations.

2.1 Numerical Stiffness of the Equations of Motion

We begin by explaining the problem that arises when one
attempts to numerically solve equations of motion when
the contact forces are of the following form:

fij,contact = C

[(
1

dij − Rij + 2smax

)α

−
(

1

2smax

)α
]

,

dij < Rij , (5)

and where fij,contact = 0 for dij ≥ Rij . In (5), C and
α ≥ 1 are some constants, and smax is the maximum al-
lowed magnitude of squeezing, discussed above. Using
concepts from elementary mechanics, one can show that
any force of this form creates an impenetrable potential
barrier between pedestrians i and j and indeed prevents
them to come together closer than Rij − 2smax. The afore-
mentioned numerical problem arises because the code has
to resolve the motion of a person on two disparate scales.
The larger scale is on the order of the size of the room
(several meters) since it is motion over those distances that
we are mainly interested in. The smaller scale is on the or-
der of a centimeter (or less) because the numerical scheme
has to resolve such short distances to guarantee that two

pedestrians in contact never invasively overlap. Indeed, the
changes in their coordinates are proportional to the force
∆x ∝ f ·∆t2, and since the contact force (5) grows without
bound as the pedestrians move closer to each other, the step
size ∆t needs to be made increasingly smaller to keep ∆x
such that the squeezing of each pedestrian would not ex-
ceed smax. Otherwise, the simulation enters into an unstable
regime, meaning that it would falsely produce results show-
ing invasive overlapping, whereas no such overlapping can
actually occur for the correct solutions of the underlying
equations of motion with a contact force of the form (5)).
The problem described here is well known as a problem of
numerically stiff equations, described in any textbook on
numerical analysis (see, e.g., [17]). It is also well known
that explicit numerical integration methods, such as Eu-
ler’s method, are very time inefficient for stiff problems;
the above consideration of ∆t is just a particular exam-
ple illustrating this point. While the computational time
required to evolve N pedestrians over one time step grows
linearly with N (assuming that a pedestrian feels forces
from only those of his fellows who are within a prescribed
distance, say, 2 to 3 meters from him), the total computa-
tional time is proportional to N/∆t and thus becomes very
large whenever ∆t becomes very small. For example, an
early version of our simulator that used expression (5) for
the contact forces and a standard explicit ordinary differ-
ential equation solver of Matlab took more than 3 hours on
a 2.4-GHz Pentium IV machine to compute 60 seconds of
evolution of 100 pedestrians exiting a room.

An established alternative to explicit integration meth-
ods are implicit methods, which we also explored in an
attempt to speed up the computations. For implicit meth-
ods, the step size ∆t is determined only by the desired
accuracy (i.e., O(∆tn), n = 1, 2, . . . ) of the computation
rather than by any requirement of stability of the numerical
scheme (see above). However, the computational time of
one step grows as N 2, unless one can exploit the sparse
structure of the system of equations of motion, in which
case it would be expected to grow as N . (The system of
equations in our case is sparse since, as mentioned above,
we take into account interactions of a given pedestrian, not
with the entire crowd but with only the few people who
are found no more than 2 or 3 meters away from him.) We
have been unable to find any published record describing
an implicit method for a sparse matrix with such a vari-
able pattern of nonzero elements. Consequently, we have
only been able to test implicit methods by using a standard
(i.e., nonsparse) implicit solver of Matlab. For those non-
sparse calculations, we found that modeling 60 seconds of
evolution of 100 people by using the contact force of the
form (5) requires about 1 hour of computational time on a
2.4-GHz Pentium IV. This computational time was rather
insensitive to both the preferred speed and the excitement
level of pedestrians. (Note that a faster and a more excited
crowd produces higher local density because people tend
to congregate near particular locations, such as exits.) On
the other hand, using our overlap-eliminating algorithm,
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described below, along with an explicit integration method,
we were able to reduce the computational time to between
20 minutes and 1 hour. The lower estimate pertains to a
nonpanicking crowd exiting in an orderly manner, while
the higher one pertains to a highly excited crowd attempt-
ing to flee the room very fast and thus clogging near the
door. In the latter case, a large number of overlap elimina-
tions were needed at each time step. Thus, our algorithm
yields a clear advantage over the standard (i.e., nonsparse)
implicit method when the crowd density is not too high,
while for a dense crowd, the efficiencies of our explicit
routine and the nonsparse implicit method are similar.

2.2 Description of the Algorithm

We begin a description of the overlap-eliminating algo-
rithm (OEA) by reminding the reader of what we mean
by squeezing and by overlapping. As noted in section 1,
a pedestrian can be squeezed when he is being pushed
against by others. There is a maximum magnitude of the
squeezing, smax. If a pedestrian is squeezed by more than
smax, we say that he overlaps, or invasively overlaps, with
another person or a wall. The steps of the proposed OEA
are as follows.

OEA: Step 1. Find the most overlapped pedestrian. Note
that he could be overlapped with walls (and other immov-
able obstacles in the room, such as columns), other mov-
ing pedestrians, and other pedestrians who have been made
“stationary” at this time step (see below).

OEA: Step 2. Determine if the found pedestrian is over-
lapped (but not necessarily most overlapped) with a wall.
If he is, move him away from that wall so as to eliminate
the overlap and set the component of his velocity, which is
normal to the wall, to zero (vn, new = 0) while keeping the
same value for the tangential component (vt, new = vt, old).
After moving the pedestrian away from the wall, make him
“stationary” and then move other pedestrians away from
him so as to eliminate their overlap. The former pedes-
trian remains “stationary” (i.e., cannot be “unoverlapped”
again) until the current round of overlap elimination (OE)
is complete. The velocities of the pedestrians who have
been moved away from the “stationary” one are set to co-
incide with the velocity of the latter. (Note that the term
stationary here does not necessarily imply that the pedes-
trian in question has zero velocity; it only signifies that this
pedestrian is not to be moved until the end of this round
of OE.)

If, at the beginning of step 2, it was determined that the
pedestrian in question overlaps only with other pedestrians
but not with a wall, perform only the step indicated in the
second half of the previous paragraph.

OEA: Step 3. Repeat steps 1 and 2 until no overlapping
pedestrians are found, but no more times than the number
of pedestrians in the room.

Let us note that, strictly speaking, the algorithm de-
scribed above does not guarantee that it will eliminate
overlaps in all conceivable cases. For example, consider a
situation where a very dense crowd is formed near a corner
of the room and, moreover, the most overlapped pedestri-
ans are not those closest to the corner but those located
a few meters away from it. Then these latter pedestrians
are made “stationary” first, and those closest to the corner
become rounded up by the immovable boundaries from all
directions: by the walls forming the corner and by their fel-
low pedestrians who had already been made “stationary.”
In such a case, the OEA will not be able to eliminate all
of the overlaps. To track down (highly unlikely) situations
such as the one just described, we provided in our simu-
lator for making a record of any cases when the OEA is
unable to eliminate overlaps. We have not encountered a
single such case in the several hundred simulations that we
performed. This gives us confidence that the algorithm we
propose can be used, in conjunction with an explicit inte-
gration method, and eliminates overlaps in most realistic
situations.

2.3 Size of the Time Step

Proper selection of the time step size in any explicit nu-
merical integration method, to which the OEA belongs, is
known to be of paramount importance [17]. Taking the step
size to be too small degrades the computational efficiency
of the algorithm, while taking it too large can make the
numerical results invalid. Below we describe a procedure
of selecting the size of the time step that we found to be
optimal, in the sense that it yielded reasonable time effi-
ciency for our code, while the simulation results did not
change significantly as the step size was reduced further.

Time step selection: Step 1. For each pedestrian, we calcu-
late the minimum distance, dmin, between him and the other
pedestrians and walls. We then find a maximum between
dmin and smax: d̃i = max(dmin, smax). This sets a minimum
limit—namely, smax—on the distance d̃i and thus gives the
lower bound for the step size ∆t from below, as explained
in step 2 below.

Time step selection: Step 2. We compute two quantities,
∆trepulsion, i and ∆trel.motion, i , defined for each pedestrian as
follows:

∆trepulsion, i = min
j

√
d̃i[

η(Rij − dij ) k smax + |fsocial, ij |
]
/m

,

(6)

∆trel.motion, i = min
j

d̃i

vn, ij

. (7)

Here, fsocial, ij = A e(Rij −dij )/B (see equation (1)), and vn, ij

is the projection of the relative velocity of the ith and j th
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pedestrians on the vector connecting their centers of mass.
Note that ∆trepulsion is a measure of how fast the pedestri-
ans get repelled from each other, and ∆trel.motion determines
how fast the pedestrians will move, relative to one another,
through the minimal distance d̃ .

Time step selection: Step 3. We take the minimum, ∆ti =
min(∆trepulsion, i , ∆trel.motion, i , τ); recall that τ is the reaction
time of a pedestrian, assumed to be 0.5 sec in Helbing,
Farkas, and Vicsek [11] and also in our simulations.

Time step selection: Step 4. Finally, the size of the time
step ∆t is computed as

∆t = β min
i

∆ti , (8)

where β is a numerical factor. We chose it so as to guarantee
that reducing it further does not change the exit time of a
given number of pedestrians, N , by more than X percent.
In our simulations, β = 1/8 was found to be adequate for
N = 100 and X = 5.

We note that OE is a real physical process in that this
is what happens as people crowd together. That is, as
each person is threatened with overlapping by another, he
slightly shifts his position so as to eliminate this threat of
overlapping with other people or with the walls. Therefore,
there will be some lag time for this physical process of shift-
ing to occur. For each pedestrian, we determine this time
as ∆tOE = m(∆v)OE/fOE, where m(∆v)OE is the change of
the pedestrian’s momentum during the act of OE. A new
parameter of the model, fOE, is the force applied by the
pedestrian’s body toward his outside, when he is tightly
squeezed. The magnitude of this force is discussed shortly
below. Now, considering the actual physical process of OE,
the pedestrian in question is assumed to be preoccupied by
OE for ∆tOE seconds, so that during this time, his coordi-
nates are not updated. If the size of the time step satisfies
∆t > ∆tOE, then the modified time step for this pedestrian
is (∆t − ∆tOE). If ∆t < ∆tOE, then the pedestrian does
not evolve over this time step and for (∆tOE −∆t) seconds
into the next step and so forth, until he is finished with this
particular round of OE.

The magnitude of fOE is a free parameter of the model.
Ideally, one would like to have as few free parameters in a
model as possible, so as to make it easier to calibrate. Note,
however, that if one used a model with pushing forces of
the form (5) instead of using the OEA, then such a model
already has two parameters, C and α, that is, as many as
the model that we use here (k and fOE). As far as choosing
a numerical value for fOE, we hypothesize that this force is
related to the elasticity of the bones of the skeleton, while
the pushing force in equation (1) is related to the elasticity
of the muscles. Thus, fOE should be larger than k smax. We
used fOE = 4 mg in our simulations, while k smax = 2 mg.
These values appear to be more realistic than the value for
the contact force used in Helbing, Farkas, and Vicsek [11]
and that we estimated in section 1 to exceed 7 mg.

3. Modifications to the Forces in the HMFV Model

In this section, we address the second of the issues with
the HMFV model that was stated in section 1. Namely,
we begin by presenting an argument that, for a model to
reproduce certain empirical data for a small number of
pedestrians, the fall-off length, B, of the social repulsive
force should be about 0.5 m, that is, about six times greater
than that used in Helbing, Farkas, and Vicsek [11]. How-
ever, when we changed the parameter B alone, our simu-
lations produced several unrealistic features of the crowd
behavior. For example, we observed that when a pedestrian
approached an exit around which there had already been a
small group of other pedestrians, then, starting at a certain
critical size of that group, the newcomer would turn and
run away from the exit, instead of joining those waiting
people. By trial and error, we found that for our simula-
tor to produce commonly observed crowd behavior, as the
original HMFV model with B = 0.08 m does, two modi-
fications to the magnitude of the social force needed to be
made. First, we needed to account for a dependence of the
social force on the crowd’s density. Second, we needed to
distinguish between face-to-back and face-to-face social
repulsion forces between any two pedestrians. The guide-
line that we followed in choosing the above modifications
was the requirement that our model (1) mimic the com-
monly observed behavior of an isolated pedestrian or a
pair of pedestrians and, of course, (2) produce realistic re-
sults for the behavior of a crowd. As a quantitative measure
of such realism, we used the exit time of a crowd from a
room and showed how this quantity changed with the pa-
rameters of the modified social repulsive force. The results
allow us to decide in what ranges these parameter values
should be chosen. Last, we describe another pair of modi-
fications that we found to add more realism to the model.
Namely, we made use of the fact that a pedestrian feels a
greater attractive or repulsive social force when he sees an
obstacle or an exit than when he is looking in the opposite
direction. However, we then had to also include a memory
that a pedestrian has of the location of the exit and/or ob-
stacles in the room for the simulated pedestrian to exhibit
realistic behavior.

3.1 Fall-Off Length and Functional Form of the Social
Repulsion Force

We begin by arguing that the typical fall-off length, B, of
the social repulsion force needs to be on the order of 0.5 m
to explain the empirical velocity versus density curve for
a nonpanicking crowd, reported in Weidmann [16]. This
argument consists of several steps. First, the velocity versus
density curve has an analytic fit [16]

v(ρ) = w0

(
1 − exp

[
−1.91

(
1

ρ
− 1

ρmax

)] )
, (9)

where w0 = 1.34 m/sec is the speed of an isolated pedes-
trian, v(ρ) is the average speed of a pedestrian moving in
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Figure 2. A schematic illustrating motion of pedestrians in
lines; see text for details

a crowd in a sufficiently wide walkway, ρ (measured in
[ped/m2]) is the density of the surrounding crowd, and ρmax

is the maximum possible density, reported to be 5.4 ped/m2

in Weidmann [16]. Next, we need to relate the crowd den-
sity with the dimensions of a single pedestrian and typical
distances among pedestrians. In our model, we represent
each person by a circle of diameter D0 ≈ 0.7 m (note that
the minimum diameter is then D0 − 2smax). Both Figure 58
in Weidmann [16] and our own simulations suggest that
pedestrians in a walkway form (imperfect) lines extending
orthogonally to their average direction of motion. This is
schematically shown in our Figure 2. Then the density in
a moderately dense crowd (say, with ρ ≤ 1 ped/m2) can
be approximated as ρ = 1/

[
(D0 + r⊥)(D0 + r||)

]
, where

r⊥, || are defined in Figure 2. It also follows from simulations
(see, e.g., Fig. 3) as well as from the common experience
that r⊥ is much less than r|| and that it also changes less
with the crowd’s density. Therefore, for the purpose of this
estimate, we take D0 + r⊥ = 1 m.

As the second step in deducing an estimate for B, we
consider the following generalization of equations of mo-
tion (4):

dx

dt
= v , (10a)

dv

dt
= −v − v0(1 + E)

τ
− fsocial(r||)

m
+ b

fsocial(r||)

m
,

(10b)

dE

dt
= −E

T
+ Em

T

(
1 − v

v0

)
. (10c)

Here, the second term in equation (10b) is the repulsive
force that prevents the pedestrian from too closely follow-

ing the person in front of him, and the third term is the force
he feels from the person behind him. (Note the opposite
direction of these two forces.) The coefficient b is thus the
ratio of the perception by a pedestrian of objects located
in front and behind himself [10]. Since a person usually
pays less attention to what occurs behind him compared
to what occurs in front of him, b must be less than unity.
Based on our intuition and a few trial simulations, we took
b = 0.3 as a reasonable estimate. The actual value of this
parameter may depend on the composition of a crowd and,
perhaps, other factors. However, choosing a different value
for b would only affect the magnitude of the social force
(see equation (11) below) but would not invalidate the ap-
proach that we follow to obtain that force.

Returning to the parameters introduced in equation
(10b), E is the pedestrian’s “excitement factor,” whose evo-
lution is given by equation (10c). This factor is defined in
such a way that its value increases if a pedestrian moves
slower than with his preferred speed. Consequently, the ef-
fective preferred speed, v0(1 + E) on the right-hand side
of equation (10b), becomes increased, thus reflecting the
pedestrian’s intention to move faster to “catch up.” Note
that a similar enhancement factor was used in Helbing,
Farkas, and Vicsek [11], where it was defined to instanta-
neously follow the pedestrian’s velocity; in our work, we
considered that it would more closely describe reality if this
enhancement factor has some “lag time.” The first term on
the right-hand side of (10c) provides for such a lag time,
T . We chose to use T = 2 sec as a reasonable value in our
simulations. Finally, Em in equation (10c) determines the
maximum magnitude of E; its numerical value is discussed
at the end of this subsection.

We now use the equations of motion (10) and the an-
alytic fit (9) to the empirical velocity versus density de-
pendence of a nonpanicking pedestrian flow to deduce an
approximate expression for the social repulsion forces act-
ing between any two pedestrians. Assuming a stationarily
moving crowd, we set the time derivatives in equations (10)
to zero. As long as the crowd is not in a panic state, we also
set v0 = w0 (see (9)) and obtain

fsocial(r||)

m
=

w0 (1 + Em) exp
[
−1.91

(
D0 + r|| − 1

ρmax

)]
τ(1 − b)

.

(11)

Not only does this expression confirm the exponential char-
acter of the social force, proposed in Helbing and Molnár
[10], but it also yields an approximate value for the force’s
fall-off length in meters: B ≈ 1/1.91 ≈ 0.5. Note that the
maximum value of the force cannot be determined from
the above considerations because Em is not yet known. We
now turn to discussing this quantity in both nonpanic and
panic situations.

In the absence of panic, consider a situation where
pedestrian i, walking about 1.5 m in front of pedestrian
j , suddenly stops. Common observations suggest that

346 SIMULATION Volume 81, Number 5



THE HELBING-MOLNÁR-FARKAS-VICSEK SOCIAL FORCE MODEL

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14

0

2

4

6

8

10

12

14

16

(a) (b)

Figure 3. Snapshots of a nonpanicking crowd just before (a) and a few seconds after (b) a group of pedestrians at the back of the
crowd “breaks away.” Larger circles represent bodies and smaller ones represent noses of pedestrians; in this way, the direction of
motion of a pedestrian becomes apparent.

pedestrian j should be able to stop some 30 to 50 cm behind
pedestrian i. By numerically solving equations (10) with
initial conditions x|t=0 = −r|| = −1.5 m, v|t=0 = v(ρ),
where ρ = 1/(D0 + r||), and E|t=0 = Em(1 − v(ρ)/v0),
and also using expression (11) for the social force, we find
by inspection that the above distance between pedestrians
i and j is achieved for Em ≈ 1. This is the value that we
will use for nonpanicking pedestrians in our simulator.

In the case of a panic situation, the pedestrians will try
to hurry rapidly to find an exit. Accordingly, we define a
“hurry” parameter by

H = v0/w0 − 1 . (12)

Recall that w0 = 1.34 m/sec and v0 are the speed of an
isolated nonpanicking pedestrian and the preferred speed
parameter, respectively. Once pedestrians are in a “hurry-
ing” state, with v0 substantially exceeding w0, then we take
the parameter Em, characterizing the magnitude of pedes-
trians’excitement above its average level, to be limited and
tie this limit to the hurry parameter:

Em = 1/(1 + H) . (13)

This reflects the fact that the more excited a pedestrian is
(and hence the larger value of H he has), the less “room”
he has to become even more excited.

Upon inspection of our simulation results, which
we display as movies similar to those found at
http://angel.elte.hu/∼panic, we found that three modifica-
tions to the social force were needed to achieve visible sim-
ilarities between these movies and common observations

of crowd behavior. These modifications are described in
the following subsections.

3.2 Density Effects in the Social Repulsion Force

The first of the aforementioned modifications concerns the
dependence of the magnitude of the social force on the
density of the crowd that surrounds a pedestrian. We ob-
served that if we use the magnitude of fsocial given by (11),
which is independent of the crowd’s density, the follow-
ing two kinds of unrealistic behavior would occur. First,
if there occurred a few-seconds delay in the crowd’s ex-
iting, pedestrians located at the outer edge of the crowd
(i.e., those farthest from the exit) would turn and run away
as a group. Figure 3a,b shows snapshots of the crowd just
before and a few seconds after this happens in a particular
simulation. Second, we also found that it was necessary to
use a greater repulsive force than that given by (11) when
the crowd is very dense because otherwise, even pedestri-
ans who tend to walk with “normal” speed of 1.5 m/sec
would begin to collide and clog the exit.

To correct these behaviors, we found it sufficient to in-
clude density effects into the magnitude of the force (11) in
the simplest possible (i.e., linear) manner. First, let us sep-
arate out the distance dependence on the repulsive social
force and reexpress (11) as

fsocial = f max
social exp

[−1.91r||
]

,

where f max
social is the magnitude of the social force. We now

modify this magnitude by multiplying it by the density
factor in the last square brackets, see equation (14).
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f max
social

m
=

w0 (1 + Em) exp
[
−1.91

(
D0 − 1

ρmax

)]
τ(1 − b)

[K0(1 − ρ̃) + K1̃ρ] . (14)

Here, ρ̃ = ρ · π
4
D2

0 is a nondimensional product of the
crowd density around a given pedestrian and the pedes-
trian’s area. As such, it gives an “average number” of other
pedestrians who can be found inside the area occupied by
one person, given the crowd density at a particular loca-
tion. In all crowds, except the most dense ones, where large
groups of pedestrians are squeezed against each other, this
normalized density is less than unity: ρ̃ < 1. Continuing
with equation (14), the first term in the last square brackets,
K0(1 − ρ̃), is there to gradually suppress the social repul-
sion as the person approaches a dense crowd. It is only
effective for people located at the crowd’s edge where they
see a relatively low density around themselves. The rea-
soning for this is that if a nonpanicking person approaches
a slowly moving crowd, he needs to become more patient
and willing “to wait in line,” which corresponds to reducing
his tendency to be repelled from others as he approaches
the crowd. We have found a value of K0 = 0.3 to work
well in correcting this first behavior. The second term, K1̃ρ,
with K1 > 1, is only substantial for large crowd densities,
where it corrects for the second behavior mentioned in the
introductory paragraph to this subsection. Results of nu-
merical simulations that helped us to determine the range
of the parameter K1 are presented in section 4 below. In
the meantime, we will continue with description of other
modifications to the HMFV model.

3.3 Orientational Dependence of the Social Force

The second manner in which we modified expression (11)
for the social force follows from the observation that a
pedestrian feels stronger repulsion if he faces the face
rather than the back of his fellow pedestrian. (Pedestrians
encounter each other face-to-face when several of them
come almost simultaneously to the same exit.) Note that
the considerations leading to equation (11) pertain only to
the case of face-to-back interactions because a pedestrian
in a file always faces the back and never the face of the
person in front of him. Therefore, our argument leading
to the estimate B ≈ 0.5 m is not necessarily valid for the
face-to-face social repulsion force. Yet, for the computa-
tional convenience, we decided to keep B = 0.5 m for
this force since we found no observations indicating that
it should be otherwise. In analogy with equation (14), we
postulate that this force depends on the crowd density in a
similar manner:

f max
social, face−to−face = F · (1 + Em) [1 · (1 − ρ̃) + K2 · ρ̃] .

(15)
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Figure 4. Weight factors multiplying the social repulsive forces
acting between pedestrians i and j and between pedestrians
i and k. Large circles: bodies of pedestrians; small circles:
noses of pedestrians, showing the directions where the latter
are looking; dashed lines show the boundaries of perception
angles of the pedestrians.

Note that the coefficient of (1 − ρ̃) has been absorbed into
the overall factor F , which, along with K2, is a new param-
eter of the model. Without exploring the possible range of
values for K2 giving realistic behaviors, we have found the
value of K2 = 1.5 to work quite well in our simulations,
and only this value has been used. Thus, F remains the
only parameter of the social force whose range of values
remains to be determined. We do this in section 4.

To summarize the results of this subsection so far, we
have allowed the magnitude of the social repulsion force
to vary between its face-to-back value, given by equa-
tion (14), and the larger face-to-face value, given by equa-
tion (15). An implementation of this into our code is de-
scribed next.

To obtain the final expression for the social repulsion
force that is exerted on pedestrian i by any other object
(i.e., another pedestrian or a wall) in the room, we mul-
tiply the face-to-back magnitude (14) by two weight fac-
tors, as shown schematically in Figure 4. The first of those,
W1(i, obj), depends on the angle φi,obj between the direc-
tion where pedestrian i is looking and the vector extending
from him to the object exerting the force:

W1(i, obj) =
 1, |φi,obj| < π/2

1 − (1 − b) π/2 ≤ |φi,obj| ≤ π

·(φi,obj−π/2)/(π
2
),

When the object is a wall, then the angle φi,obj is that be-
tween the direction where the pedestrian is looking and the
normal vector to the wall. The above form of W1 guaran-
tees that the pedestrian is repelled less from objects and
people who are outside of his perception angle. Also, note
that for a pair of pedestrians, i and j , φi,j �= φj,i in general.

The second weight factor determines whether we use a
face-to-face or face-to-back repulsion force. Clearly, this
factor must be different from unity only in the case of social
repulsion between two people (but not between a person
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and a wall), in which case it is defined by

W2(i, j) =


f max

social,face−to−face

f max
social,face−to−back

> 1, |φi,j | < π/2 and

|φj,i | < π/2

1, otherwise.

Here, the maximum values of the face-to-face and face-
to-back forces are given by equations (14) and (15). In
other words, this weight factor is different from unity
only if both pedestrians are looking in the direction of
one another. Note that unlike the first weight factor, for
which W1(i, j) �= W1(j, i), the second weight factor is
symmetric with respect to interchanging the pedestrians:
W2(i, j) = W2(j, i)—they both have to face each other
for the face-to-face interaction to occur.

3.4 Memory Effects

We now describe the third modification to the HMFV
model, which we found useful for making the motion of
pedestrians look more realistic. Namely, for reasons that
are explained shortly below, we found it is desirable to in-
troduce a memory that a pedestrian has about the location
of the exit(s). The corresponding memory parameter, M ,
is governed by the equation

dM

dt
= −M

τ±
+ δM(t)

τ±
, (16)

where τ+ and τ− are the typical times for learning and
forgetting about the location of the door, respectively. We
chose to use τ+ = 2 sec and τ− = 10 sec as reasonable
guesses. At each time step, we use either δM(t) = δM+ ≡
1 and τ+, if the door is within the pedestrian’s angle of
sight (2 ·π/2 rad), or δM(t) = δM− ≡ 0 and τ− otherwise.
The memory parameter so introduced is always between
0 and 1. The main reason for introducing memory is to
define the direction where the pedestrian “looks,” which,
in turn, determines the vector of his preferred velocity.
These quantities are calculated as follows:

�ei =
[ �vi

|�vi | (1 − ρ̃) + �ecollectivẽρ

]
(1 − M) + �ni, doorM ,

(17)

�v0 = �ei(1 + E)V0(1 − p) + 〈�vj 〉ip , (18)

where �ecollective = 〈�vj 〉i/|〈�vj 〉i | (see equation (2)), and �ni, door

is the unit vector pointing from the ith pedestrian to the
door. The term in the square brackets in (17) reflects the
tendency of a pedestrian to look in the direction of his
own motion when the crowd around him is light and to
look in the direction of the crowd’s average motion when
the crowd is very dense. However, as the pedestrian learns
where the door is, he looks mostly in that direction (until,

for whatever reason, he forgets about the door). This effect
is accounted for by the second term in (17). When that term
was absent (which would correspond to pedestrians with no
memory), then we observed the counterintuitive behavior
by a pedestrian where he begins to change his direction
chaotically as he gets into a dense, slowly moving crowd.
This occurs because changes to his velocity at every time
step become comparable in magnitude with the velocity
itself, and thus the sum of the two terms in equation (17)
would fluctuate strongly. Introducing the memory factor
gives stability to the direction in which the pedestrian seeks
to move and thereby eliminates this fluctuation.

4. Simulation Results

Here, we present some results of our numerical simula-
tions of the HMFV model with the modifications described
above. In this section, we determine the range of values of
K1 and F in equations (14) and (15) that lead to a real-
istic crowd behavior. An important criterion of whether
a behavior is realistic is whether it exhibits the “faster is
slower” effect [11]. Indeed, among the four effects men-
tioned there, which the HMFV model is able to model,
effects (1), (3), and (4), described in section 1, appear to
be qualitative rather than quantitative (i.e., they should per-
sist almost irrespective of what parameters for the social
force are used). Thus, we concentrate on the ability of our
modification of the HMFV model to reproduce the “faster
is slower” effect.

To that end, we simulate the evolution of 100 pedestri-
ans in a 12 m × 15 m room with one 1-meter-wide door and
record the number of pedestrians who are able to exit the
room within 100 seconds. We consider three cases where
the values of the pedestrian-preferred velocity, introduced
in equation (10b), are v0 = 1.5, 3, and 4.5 m/sec. The
first case corresponds to pedestrians tending to walk with
a “normal” speed, while the last two correspond to pedes-
trians fleeing the room in different degrees of hurry. Recall
that equation (12) related the velocity v0 to the parameter
Em, defined in equation (10c). Other essential parameters
of these simulations (see equations (1), (2)) are as follows:
k = 2.4 ·104 kg/s2, κ = 1, smax = 7 cm, p = 0 (pedestrians
are “independent” of each other), and repulsion of pedes-
trians from walls is 20% greater than among pedestrians.
Moreover, careful modeling of the parameters of the exit
door is required to obtain a realistic behavior of pedestrians
near that exit [18]. We model the door posts to be 25 cm
deep (protruding outside the room) and stiffer than both
walls and human bodies, with the corresponding elasticity
constant being kped−door = 4.8 · 104 kg/sec2. The remaining
parameters have been specified in the text and are summa-
rized in Table 1. We also add to the forces a small amount
(up to 5% of the magnitude of the force) of noise, which
serves to help break down possible deadlocks occurring
when two pedestrians meet face-to-face at the door.

The number of people exiting the room in 100 sec and
having the preferred velocities v0 = 1.5, 3.0, and 4.5 m/sec
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Table 1. Parameters of the modified Helbing-Molnár-Farkas-Vicsek (HMFV) model and their values used in our simulations

Value
Symbol Description Used

Aexit Maximum attraction to an exit −mv0/τ (see below)
b Back/front pedestrian perception ratio 0.3
B Fall-off length of social repulsive force 0.5 m

Bexit Fall-off length of attraction to exits 15 m
D0 Diameter of pedestrian 0.7 m
Em Maximum of pedestrian excitement factor 1.0
fOE Force “unsqueezing” pedestrians in the OAE Four pedestrian weights
F Magnitude of face-to-face social repulsive 300-900 N
k Spring constant 2.4 · 104 kg/sec2

K0 “Willingness to wait” factor for face-to-back orientation 0.3
K1 High-density correction factor for face-to-back orientation 1.2-2.4
K2 High-density correction factor for face-to-face orientation 1.5
κ Coefficient of sliding friction 1
m Pedestrian mass 80 kg
p Commotion parameter 0
ri Radius of pedestrian 0.35 m

ρmax Maximum pedestrian density 5.4 ped/m2

smax Maximum radial squeezing distance 0.07 m
T Excitement lag time 2 sec
τ Pedestrian reaction time 0.5 sec
τ+ Memory learning time 2 sec
τ− Memory forgetting time 10 sec
v0 Pedestrian’s preferred isolated speed 1.5, 3.0, 4.5 m/sec
w0 Observed isolated pedestrian speed 1.34 m/sec
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Figure 5. Number of pedestrians who exit a 12 × 15-meter
room through a single 1-meter door, plotted as a function of
the magnitude of the face-to-face repulsion parameter F (see
equation (13)). Parameter K1 = 1.8 (see equation (12)). Other
parameters are specified in the text.Squares, open circles, and
closed circles correspond, respectively, to preferred pedestrian
velocities of v0 = 1.5, 3, and 4.5 m/sec.The three sets of curves
are slightly shifted relative to each other to increase visibility.

is shown in Figure 5 for a fixed value of the parameter K1 =
1.8 (see equation (14)). The free parameter that we vary in
this set of simulations is the magnitude of the face-to-face
social repulsion force F , defined in equation (15). Each

point in Figure 5 represents an average over 25 simulations
with randomly selected initial locations and velocities of
the pedestrians. Error bars, showing the standard deviations
from the mean values, are also plotted. It is clear from
these results that our modification of the HMFV model with
300 N ≤ F ≤ 700 N does indeed show that the “fastest”
pedestrians, who prefer to exit at 4.5 m/sec, would actually
exit at a much lower rate than the “moderately fast” ones
(with v0 = 3 m/sec). In movies that we made from the
simulation results, we also observed arc-shaped clogging
at the door, which has been reported in previous studies
(see http://angel.elte.hu/∼panic).

The next set of simulations (see Fig. 6) shows a depen-
dence of the number of exiting pedestrians on the coeffi-
cient K1 for a fixed value of F = 600 N. The “faster is
slower” effect is evident here as well for K1 ≤ 1.8. How-
ever, this effect is violated in the simulations presented
in both Figures 5 and 6 when the repulsive force, either
face-to-face or face-to-back, is “too high” in a very dense
crowd. This is manifested by a dramatic increase in the
number of exiting pedestrians with the highest simulated
value of the preferred speed, v0 = 4.5 m/sec, when either
F or K1 exceeds certain critical values. This effect may be
explained as follows: the stronger the repulsion is among
pedestrians, the further away from each other they tend
to stay. For the “fastest” pedestrians, who become most
densely packed near the exit, the additional distance that
they gain by repelling stronger may be sufficient to reduce
their squeezing so as to, in turn, reduce the friction and
pushing forces that make them clog the door and prevent
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Figure 6. Same as Figure 5, except the number of exiting
pedestrians is shown as a function of the parameter K1 with F
= 600 N. Notations are the same as in Figure 5.

exit. It is not clear, however, why the same explanation, at
least partially, does not apply to pedestrians who prefer to
move at 3 m/sec.

Furthermore, we mention two observations that either
go counter to the results of Helbing, Farkas, and Vicsek
[11] or that we cannot fully explain based on our intu-
ition. First, in Helbing, Farkas, and Vicsek [11, Fig. 1c], it
was pedestrians with v0 = 1.5 m/sec who were found to
exit at the highest rate, with the exit rate decreasing with
the increase of v0, while we found that pedestrians with
v0 = 3 m/sec exit the room most quickly. The exit times
reported in Helbing, Farkas, and Vicsek [11] are also sub-
stantially shorter than those deduced from our Figures 5
and 6. Second, Figure 6 suggests that the number of mod-
erately fast pedestrians, with v0 = 3 m/sec, who are able to
exit the room decreases with the increase of the parameter
K1, while that number increases for the pedestrians with
v0 = 4.5 m/sec. The above observations, pointing to dif-
ferences between simulations of the original HMVF model
and our modification of it, call for more observational data
on pedestrian egress of a room under various conditions.

5. Conclusions

We have explored a range of numerical values of param-
eters of the model proposed by Helbing and Molnár [10]
and Helbing, Farkas, and Vicsek [11]. We have proposed a
number of modifications to the model to produce a more re-
alistic behavior of an isolated pedestrian or a small number
of pedestrians while maintaining the realism of the original
HMFV model for simulating large crowds.

In section 2, we proposed and implemented a numerical
algorithm that allowed one to use an explicit numerical in-
tegration scheme for a system of evolution equations and

that guaranteed (in most situations) that pedestrians do not
overlap. For N = 100 pedestrians exiting a room via a
single door, this algorithm provided up to a threefold re-
duction of the computational time compared to a standard
implicit numerical solver and an over nine- to over three-
fold reduction compared to a standard explicit solver with
an adaptive step size. Employing this algorithm, we were
able to use a realistic value of the contact force that is on
the order of two to four human weights, compared to more
than seven human weights used in Helbing, Farkas, and
Vicsek [11]. We note, however, that in both the original and
modified models, the maximum contact force significantly
exceeds the weight of a single person. It may be interest-
ing to devise an experiment whereby that force could be
measured.

Next, in section 3, we discussed the choice of parame-
ters for the social repulsive force among pedestrians. More-
over, we demonstrated how to obtain the fall-off length of
that force from the empirical velocity versus density curve
[16] of pedestrian flows in walkways. As explained in sec-
tion 1, the value of 0.5 m for this parameter appears to
be more realistic than the value 0.08 m, used in Helbing,
Farkas, andVicsek [11], as far as the motion of a small num-
ber (e.g., two) of pedestrians is concerned. However, this
step came at the expense of introducing subsequent mod-
ifications to the form of the social repulsive force. These
modifications were needed to maintain realism of the sim-
ulated behavior of large crowds, as exhibited by the origi-
nal HMFV model. Specifically, we had to allow the social
force to depend on the density of the crowd surrounding a
given pedestrian, as well as on whether the pedestrian ex-
erting the force is orientated with his face or back toward
the pedestrian on whom the force is exerted. We also found
an advantage in assigning to pedestrians a memory of the
location of exit(s).

In section 4, we verified that the qualitative results pro-
duced by the modified model remained essentially the same
as the corresponding results of the original model by pre-
senting numerical results showing how the time in which
pedestrians exit a room depends on parameters of the social
force. Our results did exhibit the presence of the “faster is
slower” effect, originally demonstrated in Helbing, Farkas,
and Vicsek [11]. However, the preferred velocity for which
the quickest exit time was observed in our simulations
was around 3 m/sec—that is, higher than the 1.5 m/sec
reported in Helbing, Farkas, and Vicsek [11]. This discrep-
ancy calls both for experimental data on exit times from a
room and possibly for further modifications of the HMFV
model with moderately long-range repulsion forces. Find-
ing those modifications could be a subject for future re-
search.

We would like to conclude with a few thoughts concern-
ing crowd modeling using the model based on the social
force concept. The main strength of the HMFV model,
based on the notions of social repulsive forces that keep
pedestrians at a distance from each other, is that it does
not require any “decision making” by pedestrians. This,
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however, may also be a weakness of this model. Namely, in
many simulations of exiting pedestrians, we observed that,
often, two nonpanicking pedestrians would stay face-to-
face in front of the door for quite a while (10 seconds and
even more) without either of them making a decisive step
toward the door and the other pedestrian letting the way.
This does not appear to be representative of what actually
happens in reality, where similar deadlocks, often caused
by “politeness,” are normally resolved quicker. Therefore,
it seems that the output of the pedestrian model could be-
come even more realistic if some amount of “decision-
making” capability were assigned to the pedestrians.

Finally, no matter which specific model is implemented,
it will be of limited use until its results can be compared
against measured data on pedestrian dynamics. Thus, the
greatest need in this field at the moment seems to be to
obtain observational data relevant to the existing models.
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