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Abstract

The Petviashvili’s iteration method has been known as a rapidly converging numerical

algorithm for obtaining fundamental solitary wave solutions of stationary scalar nonlinear

wave equations with power-law nonlinearity: −Mu+up = 0, where M is a positive definite

self-adjoint operator and p = const. In this paper, we propose a systematic generalization

of this method to both scalar and vector Hamiltonian equations with arbitrary form of

nonlinearity and potential functions. For scalar equations, our generalized method requires

only slightly more computational effort than the original Petviashvili method.

Keywords: Petviashvili method, Nonlinear evolution equations, Solitary waves, Iteration

methods.

Mathematical subject codes: 35Qxx, 65B99, 65N99, 78A40, 78A99.
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1 Introduction

For most nonlinear wave equations arising in physical applications, their solitary wave so-

lutions can be obtained only numerically. The recent interest of the research community

in such applications as Bose-Einstein condensation and light propagation in nonlinear pho-

tonic lattices has led to a number of publications where numerical methods for obtaining

solitary waves in more than one spatial dimension were studied. Most of these recent stud-

ies focus on the so-called imaginary-time evolution method (ITEM), also referred to as the

normalized gradient flow method [1, 2, 3, 4]. In this method, one seeks a solitary wave with

a specified power, or L2-norm, by numerically integrating the underlying nonlinear wave

equation with the evolution variable t being replaced by i t (hence the name ‘imaginary-

time’). A key step of this technique is the normalization of the solution’s L2-norm to a given

value at each iteration; it is this step that ensures both the convergence of the method (un-

der known conditions [4]) and the fact that the solitary wave so obtained has a specified

power1. Since the power P and the propagation constant µ of a solitary wave are related

by a beforehand unknown dependence P = P (µ), then the propagation constant in the

ITEM cannot be specified and is instead computed using the available approximation to

the stationary solution at each iteration.

In some applications, it is more convenient to seek a solitary wave with a specified

propagation constant rather than with a specified power. This is the case, for example,

in nonlinear photonic lattices, where the value of the propagation constant conveniently

parametrizes the localized solution within a spectral bandgap. One numerical technique

that can be used in this case is the Newton’s method or any of its modifications (see,

e.g., [5]). While this method is known to be very fast and also to be able to converge

to both fundamental and excited-state solitary waves, it also has drawbacks. First, when

applying the Newton’s method in more than one spatial dimension, one has to invert a

matrix which is not tridiagonal. To do so time-efficiently, one needs to use one of the

alternating direction implicit methods, which require a certain programming effort. Second,

the Newton’s method often uses a finite-difference discretization of the underlying equation,

in which case the accuracy of the obtained solution is only polynomial in ∆x, where ∆x

is the typical step size of the spatial grid. Finally, it has recently been shown that the

Newton’s method may suffer erratic failures due to small denominators [6]. On the other

hand, the ITEM mentioned in the previous paragraph is free of these drawbacks. Namely,

the inversion of the matrix representing the differential operator [1, 4] is done using the

Fast Fourier Transform, which is a built-in function in major computing software (such as

Matlab and Fortran) for one and two spatial dimensions and can be readily extended to
1In a modification of the ITEM, proposed in [4], one normalizes the peak amplitude (the L∞-norm) of

the solitary wave rather than the power. The simulations reported in [4] indicate that this version of the

ITEM is faster and converges for a larger class of solutions than the original ITEM.
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three dimensions. Also, since the operator of spatial differentiation is implemented using the

spectral method, the accuracy of the ITEM is exponential in ∆x (provided that the solution

is smooth). In addition, the ITEM does not have the small denominator issue (although in

most cases it converges only to a dynamically stable fundamental solitary wave [4]). Thus,

it would be desirable to have a numerical method that would possess the above advantages

of the ITEM while allowing the user to compute the solitary wave with a specified value of

the propagation constant rather than with the specified power.

Such a method has long been known for a class of nonlinear wave equations whose

stationary form is

−Mu + up = 0 , (1.1)

where u is the real-valued field of the solitary wave, M is a positive definite and self-adjoint

differential operator with constant coefficients, and p is a constant. For example, the solitary

wave of the nonlinear Schrödinger equation in D spatial dimensions,

iUt +∇2U + |U |2U = 0 , U(|x| → ∞) → 0 ,

∇2 ≡ ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
D

,
(1.2)

upon the substitution

U(x, t) = eiµtu(x) (1.3)

satisfies the equation

−(µ−∇2)u + u3 = 0 , (1.4)

which has the form (1.1) with

M = µ−∇2 (1.5)

and p = 3. Here µ is the propagation constant of the solitary wave. We now describe

the idea of the aforementioned method, which was proposed in 1976 by V. Petviashvili [7]

and has been referred to in the literature by his name. Petviashvili proposed the following

iteration algorithm:

un+1 = M−1up
n ·

( 〈un, up
n〉

〈un,Mun〉
)−γ

, (1.6)

where un is the approximation of the solution at the nth iteration. In scheme (1.6), the

operators M−1 and M can be conveniently implemented via the Fourier transform, e.g.:

M−1f(x) = F−1
[ F [f ]
F [M ]

]
, (1.7)

where
F [f ] =

1
(
√

2π)D

∫ ∞

−∞
f(x) e−ikx dx ≡ f̂(k) ,

F−1[f̂ ] =
1

(
√

2π)D

∫ ∞

−∞
f̂(k) eikx dk ,

(1.8)
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and F [M ] is the Fourier symbol of operator M . For example, for the operator (1.5),

F [M ] = µ + k2. Also, the inner product in (1.6) and in what follows is defined in the

standard way:

〈f, g〉 =
∫ ∞

−∞
f∗(x)g(x) dx . (1.9)

(In fact, Petviashvili stated his iteration scheme using the inner product in Fourier space

rather than its equivalent form (1.9).) Note that the quotient in the parentheses of (1.6)

equals unity when un = u, the exact solitary wave; yet the presence of this quotient ensures

the convergence of the Petviashvili method when the value of the exponent γ is taken to be

in a certain range. Namely, in [7], where he considered the particular case p = 2, Petviashvili

also formulated a mnemonic rule which yields, for any p, the value

γ =
p

p− 1
, (1.10)

for which the fastest convergence of the iterations (1.6) occurs. The origin of this optimal

value of γ and the convergence conditions of the Petviashvili method for Eq. (1.1) were

rigorously established recently in Ref. [8].

The Petviashvili method possesses the two advantages of the ITEM which were men-

tioned in the second paragraph of this Introduction. Namely, the convenience of its im-

plementation does not depend on the number of spatial dimensions, and its accuracy for

a smooth solution is exponential in ∆x. Moreover, the Petviashvili method, when it con-

verges, is quite fast. For example, in the case of the one-dimensional nonlinear Schrödinger

equation (1.4), if one starts with the initial condition u0 = e−x2
, one reaches the exact

solution with the accuracy of 10−10 in just over 30 iterations. Here and below we define the

accuracy as

En =
(〈un − un−1, un − un−1〉

〈un, un〉
)1/2

. (1.11)

Recently, a number of studies reported various extensions of the Petviashvili method to

equations that are of a form different than (1.1). In Refs. [9] and [10], ad hoc modifications

of the Petviashvili method were proposed for the following stationary wave equations, arising

in the theory of nonlinear photonic lattices:

∇2u + V0(cos2 x + cos2 y) u + u3 = µu , (1.12)

∇2u− E0 u

1 + V0(cos2 x + cos2 y) + u2
= µu . (1.13)

In Ref. [11], another ad hoc modification of the Petviashvili method was proposed for the

so-called generalized Gardner equation, which has a mixed quadratic-cubic nonlinearity:

(
1− ∂2

x − a∂2
y + ∂−2

x ∂2
y

)
u− u2 + bu3 = 0, a > 0. (1.14)

However, it is not straightforward to generalize the approaches of Refs. [9, 10, 11] to

equations with an arbitrary form of nonlinearity. A different, systematic, modification of
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the Petviashvili method was proposed in Ref. [12]. This method, referred to in [12] as the

spectral renormalization, can be extended to equations with arbitrary types of nonlinearity

and also to systems of coupled equations. One can show that for a single equation with power

nonlinearity (1.1), the spectral renormalization method reduces to the following scheme:

un+1 = M−1up
n ·

(
〈un,M−1up

n〉
〈un, un〉

)− p
p−1

, (1.15)

which is slightly different from the original Petviashvili method (1.6), (1.10). (The original

Petviashvili form (1.6) of the spectral renormalization method can be restored if one makes

a simple modification in Eq. (6) of Ref. [12].) Moreover, it can be verified that for

equations that contain a power-law nonlinear term and a potential, as, e.g., Eq. (1.12),

the spectral renormalization method with the slight modification mentioned in parentheses

above reduces to the method of Ref. [9]; see Example 3.2 in Section 3.2 for more details.

However, it is not known under what conditions the spectral renormalization method, as

well as the aforementioned methods of Refs. [9, 10, 11], would converge for a general

equation or a system of equations. Also, as a minor computational issue about the spectral

renormalization method, we note that it would require some nontrivial programming effort

to apply it to equations with a non-algebraic nonlinearity, e.g., to

∇2u + sinhu = µu . (1.16)

In this paper, we present a generalization of the Petviashvili method which can be

applied to a wide class of nonlinear wave equations (including, e.g., (1.16)) to obtain some

of their solitary wave solutions. The idea of this generalization is based on the analysis of

the original Petviashvili method found in Ref. [8]. We also show how our method can be

applied to systems of coupled nonlinear equations. The only restriction on the underlying

physical problem is that it be Hamiltonian. The approximate convergence conditions of our

method for a single equation are stated and discussed, and they can be straightforwardly

generalized to the case of several coupled equations.

The main part of this paper is organized as follows. In Section 2, we first recast the

original Petviashvili method into an equivalent form. All subsequent analysis will be carried

out for that equivalent formulation of the Petviashvili method. Also in Section 2, we give

a summary of the results of Ref. [8] in the form that will be suitable for a subsequent

generalization. This generalization for a single wave equation is presented in Section 3.

There, we also give examples of the applications of the new method. Next, in Section 4,

we extend this method to systems of coupled nonlinear wave equations and present the

corresponding examples. Thus, Sections 3 and 4 contain the two main results of this study,

which we summarize in the concluding Section 5. The paper also contains four Appendices,

whose purposes are described in Sections 3 and 4.

The reader who is only interested in the main ideas of the generalized Petviashvili

method, but not in technical details of its practical implementation, can skip the following
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material without sacrificing the understanding: all Remarks in Section 3.1 except Remark

3.1; the entire Section 3.2; all Remarks in Section 4 except Remark 4.1; the entire Section

4.2; and the Appendices.

2 Review of the analysis of the Petviashvili method for equa-

tions with power-law nonlinearity

In this Section, we first reformulate the Petviashvili method into a different, yet equivalent,

form. The precise meaning of the word “equivalent” will be stated shortly. Then we review

the results of Ref. [8] concerning the convergence of the Petviashvili method for equations of

the form (1.1). The way in which we present these results is different from the way they were

originally presented in [8]. This reformulation of both the original Petviashvili method and

the results of [8] will prepare the ground for our generalization of the Petviashvili method

in Section 3.

To recast the original algorithm (1.6) into a different form, let us begin by introducing

a notation. Denote the stationary equation whose solitary wave we want to find by

L0u = 0 . (2.1)

Thus, in the case of Eq. (1.1), operator

L0 = −M + up−1 . (2.2)

Here operator M has the properties listed after Eq. (1.1), and u is the exact solitary wave.

Let us rewrite the iteration algorithm (1.6) in the form:

un+1 − un =
(
un + M−1[−Mun + up

n]
) (

1 +
〈un,−Mun + up

n〉
〈un,Mun〉

)−γ

− un

=
(
un + M−1(L0u)n

) (
1 +

〈un, (L0u)n〉
〈un,Mun〉

)−γ

− un , (2.3)

where

(L0u)n ≡ −Mun + up
n .

Next, let us linearize the above equation near the exact solution u by substituting into it

un = u + ũn, |ũn| ¿ |u| (2.4)

and neglecting all terms of order O(ũ2
n) and higher. Using the equation, (2.1), satisfied by

the solitary wave u, one obtains the linearized algorithm (2.3):

ũn+1 − ũn =
(

M−1Lũn − γ
〈u, Lũn〉
〈u,Mu〉u

)
∆τ , (2.5)

∆τ = 1 , (2.6)

7



where L is the operator of the linearized Eq. (2.1):

Lũn ≡ (−M + p up−1)ũn . (2.7)

We now interpret Eq. (2.5) as the explicit Euler discretization of the following continuous

linear flow:

ũτ = M−1Lũ− γ
〈u, Lũ〉
〈u,Mu〉u , (2.8)

where τ is the auxiliary (nonphysical) “time” variable. In the last and key step of this

derivation, we “de-linearize” the above continuous flow:

ūτ = M−1L0ū− γ
〈ū, L0ū〉
〈ū, Mū〉 ū , (2.9)

where the notation ū simply signifies that this variable is the “current” approximation to

the exact solitary wave u. That is, if one linearizes Eq. (2.9) via a continuous analogue of

(2.4), one will obtain Eq. (2.8). Finally, we discretize Eq. (2.9) in time using the explicit

Euler method:

un+1 − un =
(

M−1(L0u)n − γ
〈un, (L0u)n〉
〈un,Mun〉 un

)
∆τ , (2.10)

where (L0u)n is defined after Eq. (2.3). Algorithm (2.10) with ∆τ = 1 is equivalent

to the original Petviashvili algorithm (1.6) in the sense that the linearizations of both

algorithms yield the same pair of equations (2.5) and (2.6). In the remainder of this paper

we will, therefore, refer to algorithm (2.10) also as the Petviashvili method. Moreover, the

generalized Petviashvili methodproposed in Section 3, which is one of two main results of

this paper, will be based on this reformulated version of the original algorithm (1.6).

Let us point out two reasons why Eq. (2.10) is preferred over Eq. (1.6) for the subsequent

generalization of the method. First, the ability to select the value of the new parameter

∆τ makes the convergence conditions of scheme (2.10) more relaxed than those of the

original scheme (1.6), as shown by Eq. (2.24) below; see also a related discussion about the

ITEM in [4]. Second, when trying to generalize algorithm (1.6), one may encounter the

situation where the quotient in the parentheses is negative and hence cannot be raised to

a non-integer power (without making un+1 complex-valued); see, e.g., [9, 10]. In contrast,

algorithm (2.10) is free of this difficulty.

We now come to the second part of this Section where we will review those of the

calculations of Ref. [8] which are essential for our own analysis given in the next Section.

Specifically, we will exhibit the conditions under which iterations (2.10) converge to the

solitary wave u, that is, when the error ũn tends to zero as n →∞. To find out when this

occurs, one substitutes the following decomposition of ũn into (2.5):

ũn(x) = anu(x) + zn(x) , (2.11)

where an is a scalar (i.e., not a function of x) and zn(x) is chosen to be orthogonal to Mu

at every iteration:

〈zn,Mu〉 = 0, or 〈Mzn, u〉 = 0 for all n. (2.12)
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The second orthogonality relation follows from the first one because, by our assumption, M

is a self-adjoint operator.

Before we proceed, let us first point out a relation that will be of crucial importance

both for the remainder of this section and for Sections 3 and 4. Namely, for Eq. (1.1), we

use Eqs. (2.7), (2.2), and (2.1) to obtain:

Lu = (p− 1)Mu, (2.13)

or, equivalently,

M−1Lu = (p− 1)u. (2.14)

Thus, u is an eigenfunction of operator M−1L, which is closely related to the operator on

the r.h.s. of Eq. (2.5). Equation (2.14) is the key relation mentioned above; establishing

its counterpart for a more general Eq. (3.1) below will correspondingly be one of the key

steps in the generalization of the Petviashvili method in Section 3. Let us note that from

Eqs. (2.12) and (2.13) there follow the orthogonality relations

〈zn, Lu〉 = 0, or 〈Lzn, u〉 = 0 for all n. (2.15)

Here we have used the fact that L is self-adjoint.

We now continue with the analysis of the evolution of the error ũn with n. Substitut-

ing decomposition (2.11) into Eq. (2.5) and using relation (2.13) and the second of the

orthogonality conditions (2.15), one obtains:

(an+1 − an)u + (zn+1 − zn) = M−1Lzn ∆τ + anu(p− 1)(1− γ)∆τ . (2.16)

Taking the inner product of this equation with Mu and using the orthogonality conditions

(2.12) and (2.15), one gets

an+1 = an (1 + (p− 1)(1− γ)∆τ ) . (2.17)

Thus, when

γ = 1 +
1

(p− 1)∆τ
, (2.18)

an+1 = 0, i.e. the component of the error ũn+1 “along” the eigenfunction u is zero (in

the order O(ũn)), no matter what this component was at the nth iteration. Note that for

∆τ = 1, formula (2.18) yields the optimal value (1.10) of γ found empirically by Petviashvili.

When an and an+1 are related by expression (2.17) (for any γ), the component zn of

the error satisfies:

zn+1 =
(
1 + ∆τ M−1L

)
zn . (2.19)

Since L is self-adjoint and M both positive definite and self-adjoint, eigenfunctions ψj of

M−1L, satisfying eigen-relations

M−1Lψj = λjψj , (2.20)
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form a complete set in the space of square-integrable functions and are mutually orthogonal

to each other with weight M :

〈ψj , Mψk〉 = δjk . (2.21)

Then zn and zn+1 can be expanded over this set:

zn =
∑

j, ψj 6=u

Zj,nψj , (2.22)

where Zj,n are the expansion coefficients. The term with ψj = u (see (2.14)) is excluded

from the above sum because zn is orthogonal to u with weight M (see (2.12) and (2.21)).

Thus, if the eigenvalue (p − 1), corresponding to the eigenfunction u, is the only positive

eigenvalue of M−1L, then zn is expandable only over the eigenfunctions with nonpositive

eigenvalues λj , and the expansion coefficients satisfy

Zj,n+1 = (1 + λj∆τ)Zj,n . (2.23)

As long as ∆τ is taken sufficiently small to ensure that

1 + λmin∆τ > −1 , (2.24)

then |Zj,n| → 0 as n → ∞, and hence limn→∞ |zn| = 0. Given that an = 0 (in the order

O(ũn)) at every iteration when γ is chosen according to (2.18), decomposition (2.11) implies

that |ũn| → 0 as n → ∞. That is, the Petviashvili method, under the above conditions,

converges to the solitary wave u.

3 The generalization of the Petviashvili method for a single

nonlinear wave equation with a general form of nonlinear-

ity

This section contains the first main result of this study. Namely, we will show how the

Petviashvili method can be generalized for an equation of the form

L0u ≡ −Mu + F (x, u) = 0, u(|x| → ∞) → 0, (3.1)

where F (x, u) is any real-valued function. In Section 3.1, we will derive and discuss the

algorithm of this method and in Section 3.2 will illustrate it with examples.

3.1 Derivation of the generalized Petviashvili method

Recall that one of the key results of Section 2 was Eq. (2.13). It was that relation on

which the usefulness of decomposition (2.11) was based; see the derivations of Eqs. (2.16)

and (2.17). Therefore, we will seek to obtain a counterpart of (2.13) for Eq. (3.1). To

make the main problem of obtaining such a counterpart clearer, consider a particular case
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of that equation that arises, e.g., in the theories of Bose-Einstein condensation and light

propagation in nonlinear photonic lattices:

L0u ≡ −Mu + V (x)u + u3 = 0, u(|x| → ∞) → 0. (3.2)

In the aforementioned physical applications, M is given by Eq. (1.5), and V (x) is some

potential. The linearized operator L in this case is

L = −M + V (x) + 3u2, (3.3)

and hence

Lu = −Mu + V (x)u + 3u3 = 2u3 = 2(M − V (x))u 6= const ·Mu . (3.4)

Thus, an exact counterpart of Eq. (2.13) for a general stationary wave equation (3.1) cannot

be obtained.

As a solution to the above problem, we propose to seek such a positive definite and

self-adjoint operator N that the counterpart of (2.13) would hold approximately:

Lu ≈ αNu . (3.5)

Here both N and the constant α remain to be determined. Given such N and α, we then

construct the following counterpart of algorithm (2.10):

un+1 − un =
(

N−1(L0u)n − γ
〈un, (L0u)n〉
〈un, Nun〉 un

)
∆τ , (3.6)

where

γ = 1 +
1

α∆τ
. (3.7)

The algorithm given by the iteration scheme (3.6), (3.7) is the main result of this section.

We will refer to it as the generalized Petviashvili method. All the steps of the analysis in

the second part of Section 2 can now be repeated, leading to the following approximate (see

below) convergence condition for this new method:

If operator N−1L has only one positive eigenvalue (which approximately equals α) and if

the step size ∆τ satisfies inequality (2.24), where now λmin is the most negative eigenvalue of

N−1L, then the generalized Petviashvili method converges to the exact solitary wave u(x).

Two comments are in order here. First, the component of the error ũn “aligned along”

the eigenfunction of N−1L corresponding to the (only) positive eigenvalue will be annihilated

in the generalized Petviashvili method not completely, as in the original method (1.6), (1.10),

but approximately. This is due to the fact that u and α are no longer the exact eigenfunction

and eigenvalue of N−1L, and hence taking γ according to Eq. (3.7) does not make an in

(2.11) exactly zero at each iteration. That, however, is not really required for convergence:

It is sufficient that |an+1| < |an| for all n, which is a much more relaxed condition than
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an+1 = 0; see also Remark 3.3 below. Second, the reason why the convergence condition

stated above in italic is approximate rather than exact, as the similar condition for the

original Petviashvili method stated after Eq. (2.24), is the following. Since zn in (2.11) is

no longer exactly orthogonal to Nu, then the corresponding counterpart of Eq. (2.19) for

method (3.6), (3.7) will hold only approximately. Therefore, in principle it is conceivable

that if the exact eigenvalue λ2 of N−1L is close to zero and negative, the corresponding

eigenvalue of the linearized operator on the r.h.s. of (3.6) will be slightly positive (or vice

versa). However, such cases are expected to be rare in applications of this method. In fact,

we did not encounter them in any of the equations to which we applied algorithm (3.6),

(3.7).

We will now show how the operator N and constant α in (3.5) can be determined in

an efficient way. It should be noted that we cannot give the most general recipe in this

regard, simply because there are infinitely many possibilities here, as it will become clear

as we proceed. Instead, we will consider in detail only one typical case that arises in many

applications and will show how N can be found for it. At the end of this subsection we will

also briefly comment on another example of finding N .

Suppose that M in Eq. (3.1) is given by (1.5). The simplest ansatz for N is then

N = c−∇2, (3.8)

where c is to be determined from the condition that “vector” Nun be “aligned along”

“vector” Lun as closely as possible. Therefore, we require that

〈Nun, Lun〉2
〈Nun, Nun〉〈Lun, Lun〉 = max . (3.9)

Differentiating the l.h.s. of the above condition with respect to c and setting the result to

zero, one obtains
〈Ncun, Lun〉
〈Ncun, Nun〉 =

〈Nun, Lun〉
〈Nun, Nun〉 , (3.10)

where Nc ≡ ∂N/∂c = 1. The substitution of expression (3.8) into (3.10) yields the value

for c at the nth iteration:

cn =
〈un, Lun〉〈∇2un,∇2un〉 − 〈∇2un, Lun〉〈un,∇2un〉
〈un, Lun〉〈un,∇2un〉 − 〈∇2un, Lun〉〈un, un〉 . (3.11)

It is straightforward to verify that for equations with power-law nonlinearity (1.1) with M

of the form (1.5), Eq. (3.11) yields c = µ and hence N = M .

Now that N has been determined from (3.8) and (3.11), the approximate eigenvalue α

in (3.5) can be found from

αn =
〈un, Lun〉
〈un, Nun〉 . (3.12)

Thus, Eqs. (3.11), (3.12), (3.6), and (3.7) provide all the necessary information for the

implementation of the generalized Petviashvili method.
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Before commenting on another example of finding N , we will make several remarks

regarding implementation of Eqs. (3.11) and (3.12) in a code. As noted at the end of

the Introduction, the reader who is not interested in such technical details may read only

Remark 3.1 and then proceed directly to Section 4.

Remark 3.1 There is no apriori guarantee that the constant c obtained from (3.11)

will be positive, as is required in order to make operator N positive definite. However, in

all of the examples considered below we monitored cn and observed it being positive as long

as we started with a “reasonable” initial condition u0.

Remark 3.2 This concerns the calculation of quantity Lun in Eq. (3.11). Note that

for any number κ,

(Lu)n + κ(L0u)n ≡ (−Mun + Fu(x, un)un) + κ (−Mun + F (x, un))

= Lu + (Lu)uũn + κLũn + O(ũ2
n)

= Lu + O(ũn) , (3.13)

i.e., in the leading order this expression is independent of κ. In (3.13), Fu ≡ ∂F/∂u,

(Lu)u ≡ ∂(Lu)/∂u, and we have used the fact that L0u = 0. However, in practice, the

initial condition u0 may not be “sufficiently close” to the exact solution u. This will make

the O(ũn)-correction comparable in size with the first term on the r.h.s. of (3.13), which will

affect the values of cn, αn, and γn in (3.11), (3.12), and (3.7). This, in turn, may prevent

the algorithm from converging. In our simulations, we found that this can indeed occur.

Then we found, empirically, that calculating Lun in (3.11) by using (3.13) with κ = −1,

i.e.,

Lun ≡ (Lu)n − (L0u)n = Fu(x, un)un − F (x, un) , (3.14)

greatly increases the range of the initial conditions u0 for which the above algorithm con-

verges. For example, in the case of Eq. (3.2), Lun = 2u3
n.

Remark 3.3 The approximate eigenvalue α can be calculated by any formula that

is equivalent to (3.12) had (3.5) held exactly rather than approximately. For example, an

alternative to (3.12) may be taken as

αn =
〈Nun, Lun〉
〈Nun, Nun〉 . (3.15)

However, in all the examples considered below, we found that the convergence rate was the

same no matter whether (3.12) or (3.15) had been used. This is so because the value of α

affects only the value of γ, which, in its turn, determines how far the ratio (an+1/an) is from

zero. But if this ratio is, say, 0.2 instead of 0.05 (or vice versa) due to a slight variation in

γ, this does not affect the convergence rate, since the latter is determined, in most if not

all cases, by the much slower decay of ‖zn‖ ≡
√〈zn, zn〉.

Remark 3.4 For some equations, α can be quite small (say, on the order of 0.01 or

less). We encountered such cases among the examples considered in Section 4. A small α
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yields a large value of γ; see (3.7). We found it to be beneficial to artificailly limit such

large γ’s by using, e.g.,

γ =
γaux√

1 + (γaux/γmax)2
, (3.16)

where γaux is defined by the r.h.s. of (3.7) and γmax is some large number specific to the

problem at hand. The reason why such a limiting may be needed is as follows. Since u is

not an exact eigenfunction of N−1L, is can be represented as

u = U1ψ1 +
∑

j≥2

Ujψj ,

where ψj are the true eigenfunctions of N−1L, and the expansion coefficients Uj are such

that |Uj | ¿ |U1| for j ≥ 2. That is, u contains “small pieces” of eigenfunctions other than

ψ1 (the latter is the eigenfunction that u approximates). While the value of γ as given

by (3.7) is chosen so as to annihilate the ψ1-component of the error ũn, it is not intended

to annihilate any of the other ψj-components. On the contrary, if γ is “too large”, this

may amplify some of those components, which would then result in the divergence of the

iterations. Obviously, this could not have occurred in the case of Eq. (1.1), since there

u = ψ1 and thus all Uj = 0 for j ≥ 2.

Remark 3.5 Finally, we note that the computation of cn at every iteration slows

down the execution of the code because such a computation requires evaluation of the inner

products 〈un, Lun〉 and 〈∇2un, Lun〉, which are not used in the iteration equation (3.6)

itself. However, by the same argument as in Remark 3.3, it is sufficient to compute cn, αn,

and γn only until the solution reaches some low accuracy (defined by Eq. (1.11)), say, 10−3,

and then carry on the rest of the iterations using the values of cn and γn computed up to

that moment.

As a case where a more involved ansatz for N than (3.8) may appear to be more

appropriate, consider Eq. (3.2) in two spatial dimensions where M is given by (1.5), i.e.,

is isotropic in the spatial dimensions, but the potential V (x) is essentially anisotropic. In

this case, one may expect that an ansatz more general than (3.8), namely,

N = c− (b ∂2
x + ∂2

y) , (3.17)

would allow the approximate equation (3.5) to hold with a better accuracy, which, in turn,

may result in faster convergence of the iterations. However, this turns out not to be so in

general. Specifically, we used ansatz (3.17) for finding solitary waves of equation

∇2u + V0

(
sech2(3x)− 1

)
u + u3 = µu (3.18)

(where the potential depends on x but not on y) and observed that not only does using this

more involved ansatz require more coding effort than when using the simpler ansatz (3.8),

but it also leads to slower convergence of the iterations. To conserve the printed space and
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the reader’s time, we do not show an analysis of this case, since it apparently has little

practical usefulness.

We now present three examples that demonstrate the validity of our algorithm (3.6)–

(3.8), (3.11), (3.12).

3.2 Examples of application of the generalized Petviashvili method to a

single nonlinear wave equation

Example 3.1 We apply our method to equation

∇2u + V0(cos2 x + cos2 y)u + u3 = µu (3.19)

with V0 = 3 nd µ = 3.7. The initial condition for the iterations is

u0 = Ae−(x2+y2)/W 2
(3.20)

with A = 1 and W = 1. We take the free parameter ∆τ = 1 and compute c and γ until

the solution reaches the accuracy of 10−3 (see Remark 3.5). The latest computed values

are c = 1.20 and γ = 3.71. Then the iterations are continued until the solution reaches the

accuracy of 10−10. The final solution is shown in Fig. 1, and a short Matlab code that can

be used to obtain it is given in Appendix 1.

The total number of iterations taken by the generalized Petviashvili method is about

180. (Here and below we quote the number of iterations rounded to the nearest ten. The

reason is that this number may slightly depend on the size of the computational domain and

possibly other technical factors.) For comparison, the optimally accelerated ITEM (with

the corresponding power of the solitary wave being P = 3.0) reaches the same solution

in about 300 iterations; see Example 9.1 in [4]. The modification of the ITEM where one

seeks a solitary wave with a specified peak amplitude [4] rather than the power converges

to the same solution in 130 iterations. The ad hoc modification of the original Petviashvili

method, proposed for Eq. (3.19) in [9], takes about 420 iterations to converge to the same

accuracy [4]. It should be noted that the value ∆τ = 1, which we used in this Example,

does not lead to the fastest convergence of algorithm (3.6)–(3.8). For instance, we found

that for ∆τ = 1.3, the convergence rate of our method is nearly the fastest, and the method

converges in about 140 iterations. The dependence of the convergence rate on the step size

∆t is discussed in the companion paper [13].

Example 3.2 In this Example we present a case where two modifications of the original

Petviashvili method proposed in Refs. [9] and [12] diverge, but the generalized Petviashvili

method, proposed in this Section, converges. We seek an anti-symmetric solution of the

following equation with a double-well potential:

uxx + V (x)u− u3 = µu, V (x) = 6
(
sech2(x− 1) + sech2(x + 1)

)
(3.21)
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for µ = 1.43. (The solution with this value of the propagation constant has the power

P ≡ ∫∞
−∞ u2 dx = 10 and was originally found in [4] by the ITEM.) As the initial condition,

we take

u0 = 2x e−x2
+ ε e−x2

, (3.22)

with ε being either zero or 0.001. As in Example 3.1, we compute c and γ only as long

as the error exceeds 10−3; then we use these latest computed values for the rest of the

iterations. We first set ε = 0 in (3.22) and empirically find that ∆τ = 1.6 results in the

fastest convergence (in about 40 iterations) of the generalized Petviashvili method (3.6)–

(3.8); the iteratively computed parameters of the algorithm are in this case: c = 5.04 and

γ = 0.21. The corresponding solution is shown in Fig. 2. Next, when we introduce a small

symmetric component into the initial condition (3.22) by setting ε = 0.001, the iterations

still converge to that solution, although at a lower rate (in about 170 iterations).

We now apply to Eq. (3.21) the modifications of the original Petviashvili method pro-

posed in Refs. [9] and [12]. The former of these methods has the form:

un+1 = M−1
(
Cγlin

n V (x)un − Cγnl
n u3

n

)
, (3.23)

where M = µ − ∂2
x and the factor Cn is chosen so that it equals one when un is an exact

solution of (3.21):

Cn =
〈un, (−M + V (x))un〉

〈un, u3
n〉

. (3.24)

The constants γlin and γnl in (3.23) are to be chosen empirically; in [9], the choice γlin = 0.5

and γnl = 1.5 was suggested. The method of Ref. [12] for Eq. (3.21) can be shown to reduce

to the same form (3.23), where now

Cn =
〈un, (−1 + M−1V (x))un〉

〈un, M−1u3
n〉

(3.25)

and γlin = 0.5 and γnl = 1.5. (Unlike in the ad hoc method of Ref. [9] where these values

of γlin and γnl were “guessed”, in the method of Ref. [12] these values can be derived from

Eqs. (5) and (6) of that paper.) For the solution of (3.21) with µ = 1.43, both these

methods converged in about 20 iterations when started at the initial condition (3.22) with

ε = 0. However, they both diverged for ε = 0.001, in contrast to our generalized Petviashvili

method, which converged for either value of ε.

Example 3.3 In this Example, we show that the calculations of Sections 2 and 3 for

the optimal value of γ can be carried out even when the nonlinearity of the equation is

nonlocal. Consider a stationary wave equation

(
1− 1

2
∇2

)
u = u∇−2

(
∂2

∂x2
u2

)
. (3.26)
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This equation, which has a nonlocal operator ∇−2 on the right hand side, can be rewritten

as a system of two local equations:
(

1− 1
2
∇2

)
u = u v,

∇2v =
∂2

∂x2
u2 .

(3.27)

This system arises as the small-field approximation in the theory of light propagation in

photorefractive media; see, e.g., [14]. Let us note that Eqs. (3.27) cannot be handled by

the method described in Section 4 below because the corresponding linearized operator is

not self-adjoint. However, the original nonlocal Eq. (3.26) can be handled by the method

of Sections 2 and 3. To that end, let us linearize this equation near the exact solution u:

Lũ ≡ −
(

1− 1
2
∇2

)
ũ + ũ∇−2

(
∂2

∂x2
u2

)
+ u∇−2

(
∂2

∂x2
2uũ

)
. (3.28)

Then, using (3.26),

Lu = 2u∇−2

(
∂2

∂x2
u2

)
= 2

(
1− 1

2
∇2

)
u . (3.29)

This is Eq. (2.13) with p = 3 and M =
(
1− 1

2∇2
)
; hence, from (1.10), γopt = 3/2. It is this

value of γ which the authors of [14] used (without justification) in the original Petviashvili

algorithm applied to system (3.27).

4 Generalization of the Petviashvili method for coupled non-

linear wave equations

Here we will first show how the generalized Petviashvili method of Section 3 can be ex-

tended to obtain solitary waves in Hamiltonian systems of coupled nonlinear equations.

Then we will present the corresponding examples. To make the essential details of our

technique clearer, we will focus on the case of two coupled equations, while commenting on

the extension to three and more equations in Appendix 3.

4.1 Derivation of the generalized Petviashvili method for coupled equa-

tions

Consider the following system of equations for the real-valued components u and v of the

solitary wave:

−
(

M11 0
0 M22

) (
u

v

)
+

(
F1(x, u, v)
F2(x, u, v)

)
≡ L0

(
u

v

)
=

(
0
0

)
, lim

|x|→∞

(
u

v

)
=

(
0
0

)
,

(4.1)

where M11 and M22 are self-adjoint positive definite operators. (Whenever symmetric (see

below) off-diagonal terms M12v and M12u are present in the first and second equations,
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they can always be removed by a linear transformation.) The restrictions on functions F1,2

become clear when one considers the linearized operator, L, of Eq. (4.1):

L

(
ũ

ṽ

)
=

(
−M11 + F1,u F1,v

F2,u −M22 + F2,v

) (
ũ

ṽ

)
, (4.2)

where F1,u ≡ ∂F1/∂u, etc. Recall that the linearized operator L played the key role in the

analysis of Section 2; in particular, it was crucial for the derivation of Eqs. (2.15)–(2.17)

and the discusion following Eq. (2.19) that L was self-adjoint. Similarly, to carry out that

analysis for the coupled Eqs. (4.1), we require that L in (4.2) be self-adjoint. This yields

the condition

F1,v = F2,u . (4.3)

Thus, our method will be applicable to systems of form (4.1) where F1 and F2 satisfy

condition (4.3). Note that these functions may contain nonlocal operators as in Example

3.3 above.

Our plan now is as follows. We will first present a generalization of the linearized

continuous flow (2.8), then will comment on it, and, finally, will state the vector counterpart

of the “delinearized” algorithm (3.6). The extension of (2.8) to the vector case is:

(
ũ

ṽ

)

τ

= N−1L

(
ũ

ṽ

)
−

2∑

k=1

γk

〈
~ek, L

(
ũ

ṽ

)〉

〈~ek, N~ek〉
~ek , (4.4)

γk = 1 +
1

αk∆τ
, αk =

〈~ek, L~ek〉
〈~ek, N~ek〉 , k = 1, 2, (4.5)

where N is a self-adjoint, positive definite matrix operator, whose form will be discussed

shortly, and ~ek and αk are the approximate eigenvectors and eigenvalues of N−1L:

L~ek ≈ αkN~ek . (4.6)

The analysis of convergence of Eq. (4.4) proceeds along the lines of the corresponding

analysis in Section 2 with one minor modification: In the derivation of Eq. (4.5) for γk, one

needs to use the (approximate) orthogonality of ~e1 and ~e2:

〈~e1, N~e2〉 = 0 . (4.7)

Condition (4.7) follows from (4.6) and the fact that both L and N are self-adjoint.

Now we discuss the computationally efficient choice of operator N and vectors ~ek. It is

this choice that makes the generalization of the method of Section 3 to the case of coupled

equations nontrivial; hence it constitutes an important technical result of this Section. For

the simplicity of presentation, we assume that both M11 and M22 in (4.2) have form (1.5),

with possibly different µ’s. (The extension to a more general form of these operators is
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straightforward and one instance of it is given in Example 4.3 below.) Then, the form of N

that we advocate, and which we used in all of the examples presented in Section 4.2, is

N =

(
N1 0
0 N2

)
, Nk = ck − bk∇2, k = 1, 2. (4.8)

One may wonder if the more general form that includes (symmetric) off-diagonal terms c12−
b12∇2 would result in a more efficient method. The answer, based on our experimentation

with both this more general form and the simpler form (4.8), is negative. First, the coding

of the part of the computer program that would calculate all of the coefficients ck, bk, and

c12, b12 for the more general form of N is considerably more tedious than the corresponding

coding for the simpler form (4.8). This part of the program would be difficult to debug had

a mistake in it occurred. Moreover, the simplicity of the original Petviashvili method, which

is one of its main advantages over the Newton’s method, would be compromised by this

coding issue. Second, in our simulations we also found that, in some cases, unless the initial

condition (u0, v0) is “very” close to the exact solitary wave (u, v), then the N calculated as

a full matrix may turn out not to be positive definite, which would result in the divergence

of the iterations. On the other hand, we verified that the simpler, diagonal form (4.8) does

not have either of the above drawbacks.

Let us now show how c1,2 and b1,2 in (4.8) can be computed while assuming a general

form of the eigenvector ~e1, and then will argue that one can and should take ~e1 = (u, v)T .

Let

L ≡
(

L11 L12

L12 L22

)
, ~e1 ≡

(
e11

e21

)
, (4.9)

where each of Lij is a self-adjoint operator. As in Section 3, we require that

〈N~e1, L~e1〉2
〈N~e1, N~e1〉〈L~e1, L~e1〉 = max (4.10)

and then find the equations for c1,2 and b1,2 by setting the derivatives of the l.h.s. with

respect to these parameters to zero. Thus, similarly to (3.10), one obtains a system of four

equations:
〈Nr~e1, L~e1〉
〈Nr~e1, N~e1〉 =

〈N~e1, L~e1〉
〈N~e1, N~e1〉 , (4.11)

Nr ≡ ∂N
∂r

, r = {c1, c2, b1, b2} .

Since the r.h.s. of all these equations is the same, one can obtain a system of three equations

for the four unknown parameters r by setting the correponding l.h.s.’s equal to each other.

It is easy to see, by inspection, that this system is linear and homogeneous, and hence it

produces a solution for {c1, c2, b1, b2} that is unique up to multiplication by an arbitrary

constant. (Such an arbitrariness is expected because operator N is defined by (4.6) only up

to an arbitrary factor.) Next, any one of Eqs. (4.11) can be taken as the remaining fourth

equation for {c1, c2, b1, b2}. We verified that such an equation is satisfied identically for the
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solution {c1, c2, b1, b2} determined from the aforementioned linear homogeneous system of

three equations.

The solution of that system can most easily be found as follows. Equating the l.h.s.’s of

Eqs. (4.11) with r = ck to those with the corresponding r = bk yields:

κk ≡ ck

bk
=

〈(
〈∇2ek1,

∑2
j=1 Lkjej1〉 ek1 − 〈ek1,

∑2
j=1 Lkjej1〉∇2ek1

)
, ∇2ek1

〉
〈(
〈∇2ek1,

∑2
j=1 Lkjej1〉 ek1 − 〈ek1,

∑2
j=1 Lkjej1〉∇2ek1

)
, ek1

〉 , k = 1, 2.

(4.12)

Then, equating the l.h.s.’s of (4.11) with r = c1 and r = c2 yields

b2

b1
=
〈e11, (κ1 −∇2)e11〉 〈e21,

∑2
j=1 L2jej1〉

〈e21, (κ2 −∇2)e21〉 〈e11,
∑2

j=1 L1jej1〉
. (4.13)

The pseudocode for the time-efficient computation (i.e., a computation that avoids repeated

evaluation of the same quantities) is presented in Appendix 2. As in Remark 3.5, we note

that c1,2, b1,2 and the corresponding values of α1,2 and γ1,2 need only be computed up

to the moment when the iterations approach the exact solution with some relatively low

accuracy (say, 10−3). The remaining iterations, up to a higher accuracy, can be carried out

with those latest computed values of these parameters.

Remark 4.1 Let us reiterate that the above algorithm of finding the coefficients of

operator N, which can be straightforwardly generalized to any number of coupled equations

(see Appendix 3), is one of the main results of this Section. The key part here is that a

unique set of these coefficients can always (except, maybe, in some pathological cases which

we never encountered) be found by solving a linear system of equations.

We now discuss the choice of the eigenvectors ~e1 and ~e2. First, we note that since these

eigenvectors enter Eq. (4.4) on equal footing, it might seem that it would be “more correct”

to replace the l.h.s. of (4.10) by

2∑

k=1

〈N~ek, L~ek〉2
〈N~ek, N~ek〉〈L~ek, L~ek〉 . (4.14)

However, this is not so because, in particular, the corresponding counterpart of (4.11)

becomes a truly nonlinear system for {c1, c2, b1, b2} and hence cannot be easily solved.

Therefore, we continue to use the results obtained from (4.10). Next, a reasonable, although

not the most general, choice for ~e1 is

~e1 =

(
u

ρ21v

)
. (4.15)

Then ~e2 is sought in the form

~e2 =

(
ρ12u

v

)
, (4.16)

where ρ12 is determined from the orthogonality condition (4.7):

ρ12 = −ρ21
〈v, N2v〉
〈u, N1u〉 , (4.17)
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where N1 and N2 are found from (4.8), (4.12), and (4.13) for each given value of ρ21.

The issue is then to determine coefficient ρ21. This can be done by imposing the require-

ment that quantity (4.14), which is a nonlinear function of ρ21, be maximized with respect

to that coefficient. It can be shown, with some effort, that this nonlinear optimization prob-

lem can be solved time-efficiently, i.e. without repeated evaluation of the inner products in

(4.14). We performed several experiments with the Examples reported in Section 4.2 and

concluded that simply taking

ρ21 = 1 (4.18)

instead of solving the optimization problem for that coefficient was the optimal choice,

for the following reasons. In many cases, we empirically found that the “optimal” value

for ρ21 was close to one, and hence the considerable complexification of the code needed

to compute that value did not justify the obtained improvement of the convergence rate

by just a few percent. Moreover, in some examples we found that the iterations were

initially selecting a value of ρ21 that was not close to (4.18), and then they would quickly

diverge. (This probably occurred when the initial condition was not sufficiently close to the

exact solution.) On the other hand, setting ρ21 according to (4.18) always resulted in the

convergence of the iterations. Thus we conclude that taking the eigenvectors ~e1,2 according

to Eqs. (4.15)–(4.18) constitutes the optimal practical choice. The results presented in

Section 4.2 justify the validity of this choice.

We now state the algorithm of the generalized Petviashvili method for coupled nonlinear

wave equations, which is obtained by “delinearizing” Eq. (4.4):

(
u

v

)

n+1

=

(
u

v

)

n

+



N−1

(
L0

(
u

v

) )

n

−
2∑

k=1

γk

〈
~ek,n,

(
L0

(
u

v

) )

n

〉

〈~ek,n, N~ek,n〉
~ek,n




∆τ ,

(4.19)

where ~ek,n are computed using the components un, vn at each iteration, and N and γk are

computed iteratively until the solution reaches a prescribed accuracy (see Remark 3.5).

Iteration scheme (4.19) along with the details of calculation of N and ~ek (Eqs. (4.8), (4.12),

(4.13), and (4.15)–(4.18)) is the main result of this Section. As we noted in the Introduction,

the reader who is not interested in implementation issues of this algorithm may skip the

remainder of this Section.

Remark 4.2 This Remark extends to the case of coupled equations the observation

stated in Remark 3.2. Namely, to calculate the coefficients of N and the eigenvalues α1,2

at the (n + 1)st iteration, one requires the values of L~e1,2, where ~e1,2 are found from (4.15)

and (4.16) using the available values of un and vn. Now, the expressions

L~ek + const · L0

(
un

vn

)
(4.20)
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are equal to each other up to the order O(ũn, ṽn) for any value of the constant, and so the

issue is which of these expressions to use when computing L~e1,2. In our simulations, we

found that computing L~ek at the nth iteration as

L~ek ≡ (L~ek)n −
(
L0

(
u

v

) )

n

, k = 1, 2 (4.21)

(i.e. taking in (4.20) const=−1) results in a sufficiently broad range of initial conditions

(u0, v0) that converge to the solitary wave (u, v). For comparison, taking in (4.20) const=0

required the initial conditions to be much closer to the exact solution for the iterations to

converge. Thus, to compute α1,2 in (4.5), we used the expression given by (4.21). Note that

while for k = 1, this result is an obvious extension of (3.14) (upon taking into account (4.15)

and (4.18)), for k = 2 this result is not obvious and was arrived at upon experimentation

with various values of the constant in (4.20).

Remark 4.3 When system (4.1) is decoupled, i.e., F1,v = F2,u = 0, the approximate

eigenvalues α1,2 of N−1L must be equal. Indeed, in this case, from (4.5) one has:

α1 =
〈u, L11u〉
〈u, N1u〉 ·

1 + (〈v, L22v〉/〈u, L11u〉)
1 + (〈v, N2v〉/〈u, N1u〉) ,

α2 =
〈u, L11u〉
〈u, N1u〉 ·

ρ2
12 + (〈v, L22v〉/〈u, L11u〉)
ρ2
12 + (〈v, N2v〉/〈u, N1u〉) .

(4.22)

Next, using Eq. (4.13) with L12 ≡ L21 = 0, one obtains:

〈v, N2v〉
〈u, N1u〉 =

b2

b1

〈v, (κ2 −∇2)v〉
〈u, (κ2 −∇2)u〉 =

〈v, L22v〉
〈u, L11u〉 . (4.23)

Substituting (4.23) into (4.22), one obtains α1 = α2. This fact is, thus, a consequence of

the coefficients of the entries of N satisfying (4.13).

Remark 4.4 For completeness of this presentation, we note that it is possible to find

such a form of Eqs. (4.1) for which the coefficients of operator N, the coefficient ρ12, and

the eigenvalues α1,2 (and hence γ1,2) can be obtained analytically (i.e., similarly to how

the optimal γ given by (2.18) is obtained for Eq. (1.1)). For the case of two coupled

equations, we derive the corresponding class of equations in Appendix 4. A particular

equation from that class is considered in Example 4.3 below. Note that for this class of

equations, N = diag(M11,M22), where M11 and M22 are defined in Eq. (4.1). This is a

counterpart of the relation N = M for a single equation with power-law nonlinearity, noted

after Eq. (3.11).

4.2 Examples of application of the generalized Petviashvili method to

coupled equations

The examples presented below are restricted to systems of two coupled stationary wave

equations. We focused on those examples where the components u and v of the solitary
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wave have distinctly different amplitudes and widths; this is done to apply as strict as

possible a test to our method. Also, in all of these examples except Example 4.1, the

computational domain was a square with the side of 8π and 27 mesh points along each side.

In Example 4.1, the side of the square was 12π with 28 mesh points per side.

Example 4.1 Consider a vector generalization of the equation from Example 3.1:

∇2u + 4(cos2 x + cos2 y)u + u(u2 + σv2) = µ1u

∇2v + 4(cos2 x + cos2 y)v + v(σu2 + 4v2) = µ2v.
(4.24)

Here the asymmetry between u and v is provided by two sources: (i) by the different

coefficients, ‘1’ and ‘4’, in front of the self-nonlinearity terms and, more importantly, (ii)

by the different propagation constants µ1 and µ2. Specifically, we used

µ1 = 4.95 and µ2 = 6.5.

In the absence of coupling (σ = 0), this corresponds to the solution u being near the edge

of the zeroth band gap and v being suficiently far away from that edge. Consequently, v

is significantly “taller” and more localized than u (see, e.g., [15]). When the coupling is

present (σ > 0), the structure of the composite solution remains qualitatively the same;

such a solution for

σ = 0.5 (4.25)

is plotted in Fig. 3. Starting with the initial condition

u0 = A1 e−(x2+y2)/W 2
1

v0 = A2 e−(x2+y2)/W 2
2 ,

(4.26)

where A1,2 and W1,2 are listed in Table 1, the iterations (4.19) with ∆τ = 1 2 takes about

710 iterations to converge to accuracy of 10−10. Here and below, the accuracy for two-

component solitary waves is defined similarly to (1.11):

En =
(〈un − un−1, un − un−1〉

〈un, un〉 +
〈vn − vn−1, vn − vn−1〉

〈vn, vn〉
)1/2

. (4.27)

In all of the examples of this Section, we monitored the following quantities: coefficient

ρ12 (see (4.16)–(4.18)); factors

Ik =
〈N~ek, L~ek〉2

〈N~ek, N~ek〉〈L~ek, L~ek〉 , k = 1, 2, (4.28)

which show how close vectors ~ek are to the true eigenvectors of N−1L; the eigenvalues α1,2

(see (4.6)); and the coefficients c1, c2, b2 of N (we set b1 = 1 without loss of generality). These

quantities are reported in Table 1. In particular, one sees that ~e1 is a closer approximation to

its corresponding true eigenvector of N−1L than ~e2 is to its true eigenvector; this is expected
2This value of ∆τ is likely not to be optimal (see Example 3.1). However, our focus here is not to optimize

the convergence rate but to demonstrate the validity of the method.
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since the coefficients of operator N are computed using ~e1. Note, however, from the reported

values of I1,2, that both ~e1 and ~e2 approximate their respective true eigenvectors quite well.

To benchmark the performance of the method, we also obtained the solution of the

uncoupled system, (4.24) with σ = 0, in two ways. First, we used the vector generalization

of the Petviashvili method described in Section 4.1. For ∆τ = 1, the iterations converged

to accuracy 10−10 in about 950 iterations. (Let us note, in passing, that the numerically

found α1,2 agree with Remark 4.6.) As the second way of obtaining the same solutions, we

solved each of the uncoupled equations (4.24) using the generalized Petviashvili method for

a single equation, as described in Section 3.1. The iterations for components u and v took,

respectively, about 950 and 80 iterations to converge to the accuracy of 10−10. Comparing

this with the number of iterations needed to obtain the solution of the uncoupled system via

the first method, we conclude that the convergence rate of the vector form of the generalized

Petviashvili method is determined by such a rate for the more slowly converging component

of the solitary wave.

Example 4.2 We now consider a system of linearly coupled nonlinear Schrödinger

equations:
∇2u + u3 + σv = u

∇2v + v3 + σu = v .
(4.29)

This system extends to two dimensions the equations of the so-called nonlinear directional

coupler [16]. In one spatial dimension, these equations are known to possess symmetric

(u = v), anti-symmetric (u = −v), and, for σ < 0.6, asymmetric (|u| 6= |v|) solitary waves

[16]. The smaller the σ, the greater the asymmetry between the two components of the

latter solution. To our knowledge, asymmetric solutions of the two-dimensional system

(4.29) have not been reported previously.

We considered Eqs. (4.29) with σ = 0.5. By trial and error, we found that the initial

condition (4.26) with the parameters reported in Table 1 leads the iterations to converge

to the solution depicted in Fig. 4. (It should be noted that this initial condition must be

quite close to the exact solution in order for the iterations to converge. For example, if one

takes A2 = 0.4 or A2 = 0.6 instead of 0.5, as in Table 1, then the iterations converge to

either the symmetric or anti-symmetric solitary wave.) Next, by running the simulations

and monitoring, at each iteration, the approximate eigenvalues α1,2, we observed that α2 is

a large negative number (see Table 1). Then, to satisfy the necessary convergence condition

(2.24), one needs to use a rather small step size ∆τ . By trial and error, we found that

∆τ = 0.08 results in nearly the fastest convergence of the method for system (4.29).

Note that since α2 < 0 in this example, the iterations would still converge if γ2 were set

to zero.

Example 4.3 As the last example, we applied method (A3.2) to a system of equations

that describe copropagation of the fundamental and second harmonic fields in an optical
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medium with quadratic nonlinearity:

∇2u + uv = µ1u

∇2
δv +

1
2
u2 = µ2v, ∇2

δ ≡ ∂2
x + δ∂2

y .
(4.30)

Multidimensional solutions of this and related systems were considered in quite a few studies;

see, e.g., a recent paper [17] and references therein. It should be noted that Eqs. (4.30) are

a special case of the system of two coupled wave equations for which all the coefficients in

the Petviashvili method can be determined analytically (see Eq. (A4.14) in Appendix 4).

In particular, as follows from the last paragraph of Appendix 4, one should have c1,2 = µ1,2

and b2 = 1. Thus, this example provides a test of whether our method would obtain these

coefficients correctly, and it indeed did so. Specifically, we took

δ = 10, µ1 = 1.5, µ2 = 9; (4.31)

then one can see that the values of c1,2 and b2, reported in Table 1, are indeed as stated

above. Moreover, the values of ρ12 and α1,2 agree with those given by Eq. (A4.12) in

Appendix 4. Finally, we note that the formulae for the calculation of c1,2, b2, ρ12, and

α1,2 are those given in Section 4.1 with one modification: all occurrences of ∇2v should be

replaced with ∇2
δv. The corresponding solitary wave is shown in Fig. 5.

5 Summary

In this work, we obtained the following two main results.

First, in Section 3, we extended the well-known Petviashvili iteration method to find

solitary wave solutions of a broad class of Hamiltonian nonlinear wave equations with ar-

bitrary form of nonlinearity and potential function; see Eq. (3.1). Our algorithm is given

by Eqs. (3.6)–(3.8), (3.11), and (3.12). The generalized Petviashvili method can be ap-

plied even when the equation is nonlocal; see Example 3.3. The computational cost of

this method only slightly exceeds that of the original Petviashvili method, since the (few)

parameters required to carry out the iterations need to be computed only until the solution

reaches some relatively low accuracy; see Remark 3.5.

Second, in Section 4, we extended this method to systems of coupled Hamiltonian wave

equations. Our main result here was the finding of a way in which all the required parameters

of the iteration scheme can be computed by explicit expressions, obtained from solving a

simple linear system of algebraic equations. The algorithm (for two equations) is given by

Eqs. (4.19), (4.8), (4.12), (4.13), and (4.15)–(4.18)).

Appendices 1 and 2 contain, respectively, a Matlab code illustrating the algorithm of

Section 3 and a pseudocode for the algorithm of Section 4. Appendix 3 contains an extension

of the algorithm of Section 4 to three (and more) equations. Finally, Appendix 4 contains

a collateral result: the form of a system of two coupled equations for which the parameters
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of our generalized Petviashvili iteration scheme can be found analytically (as in the original

Petviashvili method for a single equation with power-law nonlinearity).
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Appendix 1: Matlab code for Example 3.1

N=2^7; d=10*pi/N; % mesh sizes along x and y

x=[-5*pi:d:5*pi-d]; y=x;

[X,Y]=meshgrid(x,y); % 2D x- and y-arrays

kx=2*pi/(10*pi)*[0:N/2-1 -N/2:-1]; ky=kx;

[KX,KY]=meshgrid(kx,ky); K2=KX.^2+KY.^2;

Dt=0.4; % Delta tau

mu=3.7; % prop. constant of the soliton

W=3*((cos(X)).^2+(cos(Y)).^2)-mu; % V(x)-mu

u0=1.5*exp(-(X.^2+Y.^2)); u=u0; % initial condition

norm_Du=1; % initialize E_n defined in (1.11)

while norm_Du >= 10^(-10)

u_old=u; fftu=fft2(u); ucube=u.^3; DEL_u=real(-ifft2(K2.*fftu));

if norm_Du >= 10^(-3) % when E_n > 10^(-3), compute c and gamma

dVu=2*ucube; u_u=sum(sum(u.^2));

u_Lu=sum(sum(dVu.*u)); DELu_DELu=sum(sum(DEL_u.^2));

DELu_Lu=sum(sum(dVu.*DEL_u)); u_DELu=sum(sum(u.*DEL_u));

c=(u_Lu*DELu_DEL_u-DELu_Lu*u_DELu)/(u_Lu*u_DELu-DELu_Lu*u_u)

u_Nu=c*u_u-u_DELu; alpha=u_Lu/u_Nu; gamma=1+1/(alpha*Dt);

fftNinv=1./(c+K2); % Fourier symbol of N^(-1)

else % once E_n < 10^(-3), use previously computed c and gamma.

u_Nu=sum(sum(c*u.^2-u.*nabla2_u));

end

L0u=DEL_u + W.*u + ucube;

u=u+Dt*real(ifft2(fft2(L0u).*fftNinv)-u*gamma*sum(sum(u.*L0u))/u_Nu);

norm_Du=sqrt(sum(sum((u-u_old).^2))*d^2); % new E_n

end
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Appendix 2: Pseudocode for time-efficient implementation of

algorithm (4.19)

Here we suggest an order in which various quantities, required to perform each iteration in

algorithm (4.19), can be computed. Computing these quantities in this order allows one to

avoid repeated time-intensive evaluations, e.g., of inner products such as those required in

(4.5), an so on.

For notational convenience, we denote, in this Appendix only,

u1 ≡ un, u2 ≡ vn, (A2.1)

where (un, vn) are the solution’s components at the nth iteration. This notation will facili-

tate the extension of the steps listed below to the case of more than two coupled equations.

(A minor modification of this algorithm occurring for more than two equations is described

in Remark 4.5.) In the notations used below, any index (e.g., j) is assumed to take on the

values from one to the number of equations (two in the case considered in this paper). The

summation indices (e.g., k in
∑

k) run over the same range of values.

The first column of the list(s) below shows which quantity is computed at the given step.

The second column shows, which equations of the main text and results of which previous

steps of this list, are used at the given step.

The first block of step, listed below, is performed at each iteration, irrespective of the

magnitude of the error.

∇2uk {A2.1} (A2.2)

(L0)jkuk {A2.2} (A2.3)
∑

k(L0)jkuk {A2.3} (A2.4)

〈uj ,
∑

k(L0)jkuk〉 {A2.4} (A2.5)

The second block of steps, listed below, contains steps that are required for the calculation

of the parameters of operator N, the eigenvectors ~ek, and the parameters γk. These steps

need to be performed only while the error is greater than a user-defined threshhold (e.g.,

10−3); see Remark 3.6 and a note after Eq. (4.13).

Ljkuk {4.9, A2.2} (A2.6)

〈uj ,
∑

k Ljkuk〉 {A2.6} (A2.7)

〈∇2uj ,
∑

k Ljkuk〉 {A2.2, A2.6} (A2.8)

〈uk, uk〉, 〈uk, ∇2uk〉, 〈∇2uk, ∇2uk〉 {A2.2} (A2.9)

〈∇2uj ,
∑

k(L0)jkuk〉 {A2.2, A2.4} (A2.10)

〈∑m(L0)jmum,
∑

k(L0)jkuk〉 {A2.4} (A2.11)
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〈Ljmum, Ljkuk〉 {A2.6} (A2.12)

〈Ljmum,
∑

k(L0)jkuk〉 {A2.4, A2.6} (A2.13)

〈uj ,
∑

k Ljkek1〉 {4.9, 4.21, A2.5, A2.7} (A2.14)

〈∇2uj ,
∑

k Ljkek1〉 {4.9, 4.21, A2.8, A2.10} (A2.15)

κk {4.12, A2.9, A2.14, A2.15} (A2.16)

bk, ck (take b1 = 1) {4.13, 4.12, A2.9, A2.14, A2.16} (A2.17)

〈uk, Nkuk〉 {4.8, A2.9, A2.16, A2.17} (A2.18)

ρ12 {4.17, A2.18} (A2.19)

〈N~ek, N~ek〉 {4.15, 4.16, 4.18, A2.18, A2.19} (A2.20)

〈L~ek, L~ek〉 {4.21, A2.12, A2.13, A2.19} (A2.21)

〈uj ,
∑

k Ljkek2〉 {4.16, 4.21, A2.5, A2.7, A2.19} (A2.22)

〈∇2uj ,
∑

k Ljkek2〉 {4.16, 4.21, A2.8, A2.10, A2.19} (A2.23)

〈N~ek, L~ek〉 {A2.14, A2.15, A2.17, A2.19, A2.22, A2.23} (A2.24)

〈~ek, N~ek〉 {A2.18, A2.19} (A2.25)

〈~ek, L~ek〉 {A2.14, A2.19, A2.22} (A2.26)

αk, γk {4.5, possibly 3.16, A2.25, A2.26} (A2.27)

The last block of steps is again performed at each iteration, irrespective of the magnitude

of the error. Note that the latest computed results from the second block are used in this

one, whereever they are required.

〈~ej ,
∑

k(L0)jkuk〉 {A2.5, A2.19} (A2.28)

uk at next iteration {4.19, A2.4, A2.17, A2.19, A2.25, A2.27, A2.28} (A2.29)

Appendix 3: Extension of the algorithm of Section 4.1 to any

number of coupled equations

For simplicity, we present the details for the case of three equations; for more equations,

this treatment can be extended straightforwardly. The counterparts of Eqs. (4.7) and (4.8)

for three equations are, respectively:

〈~ej , N~ek〉 = 0, j, k = 1, 2, 3, j 6= k (4.7′)

and

N = diag(N1, N2, N3), Nk = ck − bk∇2, k = 1, 2, 3. (4.8′)

Then, Eqs. (4.12) with k = 1, 2, 3 are unchanged, and Eq. (4.13) is replaced with analogous

expressions for bk/b1 where index “2” in (4.13) is replaced with k = 2, 3. Finally, Eqs.
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(4.15) and (4.16) are replaced by

~e1 =




u

v

w




, ~e2 =




ρ12u

v

ρ32w




, ~e3 =




ρ13u

ρ23v

w




, (4.15′)

where w is the third component of the solitary wave. Since the orthogonality conditions

(4.7′) yield only three constraints for the four coefficients ρjk, we impose an additional

arbitrary constraint, which we take to be simply

ρ32 = 0. (A3.1)

Then Eqs. (4.7′), (4.8′), and (A3.1) yield Eq. (4.17) (with ρ21 = 1) for ρ12 and the following

system for ρ13 and ρ23:

ρ13〈u,N1u〉+ ρ23〈v,N2v〉 = −〈w, N3w〉

ρ13ρ12〈u,N1u〉+ ρ23〈v, N2v〉 = 0 .

(A3.2)

System (A3.2) can always be solved because ρ12 6= 1.

Appendix 4: Extension of the original Petviashvili method to

two coupled equations

Here we will derive the form of two coupled equations for which there exist explicit analytical

expressions for the coefficients α1,2 etc. (see Remark 4.7).

Using the analogy with the case of a single equation for which the constant γ in the

original Petviashvili method is given by the explicit formula (2.18), we seek the two coupled

equations in question in the form:

L0


 u

v


 ≡ −


 M11 0

0 M22





 u

v


 +




∑
j a1j (up1jvq1j )

∑
j a2j (up2jvq2j )


 =


 0

0


 , (A4.1)

where M11 and M22 are self-adjoint positive definite operators, as before; pkj and qkj ,

k = 1, 2, are some constants; and akj are linear operators (in particular, they may be

constants). As we pointed out after Eq. (4.1), a more general Hamiltonian system with

off-diagonal terms M12v and M12u in the matrix above, can be reduced to form (A4.1) by

a linear transformation of u and v. The key condition which will allow us to determine the

relation between the exponents pkj and qkj as well as the parameters of the Petviashvili

method, is that there is no algebraic relation (such as, e.g., u = const · v) between the

components u and v of the solitary wave.
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First, we require that the linearized operator L of this equation be self-adjoint (see

(4.3)), which yields that for each j (see the key condition above), either

q1ja1j = p2ja2j , (A4.2)

p1j = p2j − 1, (A4.3)

q1j = q2j + 1, (A4.4)

or

q1j = 0 and p2j = 0. (A4.5)

Next, we require that equation

L


 u

v


 = α1N


 u

v


 (A4.6)

be satisfied. In view of the key condition, and since (A4.6) is to be satisfied exactly, it is

intuitively clear (and can be easily shown) that the only possibility for operator N is:

M12 = 0, ⇒ N =


 M11 0

0 bM22


 , (A4.7)

where for the moment constant b is arbitrary. Then (A4.6) and the key condition yield

p1j + q1j − 1 = α1

p2j + q2j − 1 = α1b

for all j. (A4.8)

The counterpart of (A4.6) for the eigenvector ~e2 (see (4.6) and (4.16)) yields a similar

system:

ρ12(p1j − 1) + q1j = α2ρ12

ρ12p2j + q2j − 1 = α2b

for all j. (A4.9)

Eliminating p2j , q2j , and α1 from (A4.3), (A4.4), and (A4.8) shows that the following two

subcases are possible:

(a) : p1j + q1j 6= 1 for all j, and b = 1;

(b) : p1j + q1j = 1 for all j;
(A4.10)

note that in subcase (b), coefficient b is undetermined. Proceeding with subcase (a), we

substitute Eqs. (A4.3) and (A4.4) into (A4.9) and obtain:

ρ12(p1j − 1) + q1j = α2ρ12

ρ12(p1j + 1) + q1j − 2 = α2.

(A4.11)
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Since this system is to hold for all j, with ρ12 and α2 being independent of j, one concludes

that this system can be satisfied only for one set of values {p1j , q1j}, which we therefore

redenote as {p, q}. Solving then Eqs. (A4.11) for ρ12 and α2 and Eqs. (A4.8) for α1 yields:

ρ12 = − q

p + 1
, α1 = p + q − 1, α2 = −2. (A4.12)

Also, from (A4.2)–(A4.4) and (A4.12) one has:

a2 = −ρ12 a1 . (A4.13)

Now, using the last equation, one verifies that the orthogonality condition (4.7) is satisfied

in this case. Thus, the system of two coupled equations for which the parameters ρ12 and

α1,2 can be determined explicitly (by Eqs. (A4.12)) is given by:

−


 M11 0

0 M22





 u

v


 +


 a (upvq)

(q/(p + 1)) a
(
up+1vq−1

)


 =


 0

0


 , (A4.14)

where a is any linear operator and p, q are constants.

Similarly, one can show that subcase (b) of (A4.10) yields the same equation (A4.14),

where q = 1 − p. Setting the value of the free coefficient b to one yields relations (A4.12)

and (A4.13) in this subcase as well.

Finally, one can straightforwardly verify that the case given by Eqs. (A4.5) corresponds

to two uncoupled equations of the form (1.1). Thus, the only nontrivial case in which

the parameters of the Petviashvili method for a system of two coupled equations can be

determined explicitly is given by Eq. (A4.14). (As we stated after Eq. (A4.1), it is assumed

that there is no algebraic relation between the components of the soltary wave.) The

parameters of the method are given by Eqs. (A4.12), and N is given by (A4.7) with b = 1;

that is, N coincides with the linear operator in (A4.14), similarly to what occurs in the case

of a single equation with power-law nonlinearity, originally considered by Petviashvili [7].

Note that for Eq. (A4.14), it is not actually necessary to use the eigenvector ~e2 in algorithm

(4.19) (i.e., one can set γ2 = 0), because α2 < 0 and the corresponding component of the

error would decay on its own (provided that the step size ∆τ satisfies the constraint (2.24)).
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Table 1 Values of the parameters, noted around Eqs. (4.26) and (4.28) in the text,

for Examples 4.1–4.3. The asterisk next to the value of ∆τ means that this time step is

close to optimal. The numbers of iterations are rounded to the nearest ten.

Equation I1,2 ρ12 α1,2
c1,2

b2

A1,2 W 2
1,2 ∆τ

Number of

iterations

(4.24),

σ = 0.5
0.99, 0.69 −66.2 0.136, 0.0231

1.03, 14.9

7.57
0.6, 1.5 2.0, 0.4 1.0 710

(4.24),

σ = 0
0.98, 0.78 −12.4 0.0943, 0.0943

1.52, 21.5

11.0
0.8, 1.5 1.0, 0.4 1.0 950

(4.29),

σ = 0.5
1.00, 0.74 −1.06 · 10−2 2.08, −10.1

0.750, 0.500

0.162
2.0, 0.5 0.7, 0.3 0.08∗ 580

(4.30),

(4.31)
1.00, 1.00 −0.500 1.00, −2.00

1.50, 9.00

1.00
1.0, 1.0 2.0, 2.0 0.7∗ 90
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List of footnotes

1. In a modification of the ITEM, proposed in [4], one normalizes, instead of the power,

the peak amplitude (the L∞-norm) of the solitary wave. The simulations reported

in [4] suggest that this version of the ITEM is faster, and also converges for a larger

class of solutions, than the original ITEM.

2. This value of ∆τ is likely not to be optimal (see Example 3.1). However, our focus

here is not to optimize the convergence rate but to demonstrate the validity of the

method.
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List of figure captions

1. Solution of Eq. (3.19) with V0 = 3 and µ = 3.7.

2. Anti-symmetric solution of Eq. (3.21) with µ = 1.43.

3. Solution of Eqs. (4.24) with µ1 = 4.95, µ2 = 6.5, and σ = 0.5. Note the different

vertical scales of the u- and v-components.

4. Solution of Eqs. (4.29) with σ = 0.5 along the x-axis (the solution is radially sym-

metric).

5. Solution of Eqs. (4.30), (4.31) along the x-axis (to the left of the dashed line) and the

y-axis (to the right of the dashed line).
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Figure 1: Solution of Eq. (3.19) with V0 = 3 and µ = 3.7.
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Figure 2: Anti-symmetric solutions of Eq. (3.21) with µ = 1.43.
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Figure 3: Solution of Eqs. (4.24) with µ1 = 4.95, µ2 = 6.5, and σ = 0.5. Note the different
vertical scales of the u- and v-components.
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Figure 4: Solution of Eqs. (4.29) with σ = 0.5 along the x-axis (the solution is radially
symmetric).
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Figure 5: Solution of Eqs. (4.30), (4.31) along the x-axis (to the left of the dashed line)
and the y-axis (to the right of the dashed line).
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