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Abstract—Using a numerical procedure based on the multi-
canonical Monte Carlo (MMC) algorithm, we compute the bit error
rate (BER) at the output of a Mamyshev-type all-optical regener-
ator. For the specific device considered, this BER is degraded as
compared to its value at the input to the regenerator, even though
the Q-factor is improved. In absolute terms, the output BER de-
creases when the bandwidth of the optical filter placed before the
regenerator to limit the amount of entering noise is decreased. We
also present evidence that the degradation of the BER caused by
the regenerator is due to high sensitivity of the output signal to
small variations of the input signal shape. To our knowledge, this
fact has not been pointed out in earlier studies of regenerators.
In addition to the previous results, the modification of the MMC
procedure that we proposed and used in this paper can be, in a
certain sense, parallelized. When it is practical to do so, our pro-
cedure provides significant saving of the computational time over
the standard MMC simulation.

Index Terms—All-optical regeneration, Monte Carlo methods,
nonlinear wave propagation, optical fiber communication, optical
noise, optical signal detection, optical signal processing.

I. INTRODUCTION

A LL-OPTICAL regeneration is being actively researched
as it can increase the reach of fiber-optical transmission

systems without expensive optical-to-electrical signal conver-
sion. In one of the most studied setups, a chain of periodically
placed regenerators would suppress the accumulation of ampli-
fied spontaneous emission (ASE) noise and/or other signal dis-
tortions. This occurs because each regenerator “squeezes” the
probability density function (PDF) of both the ONE and ZERO
levels of the incoming signal; then the noise accumulated be-
tween any two consecutive regenerators is added to a “cleaner”
signal than it would be in the absence of the preceding regenera-
tors. As a result, the “periodically cleaned-up” signal at the end
of the transmission line with a chain of regenerators is degraded
by the ASE less than a signal in a line without regenerators.

In most of the studies of signal quality improvement by a
chain of regenerators (see, e.g., [1]–[4] and references therein),
the effect of the regenerator is modeled by its static power trans-
fer function. This means that the signal degraded by the ASE
is modeled as having the shape and timing of an undistorted
ONE, but with an appropriately scaled amplitude. An indication
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that this assumption may not be correct appeared recently
in [5] and [6] in the context of semiconductor and all-optical
2R (reamplifying and reshaping) regenerators, respectively.
Specifically, in [6], it was experimentally demonstrated that
under certain conditions, a Mamyshev-type regenerator [7] can
improve the bit error rate (BER) of a signal as compared to
that measured immediately before the regenerator. If modeling
the effect of the regenerator by its static transfer function were
correct, such a BER improvement would not be possible since
a device transforming the signal according to any, but the same
for both regenerated ONEs compased to the input and ZEROs,
static transfer function does not change the BER [8]. Therefore,
modeling a regenerator’s action by its static transfer function
can be incorrect, and thus, an alternative treatment is needed.

In this paper, we propose a numerical procedure that allows
one to compute the change of the BER at the regenerator’s
output as compared to that at the input. Our procedure uses
the multicanonical Monte Carlo (MMC) algorithm [9], [10],
[11], and hence, allows one to access BERs on the order of
10−10 and lower. For an application of this procedure, we focus
exclusively on the Mamyshev-type regenerator. We observed
the BER degradation, not improvement, as reported in [6], at
the output of a single regenerator. However, a direct comparison
between our results and those of [6] cannot be made since we
had to use a setup different from that of [6], as we explain later.
We also analyze mechanisms causing the BER degradation.

The main idea of why a regenerator can change the BER
was stated in [8]: the static transfer functions for an average
noisy ONE and an average noisy ZERO can be different. It
was further clarified in [6] that a Mamyshev-type regenerator
discriminates between noisy ONEs and ZEROs by their shape.
Specifically, the authors of [6] suggested that at the input to
the regenerator, these two types of symbols have, on average,
different temporal widths. In what follows, we will examine this
statement and confirm that its general idea, i.e., the fact that the
BER can change because the noisy ONEs and ZEROs may have
different width or other parameters, is correct. However, we
will also show that, in general, the average noisy ZERO is not
always wider than the average noisy ONE, as stated in [6]. More
importantly, we will demonstrate that the observed difference
in input pulsewidths does not fully account for the observed
changes in the BER at the regenerator’s output.

An open question, which is not considered in [6], is: how
does the property of the regenerator to change the BER depend
on the parameters of the regenerator? An attempt to answer
that question was made in [12]. There, it was shown that the
regenerator improves the Q-factor of the signal only if the signal
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is filtered by a bandpass filter (to reduce the amount of the ASE)
before it enters the regenerator. Moreover, such an improvement
in Q was observed only when the filter bandwidth had a value
in a certain range; for other values of the filter bandwidth, the
Q-factor was degraded by the regenerator. While these results
suggest that the filter in front of the regenerator may change the
BER at its output, they do not predict whether such a change
will actually be an improvement. The well-known reason for
this is that since the regenerator is a strongly nonlinear device,
it significantly modifies the Gaussian statistics of the ASE, and
hence, makes the Q-factor no longer related to the BER of the
signal. We will show later that while improving the Q-factor,
the regenerator can actually degrade the BER.

The main body of this paper is organized as follows. In
Section II, we describe the numerical procedure that we
developed to study signal transmission with low values of BER
through a regenerator. This procedure uses the MMC algorithm,
which allows one to access values of BER on the order of 10−10

and below with only O(105) simulations [9], [10], [11]. How-
ever, in the context of our problem, this number of simulations
is still time-prohibitive. We will describe a modification of the
original algorithm that allows one to execute the simulations
in parallel, and hence, makes them feasible on a node cluster.
In Section III, we present our results on how the regenerator
changes the BER and the Q-factor of the input signal for a
system similar to that considered in [12]. In Section IV, we
analyze mechanisms that contribute to the change of the BER
by a regenerator. The main results of the paper are summarized
in Section V. In Appendix A, we review the details of the
standard MMC algorithm. In Appendix B, we discuss the
accuracy of results obtained with our procedure.

It may be noted that the MMC algorithm was used in [4] to
study the BER improvement by a chain of 2R regenerators dis-
tributed over a long transmission line. However, in that paper,
the regenerators were modeled by their static transfer functions,
and hence, the problem of the BER change by a single regen-
erator, which we study here, could not be addressed by the
approach of [4]. Furthermore, modeling regenerators by their
static transfer functions effectively replaced the solution of a
partial differential equation that governs signal transmission by
a small number of algebraic operations on the signal power.
Therefore, the authors of [4] also did not need to be concerned
with excessive computational time of their simulations.

II. DESCRIPTION OF NUMERICAL PROCEDURE

The exposition in this section can be applied to any type
of a regenerator or, more generally, any signal-transforming
device or system, as long as it does not add noise to the input
noisy signal. The parameters of the specific regenerator that we
considered will be given in the following section.

A. Main Idea

We begin by explaining the main technical challenge of study-
ing the BER of a regenerated signal by the MMC. A complete
MMC simulation typically requires on the order of 105 indi-
vidual runs [10], [11]. Each run through the regenerator takes

Fig. 1. Schematics of stages 1 and 2 of the proposed numerical procedure.

about 5 seconds (for a relatively short bit sequence in a single
channel). By the nature of the MMC algorithm, these runs are
to be performed in series, i.e., cannot be parallelized. Thus, a
direct MMC simulation would take somewhere between 3 and
5 days. Such a long time makes this conventional MMC-based
approach hardly feasible if one needs to consider many sets of
parameters (and also to allow for unavoidable mistakes in the
exploratory phase of the research).

The key idea that we proposed and implemented to obtain the
results reported later is to split the simulation into two stages.
In the first stage, we run an MMC simulation to compute the
BER of the original (i.e., nonregenerated) signal consisting of
data and the ASE. Since one run through the receiver takes only
a small fraction of a second, this entire stage typically takes no
more than a couple of hours (on a Pentium IV-type machine), and
can be performed independently for a ONE and a ZERO. The
outcome of this stage contains two important parts, as schemati-
cally shown in Fig. 1(a). First, as usual, one obtains the PDFs of
the received noisy ONE and ZERO. Those PDFs may extend to
10−10 and even lower. Second, for each small interval of values
of the received signal power, [Pin , Pin + ∆Pin ], we collect a
large number of distinct samples of noisy signal whose received
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powers fall into this interval.1 In what follows, we refer to the
interval [P, P + ∆P ] as a bin. By the nature of the MMC algo-
rithm [13], one can obtain approximately equal number of such
samples in all bins, even in those where the PDF is very low.

Then, in the second stage of our procedure, we send these
noisy samples through the regenerator. As a result, for each
ith bin [Pin, i , Pin, i + ∆Pin ] containing input signals into the
regenerator, we obtain a distribution, Di(Pout), of the output
power values. From this distribution and the PDF of the input
signal, PDFin , we obtain the PDF at the output of the regenerator

PDFout(Pout, j ) =
∑

i

PDFin(Pin, i) Di(Pout, j )
∆Pin

∆Pout
. (1)

Here and later, indices i and j label input and output bins,
respectively, and ∆Pin and ∆Pout are the respective bin widths.
The last factor in (1) assures the normalization

∑
j

PDFout(Pout, j )∆Pout = 1

where we have also assumed that the distributions Di(Pout) are
normalized so that

∑
j

Di(Pout, j ) = 1 for all i. (2)

The schematics of the second stage are shown in Fig. 1(b). What
makes it possible to reduce the computational time of this stage
of the procedure as compared to the direct MMC simulation
is that now distinct signal samples can be processed (i.e., sent
through the regenerator) independently from one another. Thus,
this stage can be parallelized. The resulting gain in the com-
putational time depends, obviously, on the number of available
nodes in the computing cluster.

For the particular set of parameters considered in this work,
the total time required to send all the input signal samples
(for either ONE or ZERO) through the regenerator takes about
80 hours, i.e., four full days. When split among several nodes,
this stage of the procedure can be easily turned into an overnight
simulation.

Let us now comment on the connection between the origi-
nal MMC algorithm [13] and our modification of it described
above. If applied to the problem of obtaining the BER of a
regenerated signal, the original MMC algorithm would obtain
samples of noisy signal distributed approximately uniformly
among all bins [Pout, j , Pout, j + ∆Pout ] of the powers at the
output of the regenerator. (Not all of those samples would be
distinct.) The algorithm would then proceed to obtain the PDF
of the output signal, as described in [9] and [11]. In our pro-
cedure, we replaced the step of collecting (a large number of)
samples with uniformly distributed output power by that of col-
lecting samples with uniformly distributed input power. Then,
in our case, the samples are not uniformly distributed among
bins [Pout, j , Pout, j + ∆Pout]. However, the PDFout can still
be computed as long as the number of samples in each of the
latter bins remains large. This is indeed the case, as can be seen

1The reason for the subscript “in” is explained in the next paragraph.

Fig. 2. Schematics of the expected outcome of the proposed numerical
procedure.

from the scatter plots in Fig. 6 below. In Appendix B, we will
discuss the accuracy of our procedure in greater detail.

Finally, before we turn to a more detailed description of out
procedure, let us point out that it has an additional advantage
over a direct MMC computation of the BER of a regenerated
signal. Indeed, our procedure shows how the static transfer func-
tion of a regenerator is modified for the signal degraded by the
ASE. This was one of the starting points of this work (see Intro-
duction), and will be considered in more detail in the following
sections. On the contrary, a direct MMC simulation of regener-
ated signals would not be able to yield such information.

B. Implementation Details

Here, we describe technical details of the numerical procedure
presented earlier in this section. The reader who is not interested
in such details may skip to Section III.

In stage 1 of the procedure, we first perform a deterministic
simulation to obtain a static power transfer curve Pout = T (Pin)
of the regenerator. (This takes only a couple of minutes.) Then,
we select the input power of the undistorted ONE to have the
corresponding Pout somewhere on the curve’s plateau. Let us de-
note this input power Pin . This is schematically shown in Fig. 2.

Continuing with stage 1, we execute another code, which
does not involve the regenerator. This code sends a signal, which
consists of an undistroted symbol (either ONE or ZERO) and
the ASE, through an optical bandpass filter (OBPF) followed by
a receiver; the latter consists of a photodiode and an electrical
low-pass filter [see Fig. 1(a)]. We specify a value of the
optical signal-to-noise ratio (OSNR) before the OBPF, which
along with Pin then determines the average power density (per
frequency interval) pASE of the ASE. For this pASE , we perform
two separate, standard MMC simulations, one for a ONE and
one for a ZERO, obtaining the PDF of the received powers of
the respective symbol degraded by the ASE. In each of these
two simulations, out of the entire bit sequence, we specify a
bit with the respective symbol (ONE or ZERO) and record the
power only at the midpoint of that bit.2 A detailed account of the
MMC algorithm can be found in [11] and [14]; we summarize

2In actuality, the detection instance is determined by the electronic circuit of
the receiver to be an optimum for many consecutive bits simultaneously. Since
most bits contain only a small amount of ASE, the optimal detection instance
for them is around the midpoint of the bit, which justifies our choice of the
detection instance.
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its main steps in Appendix A, where we also emphasize certain
aspects of it that are critical to our procedure. One of the
advantages of the MMC simulation over a regular Monte Carlo
simulation is that it generates a nearly uniform distribution
of values Pin over a specified range. That is, for each bin
[Pin , Pin + ∆Pin ], one has approximately the same number of
signal samples whose received powers fall within that interval.
We save an equal number of distinct signal samples in each
bin, as we will use them in stage 2 of the procedure. Finally,
using the PDFs of ONEs and ZEROs obtained in stage 1, we
compute the BER at the regenerator’s input in the standard way
(see, e.g., [15, Sec. 11-2]).

In stage 2 of our procedure, we load the signal samples col-
lected in stage 1 and send them through the OBPF (the same
one as in stage 1), and then, through the regenerator.3 For sam-
ples from a particular bin [Pin , Pin + ∆Pin ], this will yield an
interval of the output powers Pout centered somewhere around
T (Pin) (recall that Pout = T (Pin) is the static transfer curve
of the regenerator). If the input samples were all of the same
shape, then the interval of the output powers would be exactly
[T (Pin), T (Pin + ∆Pin)]. However, since the ASE causes the
shapes of individual signal samples to be different, one obtains
a broader distribution D(Pout) of the powers of the regenerated
signal, as schematically shown in Fig. 2 by the bell-like curves.
[This is also illustrated by the lower-right subplot in Fig. 1(b).]
Using these distributions and the PDFs of the input powers ob-
tained at stage 1, one computes the PDFs at the output of the
regenerator by (1). With those PDFs, the BER of the regenerated
signal is computed.

Let us now use the schematics shown in Fig. 2 to explain how
the regenerator can change the BER. Let Pthr be the threshold
power that delineated between ONEs and ZEROs in the calcu-
lation of the BER in stage 1. If the action of the regenerator
could be fully accounted for by its static transfer curve, then
the threshold in the BER calculation for the regenerated signal
would have been T (Pthr), and the output BER would equal the
input BER [8]. However, due to the finite width of the distribu-
tion D(Pout), some of the ONEs that are above the threshold
(i.e., do not produce any errors) before the regenerator may go
below the threshold after the regenerator (i.e., result in errors),
and vice versa. This is schematically shown by the black shad-
ing of the bottom half of the lower bell-like curve in Fig. 2. A
similar statement applies to ZEROs as well. As a result, the BER
at the regenerator’s output can change as compared to its input
value. What this change will be depends on the distributions
DONE(Pout) and DZERO(Pout) in the vicinity of the threshold.

III. NUMERICALLY OBTAINED BER AND Q-FACTOR VERSUS

OBPF BANDWIDTH

In this section, we show the results of our numerical procedure
applied to the regenerator considered in [12] whose parameters

3At this point, one may include an option to adjust the power of all samples
by a factor maxt P0 , b efore (t)/ maxt P0 , after (t), where P0 , b efore (after) is
the power of the undistorted ONE before (after) the OBPF. If such an adjustment
is (is not) done, then the quoted input power into the regenerator will pertain to
that before (after) the OBPF. This will be used in Section III.

were scaled to correspond to 10 Gb/s operation. For example,
all temporal (spectral) measurements listed below are four times
greater (smaller) than the respective values used in [12], while
the distance and power measurements are the same as in [12].
This scaling was done for purely technical reasons related to the
particular code we used. Since the nondimensionalized propaga-
tion equation (see below) is unchanged by this scaling [16], [17],
our conclusions remain valid for the 40-Gb/s setup considered
in [12]. We did not consider the setup of [6], where the BER
improvement by a regenerator was reported, because some of
its parameters [e.g., the dispersion of the highly nonlinear fiber
(HNLF)] were not listed.

A. Simulation Parameters

The following description pertains to the setup shown in
Fig. 1. The signal is first sent through a dispersionless OBPF,
which has a flat-top, fourth-order super-Gaussian transmission
characteristic. The purpose of this OBPF is to limit the amount
of ASE entering either the photodetector or the regenerator. We
vary this OBPF’s bandwidth from one simulation to another, as
reported later. In stage 1 of our numerical procedure, the signal
filtered by the OBPF goes into the receiver that consists of a
photodetector followed by a fourth-order Bessel electrical fil-
ter with the bandwidth of 8 GHz. In stage 2 of the procedure,
the signal filtered by the OBPF is sent through the regenerator,
and then, detected by the same receiver as in stage 1. The re-
generator consists of a 2.5-km section of lossless HNLF with
γ = 8.4 (W·km)−1 and dispersion D = −11.2 ps/nm·km. The
propagation of the signal in the HNLF is modeled by the nonlin-
ear Schrödinger equation for one polarization and without any
higher-order corrections. The broadened spectrum of the optical
signal at the end of the HNLF is filtered by a Gaussian-shaped
OBPF-2 (not shown in Fig. 1)4 whose central frequency is offset
from the signal’s by 70 GHz to discriminate between ONEs and
ZEROs [7]. The full-width at half-maximum (FWHM) of this
OBPF-2 is 17.6 GHz, which is chosen so as to produce pulses
of the same temporal width, 25 ps, as at the input of the first
OBPF, shown in Fig. 1.

In this work, we simulated a sequence of only four bits, 0100.
The extinction ratio in the ZERO bits was 20 dB. The peak
power P of the undistorted ONE in front of the OBPF shown
in Fig. 1 was 1.7 W.5 Since this power is reduced after filtering
by the OBPF, we introduced an option to adjust the peak power
after the OBPF to the same value as before the OBPF. We will
report results both without this power adjustment—since it was
not used in [12] (see [18]), and with the adjustment—since it
fixes the position of the operation point on the static transfer
curve, and thereby, provides for a fairer comparison of the re-
generator performance as we vary the OBPF bandwidth. In our
simulations, the OSNR of the input signal in 0.1 nm and one
polarization was 17 dB. We used this lower value than the au-
thors of [12], since the computational time of stage 1 of our

4The suffix “-2” is used to distinguish this OBPF from the one in front of the
regenerator, which is shown in Fig. 1 and plays a prominent role in this study.

5This yielded the same path-average power as in [12] when one accounted
for the loss of the HNLF in that paper.
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Fig. 3. BER and Q-factor before and after the regenerator. Dotted line: before;
all other line types: after. Thick (thin) lines: the peak power after the OBPF is (is
not) adjusted to equal its value before the OBPF. In (b), the dashed lines show
the Q-factor obtained from the static transfer curves and the PDFs of the input
signal.

procedure increases with the OSNR. We expect that the par-
ticular value of that parameter does not change the qualitative
conclusions of our study. Having obtained the PDFs of ZEROs
and ONEs, as explained in Section II-A, we computed the
Q-factor as

Q =
V(1) − V(0)

σ(1) + σ(0)
(3)

where for k = 0 or 1, V(k) =〈P 〉(k) , σ(k) =
√

〈P 2〉(k)−〈P 〉2(k) ,

〈Pn 〉(k) =
∑

i

PDF(k)(Pi)Pn
i (∆P )(k) , n = 1, 2 (4)

and i is the index of the bin in the histogram. In the simulations
of ONEs and ZEROs, we used 77 and 40 bins covering the
power ranges [0.15P , 1.65P ] and [0, 0.4P ], respectively. The
numbers of distinct signal samples collected in each of the ONE
and ZERO bins were 800 and 2000. As noted in Section II-B,
the power values Pi were detected always at the midpoint of the
respective bit slot.

B. Results

Fig. 3(a) and Fig. 3(b) shows the BER and Q-factor mea-
sured at the input and the output of the regenerator plotted
versus the FWHM of the OBPF in Fig. 1. Since these quan-
tities are determined by statistical simulations, they have a

Fig. 4. Adjustment factor that can be applied after the OBPF to restore the
pulse peak power; see Fig. 1(b).

certain error, which we discuss in detail in Appendix B. The
results in Fig. 3 are shown both when the input power after
the OBPF was and was not adjusted to equal its value before
the OBPF. Without the power adjustment, which was the case
considered in [12], the filtering of the pulses entering the re-
generator leads to the decrease of the power of the undistorted
ONE by the corresponding value of the adjustment factor (see
Fig. 4). For the 23-GHz-wide OBPF, such decreased power is
about 1.0 W, which is near the “knee” of the static transfer curve
(see Fig. 6(a)). From the same figure, one sees that the output
power fluctuations around the “knee” are significantly greater
than those at the flatter part of the transfer curve. This explains
the abrupt downturn of the thin solid line in Fig. 3(b).6 On the
other hand, when we adjust the power after the OBPF so as
to maintain P = 1.7 W, the output Q-factor does not decrease
appreciably with the OBPF bandwidth. However, that could
change in the presence of intersymbol interference, which in
our simulations with the bit sequence 0100 did not occur. In
what follows, we present and discuss results only for the case
where the power after the OBPF was adjusted.

The most important conclusion that can be drawn from Fig. 3
is that although the regenerator may improve the Q-factor, it
does not improve, and actually degrades, the BER. Another
conclusion is that this BER degradation is greater for a wider
OBPF. The output Q-factor also decreases with widening the
OBPF, as was originally observed in [12].

From Fig. 5, which shows the PDFs of the regenerated ONEs
and ZEROs,7 it is immediately obvious that the BER degrada-
tion occurs primarily from the regenerated ONEs. Fig. 6 pro-
vides supporting details to that statement, as well as explains
why the BER degradation diminishes with the decrease of the
OBPF bandwidth. Indeed, expectedly enough, as the spectrum
of the ASE allowed into the regenerator becomes narrower, the
temporal shape of the noisy signal becomes closer to that of the
undistorted ONE, and the deviation of output power from the
value dictated by the static transfer curve decreases. Note that
the noise increase in regenerated ONEs compared to the input

6The reason why the corresponding drop of Q with the OBPF bandwidth is
much greater in [12] may be both due to their OSNR being higher, and also, due
to the presence of intersymbol interference in their simulations.

7The PDFs of input ONEs and ZEROs are well known, and hence, shown
only in the upper-right subplot in Fig. 1(a).
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Fig. 5. PDFs of the signal at the output of the regenerator. Solid lines: calcu-
lated with the numerical procedure of Section II; Dashed lines: calculated using
the static transfer curves and the PDFs of the input signal. The OBPF bandwidth
is indicated in the figure. Here and in Figs. 6 through 8, the power is measured
by the receiver at the midpoints of bit 2 for ONEs and bit 4 for ZEROs. The
actual peak power of an individual pulse from a bin labeled with a given value
of power may be slightly greater than that value due to the pulse center being
randomly shifted from the bit’s midpoint.

qualitatively agrees with a similar result for supercontinuum
generation; see, e.g., the data shown by circles (corresponding
to the normal fiber dispersion) in Fig. 2(b) of [19].

Another observation that can be made from Fig. 6 is that
the regenerated ZEROs do, on average, have different output
powers from the regenerated ONEs with the same input power.
Specifically, the average output power of ZEROs decreases as
compared to the average output power of ONEs as the bandwidth
of the OBPF decreases. In other words, the regenerator can
discriminate between noisy ONEs and ZEROs, as was stated
in [6]. However, even when the average output power of ZEROs
is less than that of ONEs [as in Fig 6(a)], the BER is still
degraded by the regenerator. This occurs because the detrimental
effect of the decreased output power of ONEs as compared to
the static transfer curve outweighs the positive effect of the
decreased output power of ZEROs relative to the same curve.

IV. CAUSES OF DEVIATION OF REGENERATED SIGNAL’S

POWER FROM STATIC TRANSFER CURVE

The authors of [6] argued that the regenerator can discriminate
between noisy ONEs and ZEROs because the latter are, on
average, wider (in the temporal domain) than the former. We will
show later that although this statement about the relative widths
may be correct under certain conditions, its explanation given
in [6] was not. We will then show that the previous statement

Fig. 6. Contours of the output vs input power scatter plots of the regenerated
signal. Thick line: the static transfer curve; thinner contours: ZEROs; dots:
ONEs. The OBPF bandwidth is indicated in the figure. See caption of Fig. 5
regarding the axis labels. In addition, the input power is scaled from its value
after the receiver’s electrical filter to correspond to the power entering the
regenerator.

about the sensitivity of the regenerator output to the width of the
input pulse is a particular case of a more general phenomenon.

The reason that the explanation of [6] about the widths of
ONEs and ZEROs is not correct is the following. The ONEs
and ZEROs examined there were taken not from the “tails” of
the distributions where the PDFs of these symbols intersect and
where the decision is made by the receiver, but near the maxima
of those distributions, which play no role in the detection. The
regular Monte Carlo simulations used in [6] cannot yield a
sufficient number of samples near the decision threshold. On the
contrary, our procedure based on the MMC algorithm collects
sufficient number of samples (see Section III-A) in the entire
range of the input power values.

In Fig. 7, we plot the measured widths of pulses after the
OBPF and before the regenerator that are averaged over each bin
of the histogram. The standard deviations of these widths near
the decision threshold (i.e., where the normalized input power is
0.2–0.3) decreases from about 6 to 3 ps as the OBPF bandwidth
decreases from 49 to 23 GHz, and are slightly larger for ZEROs
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Fig. 7. Per-bin averages of input pulsewidths. We first compute the root-
mean-square width of each pulse, and then, multiply it by 2

√
2 ln 2 to obtain

the FWHM, where the last relation holds for Gaussian pulses. Thick, thin, and
dotted lines correspond to noisy ONEs, noisy ZEROs, and the undistorted ONE,
respectively. The OBPF bandwidth is indicated in the figure. The input power
is normalized to the power P = 1.7W of the undistorted ONE.

than for ONEs. A conclusion that follows from Fig. 7 is that the
relation between the widths of input ONEs and ZEROs near the
decision threshold depends on the OBPF bandwidth. Moreover,
this relation is correlated with the relative behavior of the aver-
age output powers of the symbols that is seen in Fig. 6. Namely,
when the average width of input ONEs is less (greater) than
the average width of input ZEROs, the average output power of
ONEs is greater (less) than the average output power of ZEROs.
As was pointed out in [6], this is explained by the dependence
of the static transfer curve on the width of the input pulse; this
dependence for the regenerator under study is shown in Fig. 8.
Similar results were also reported in [17]. However, as pointed
out at the end of Section III, the aforementioned ability of the
regenerator to discriminate between input ONEs and ZEROs
by their widths is insufficient to achieve the BER improvement.

Parenthetically, let us note that for the 33-GHz wide OBPF,
the average widths of ZEROs and ONEs are almost the same
near the decision threshold. This indicates that in the absence
of the regenerator, an OBPF with this bandwidth approximates

Fig. 8. Static transfer curves corresponding to different widths of unchirped
input pulses. Unlike in the previous figures, here, we plot the output power vs a
quantity proportional to the total energy rather than the peak power (see caption
to Fig. 6) of the input pulse. This is done because a given bin contains pulses
with the same power at the receiver, and the action of a narrow-band electrical
filter at the receiver is similar to that of an integrator.

the matched optical filter (see, e.g., [15, Secs. 5-4 and 14-3]).
Indeed, such a filter, whose use in front of the photodetector re-
sults in the minimum BER, cannot discriminate between ONEs
and ZEROs. For if it could, then the filtered spectra of those
symbols would have had to be different, and then, using a dif-
ferent OBPF would lower the BER. For example, suppose that
after a given OBPF, ZEROs are spectrally narrower than ONEs.
Then, sending those signals through a second OBPF that has a
“dip” at the central frequency would improve the detection by
filtering out more noise than the data. Thus, the combination of
these two OBPFs is “better” than the first OBPF alone.

We also examined the standard deviations8 of the temporal
center, central frequency, and chirp of pulses after the OBPF in
order to determine their possible effect on the regenerator output.
The first two of these quantities can be shown to have negligible
effect for all the OBPF bandwidths considered. The standard
deviation of chirp near the decision threshold is about 150–
200 ps/nm for ZEROs and about two-thirds of that value for
ONEs when the OBPF is wider than 40 GHz. Static transfer
curves9 for input pulses with chirp of ±200 ps/nm predict sig-
nificantly lower (by a factor of 2 or so) output power near the
decision threshold (but not around the plateau of the curve) as
compared to the unchirped case. However, when the chirp is re-
duced to ±100 ps/nm, the curves for the chirped and unchirped
cases predict approximately the same output powers. For the
OBPF bandwidth narrower than 35 GHz, the standard devia-
tions of chirp of both ZEROs and ONEs are below 100 ps/nm,
and hence, should have only little effect on the power of the
regenerated signal.

Next, we visually inspected the correspondence between in-
put noisy pulses and the regenerated ones in order to verify the
earlier predictions regarding the effect of pulsewidth and pos-
sibly chirp on the output powers. Surprisingly, we found that
while there is some correlation between the input pulsewidth
and the output power, a stronger effect on the output can often
come from relatively small variations of the input pulse shape

8The means of these quantities vanish.
9We do not depict these curves here; the reader can find qualitatively similar

curves in Fig. 7(b) of [17].
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Fig. 9. Typical situation where two close inputs to the regenerator produce
greatly different outputs. Thick, thin, and dotted lines correspond to the two
sample input pulses and the undistorted ONE with a properly scaled input
power. Relevant parameters are found in the text. In (b), we chose to present the
phases of pulses in a smaller temporal window than quantities in (a), (c), and
(d) in order to emphasize that these phases differ only slightly near the pulse
centers. In (d), note that we depicted field amplitudes, not the powers, because
it is from those (complex) amplitudes that the spectrum is obtained. The phases
of these fields appear to be more similar than the amplitudes, and are not shown.

and even from the field in adjacent bits. That is, variations of in-
put pulse shapes that are not prominently reflected by “average”
(over the temporal bit) quantities of a pulse, such as its width, can
cause as large an effect on the output pulse power as fluctuations
of those bit-average quantities. A typical example is shown in
Fig. 9, where we depict two samples of an input ZERO in the bit
[100 ps, 200 ps] with the received power of about 0.25P ≈ 430
mW. We chose to present this example for the OBPF bandwidth
of 23 GHz to emphasize that the high sensitivity of the regen-
erator’s output with respect to small variations of the shape of
the input signal exists even for such a narrow bandwidth. The
temporal widths (computed as explained in the caption to Fig. 7)
for samples 1 and 2 are, respectively, 38.3 and 36.7 ps, and the
chirps are −0.9 and 24.5 ps/nm (such small values of chirp did
not affect the output power). Even though the samples’ input
profiles look quite similar [see Fig. 9(a) and Fig. 9(b)], the out-
put pulses have vastly different powers [see Fig. 9(c)]. Note that
the slightly wider input sample has the higher output power than
the other sample, contrary to the dependence characteristic of
static transfer curves, shown in Fig. 8. Thus, small variations in
the input pulse profile can cause large variations of the output,
and, moreover, their effect can outweigh the effect of bit-average
quantities (such as width) of the pulse field. High sensitivity of
the output power to small variations of the input is well known
in the context of supercontinuum generation (see, e.g., [20]).
However, supercontinuum generation occurs in a much more
nonlinear regime than the one considered here, which is man-
ifested, e.g., by the soliton fission that is observed in [20] and
absent in our study. High sensitivity of the output in a setup that

is more similar to ours, although being in a different physical
context, is reported in [21].

Let us emphasize that the high sensitivity of the power of the
regenerated signal is the very property that allows the enhanced
discrimination of ZEROs that are well below the threshold from
the ONEs that are well above the threshold. Indeed, this dis-
crimination is provided by the steep part of the static transfer
curve, where the output power is highly sensitive to the input
one. However, there is no reason to expect that such sensitivity
should be restricted only to few parameters (such as peak power
and width) of the input pulse and not pertain to other pulse
shape variations. This is precisely the phenomenon illustrated
by Fig. 9 and discussed in the previous paragraph. Furthermore,
consider the flatter regions of static transfer curves in Fig. 6;
they correspond to input ONEs relatively slightly contaminated
by the ASE. The rather “fat” scatter plots of the output vs input
power in those regions suggest that while in the flatter part of the
transfer curve, the output power ceases to be highly sensitive to
the input power, it apparently remains highly sensitive to other
small changes of the pulse shape.

V. CONCLUSION

In this paper, we made the following contributions.
First, we proposed (see Section II) a method by which the

MMC simulations can be effectively parallelized, which re-
duces its computational time. Our method applies not just to a
regenerator, but whenever the problem in question has the fol-
lowing setup. Suppose that one needs to measure the PDF of
the output of a random quantity X when this quantity has been
transformed by some nonlinear system N . The only restriction
on N is that it not add noise to X . Simulating the required
number of samples passing through N would make the stan-
dard MMC simulations time-prohibitive (and the regular, i.e.,
non-multicanonical, Monte Carlo simulations simply not real-
izable). On the other hand, suppose that one can pass X through
another system M such that: 1) the MMC simulations with M
are relatively quick and 2) there is some “relatively smooth”
(yet, of course, unknown) dependence between the outputs of
M and N . Then, the modified MMC-based procedure is run in
two stages. In stage 1, perform the standard MMC simulations
with M and collect samples in the range of interest. In stage
2, pass those samples through N and obtain the desired PDF,
as explained earlier in Section II. Processing different samples
in stage 2 can be done independently, and hence, this stage can
be performed on several computers simultaneously, thereby in-
creasing the computational speed by an order of magnitude. A
minor drawback of our procedure as compared to the standard
MMC procedure of [9] is that the resulting PDFs in ours are
more jagged, and hence, have somewhat larger error, as demon-
strated in Appendix B.

Second, using our numerical procedure, we analyzed (in
Section III) the BER and the Q-factor of the signal at the
output of a Mamyshev-type regenerator as a function of the
bandwidth of the OBPF, where the latter limits the amount of
noise entering the regenerator. We confirmed the result of [12]
that the Q-factor is improved by the regenerator only when the
OBPF bandwidth is in a certain range. However, we showed that
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even when the Q-factor is improved, the BER is still degraded
by the specific regenerator we considered. Thus, although the
Q-factor may find some use in predicting the performance
of a chain of regenerators, it is not relevant to predicting the
output BER of a single device. This conclusion, of course,
is not unexpected, since the PDF of the signal at the output
of the highly nonlinear regenerator is not Gaussian. More
importantly, we confirmed a general observation made in [12]
that the bandwidth of the OBPF in front of the regenerator is
one of its important control parameters. Namely, we showed
that the BER of the regenerated signal decreases in absolute
terms when this OBPF’s bandwidth is decreased.

As was mentioned in Section III, we had not had sufficient
information to model the setup of [6], where BER improvement
by a single regenerator was reported. However, since our re-
sults apparently contradict those of [6], we varied parameters
of our regenerator in order to find a regime where the BER
would improve. The two main alterations we considered were:
1) widening the OBPF-2 at the output of the regenerator (see
Section III-A), since this corresponded to the situation consid-
ered in [6] and 2) shifting the power P from 1.7 to 3.0 W, i.e.,
to the gently increasing part of the static transfer curve. (The
gradual shifting of P in the opposite direction was already con-
sidered in Section III-B via not adjusting the power after the
OBPF.) Neither of these alterations changed our main conclu-
sion that a single regenerator degraded, but not improved, the
BER. It may be useful to analyze the setup considered in [6]
(which would require the knowledge of all of its relevant param-
eters) with either our numerical procedure or with the standard
MMC simulation, in order to understand what exactly made the
BER improvement observed there possible.

The third main contribution of this work was discussed in
Section IV. We demonstrated that the output of the regenerator
is highly sensitive not only to the width or amplitude of the
input pulse, but also to small variations of the input pulse shape
that are not captured by those bit-average quantities. To our
knowledge, this phenomenon was not pointed out in earlier
studies of regenerators. It is that type of sensitivity that largely
contributes to the broadness of the output vs input power scatter
plots (see Fig. 6). This broadness, in its turn, “raises the tail" of
the PDFs, as illustrated in Fig. 5, which leads to the degradation
of the BER at the output of a single regenerator.

Parenthetically, let us point out a curious difference between
the effects of a receiver (consisting of a photodiode and an elec-
trical filter) and a regenerator on the signal containing optically
filtered ASE. The receiver smoothens out shape variations of
such a signal, while the regenerator often amplifies them. Stated
differently, while the receiver’s action is integration, which is
known to smoothen jagged input, the regenerator’s action could
be likened to that of a multidimensional differentiator, which
enhances the jaggedness along some of the dimensions.

APPENDIX A

OVERVIEW OF THE MMC ALGORITHM

Here, we mostly follow the exposition of the MMC algorithm
found in [11] and [14] and emphasize certain aspects of it that
are critical for out case.

Statistical computation of the PDF of a quantity X up to
very low values requires generation of random realizations of
X that are very rare. To collect sufficiently many such rare
realizations so as to obtain a smooth histogram [i.e., the ap-
proximation to the PDF(X)] is often not feasible when using
the regular Monte Carlo simulations. The MMC is an iterative
procedure that dramatically increases the number of such rare
realizations by biasing them using the PDF determined at the
previous iteration.

To proceed, we need the following notations. Let ẑ =
(ẑ1 , . . . ẑL ) be the discrete Fourier spectrum of the numeri-
cally generated ASE entering the OBPF shown in Fig. 1. The
width of the ASE spectrum should only slightly exceed the full
bandwidth of the OBPF, as we will explain later. The ẑi’s are in-
dependent random quantities having identical PDFs ρ(zi) with
zero mean and the variance σ2

z such that for all i

σ2
z ≡ 〈ẑ∗i ẑi〉 = pASE∆ω (5)

where ∗ denotes the complex conjugate, pASE is the ASE power
density, and ∆ω is the spacing between the discrete frequencies.
The ASE field z(t) is added to the field of the data s(t), and
then, the power P (z) =

∫
Gel(t − t′)|

∫
Gopt(t′ − t′′)[s(t′′) +

z(t′′)]dt′′|2dt′ is detected by the receiver [see Fig. 1(a)], where
Gopt and Gel are the impulse response functions of the OBPF
and the electrical filter, respectively. Let us subdivide the entire
range [min P (z), max P (z)] into small bins [Pk , Pk + ∆P ],
k = 1, . . . ,K.

The MMC simulation contains two loops. The outer loop is
over subsequent iterations. The inner loop within each MMC
iteration is over individual realizations of z. Before the begin-
ning of each iteration, reset the histogram H = (H1 , . . . HK )
to zero. The kth entry of this histogram at the end of the iteration
will then indicate how many times the received power P have
been accepted (see below) into bin k. For the first sample in each
iteration, compute P (z); if that value falls into bin k, accept it
into that bin (and hence, let Hk = 1). Denote the random vector
of the ASE spectrum at this step by ẑa and the corresponding
ASE field by za . For each subsequent realization of z, do the
following.

1) Generate a random vector

ẑprov
b = ẑa + ε∆ẑ (6)

where each component of ∆ẑ is a symmetrically dis-
tributed random variable independent of all the other com-
ponents. The magnitude ε of the ASE increment plays
more important role in our procedure than in the original
MMC, and therefore, we will comment on it in more detail
later. Accept the lth component of ẑprov

b with the probabil-
ity min(ρ(ẑprov

b,l )/ρ(ẑa,l), 1). If ẑprov
b,l has been accepted,

set ẑb,l = ẑprov
b,l ; otherwise, set ẑb,l = ẑa,l . Note that, as

announced earlier, the number L of the frequency compo-
nents should only slightly exceed a number of frequencies
that can pass through the OBPF placed in front of the
regenerator. Otherwise, the algorithm may accept a ẑprov

b

which differs from ẑa only in frequencies lying outside the
OBPF’s passband, while both of these noise realizations
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result in essentially the same signal entering into the re-
generator. In this work, we took the spectral width L∆ω
of ẑ to be 50% greater than the OBPF’s FWHM.

2) For the zb constructed in step 1), compute the re-
ceived power P (zb); suppose that it falls into bin
m. Accept this random realization with the probability
min( PDF(P (za))/PDF(P (zb)), 1), where PDF (P ), an
approximation to the true PDF, is computed from the his-
togram H at the previous iteration (see below). At the first
iteration, some initial profile of the PDF needs to be as-
sumed. This profile turns out to be more important in our
procedure than in the standard MMC, as we will discuss
in detail later. If P (zb) is accepted, increment Hm by 1,
and then, rename za = zb and k = m. If P (zb) is rejected,
increment Hk by 1 and keep za and k the same as in the
previous realization.

3) In addition, if P (zb) is accepted, save the signal realization
s + zb so as to use it in stage 2 of the procedure. This is
the step that is not needed in the standard MMC.

4) Repeat the previous steps a number of times specified for
each iteration. In our simulations, each iteration produced
100 times more realizations than the number of bins. At
the end of each iteration, use the accumulated histogram
H to update the PDF (see, e.g., (6) in [11]).

5) Terminate the iterations when the number of collected dis-
tinct random realizations of the signal in all bins reaches
a specified number, Ncollected . (This termination criterion
is different from that used in previous applications of the
MMC [10], [11], [14].) To save the disk space, we also
recorded only the first Ncollected realizations in each bin
and discarded all others.

We now discuss the importance of properly choosing the
initial PDF, PDFinitial , and the magnitude of the ASE increment,
ε in (6). Previous researchers who used the MMC started with
a constant PDFinitial . In such a case, the entries of histogram
H corresponding to the very rare signal realizations fill out not
because many new such realizations are generated, but because
the “old” ones are counted repeatedly (see the second step of the
description above). This slows down the collection of distinct
signal realizations. We found that starting close to the analytic
approximation for the PDF [see, e.g., (13) and either (24) or
(A3) in [22]] considerably accelerates the collection of distinct
realizations.

The effect of the parameter ε on the simulation’s ability to
collect distinct signal realizations is more subtle. Namely, if ε
is “too small,” then the successive realizations differ very little
from one another, and hence, are not sufficiently independent
to produce a good approximation to the BER at the output of
the regenerator. On the other hand, if ε is “too large,” only a
small percentage of new realizations will be accepted by the
MMC algorithm. Moreover, some of those realizations zb may
be still rather close to za because, although ε is not small, the
random quantity ε∆z can still be small. It may be better to use
“intermediate” values of ε so as to allow the ASE realization
to gradually drift sufficiently far away from its original state
during one iteration of the MMC. We empirically found that
using ε ∼ 1 produces sufficiently distinct signal realizations.

Fig. 10. Output vs input BER values computed by the procedure of Section II
with different seeds of the random number generator. The OBPF bandwidths
are 23 GHz (circles) and 49 GHz (triangles).The filled symbols are the corre-
sponding data points from Fig. 3(a).

The need to empirically find a “good” combination of
PDFinitial and ε, which may vary with the OBPF’s and the elec-
trical filter’s bandwidths, as well as with the OSNR and possibly
other parameters, is currently a minor drawback of our proce-
dure. Employing biased multicanonical sampling [23], [24] may
improve the collection of distinct signal realization; this issue is
left for future investigation.

APPENDIX B

ACCURACY OF NUMERICAL PROCEDURE DESCRIBED

IN SECTION II

It is known [14], [24] that in its “tail” region, the PDF found by
the MMC algorithm has a standard deviation that is on the order
of the PDF value itself. Consequently, the BER determined by
such a PDF can easily fluctuate by a factor of 2 or so from one
MMC simulation to another. In addition to this variation that
is intrinsic to the MMC algorithm, our procedure introduces
jaggedness of the PDF curves, which is especially pronounced
in ONEs for low values of the output power [see Fig. 5(b)].
This jaggedness, which should decrease with the increase of the
number of collected samples, leads to additional variation in the
BER calculated by the procedure of Section II as compared to
what would be calculated by the standard MMC algorithm.

Thus, there arise two questions. 1) How large is this additional
variation as compared to that intrinsic to the standard MMC? 2)
Is the overall variation of the BER calculated by our procedure
“acceptable”? We will answer question (1) in the next paragraph.
An answer to question (2) depends, obviously, on the goal of
a particular study. Our main goal was to compare the BERs
at the input and output of a regenerator. As we demonstrate in
Fig. 10, variations in the calculated BER do not compromise the
qualitative trend observed in Fig. 3(a), and thus, the results of our
procedure are indeed acceptable for our purposes. Moreover, it
should be noted that the BER measured in a physical experiment
is also a statistical quantity and fluctuates in time by a factor
of order 2. Therefore, having similar variations in a numerical
experiment do not compromise the relevance of the numerical
results to the physical ones that they model.

To quantitatively validate our main results, shown in Fig. 3(a),
we performed two sets of ten simulations each using the pro-
cedure of Section II, where we varied the seed of the random
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number generator. The bandwidths of the OBPF in front of the
regenerator in these two sets were 23 and 49 GHz. The results
of these simulations are shown in Fig. 10, where we also plotted
the corresponding two data points from Fig. 3(a). For each set,
we used ε = 1.1 and the PDFinitial computed from the formulas
in [22] (see Appendix A). In those formulas, we set the OSNR
to 80% and 100% of its actual value of 17 dB (see Section III-A)
for ONEs and ZEROs, respectively. This was done to optimize
the rate at which distinct signal samples were collected, but
did not significantly affect the final PDFs. One can see that the
variations of the output BER (computed by our procedure) do
not significantly exceed those of the input BER (computed by
the standard MMC algorithm in stage 1 of our procedure). The
outlier data point for the set corresponding to the 23-GHz OBPF
occurred because the PDFONE had a spike right at the decision
threshold. Even with those variations, the main conclusion of
Fig. 3(a)—that a single Mamyshev-type regenerator degrades
the BER—remains unchanged.
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