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BER Degradation by Signal-Reshaping Processors
With Noninstantaneous Response

Taras I. Lakoba

Abstract—We show analytically that if the response of a signal-
reshaping processor is slower than (or comparable to) the time
scale of variations of the temporal profile of the input signal, then
such a processor necessarily degrades the signal’s bit error rate
(BER). Here, the BER comparison is made for the cases where
the receiver is placed immediately before and immediately after
the processor. As primary examples of such processors, we con-
sider all-optical 2R (reamplification and reshaping) regenerators,
but also mention that the aforementioned BER degradation can
occur in wavelength converters and electronic components of the
receiver.

Index Terms—All-optical regeneration, digital signal processors,
optical communication, optical fiber communication, optical signal
detection, optical signal processing, signal detection, signal pro-
cessing, transfer functions.

I. INTRODUCTION

A number of devices proposed for all-optical signal pro-
cessing rely on pulse propagation in a nonlinear medium

(such as fiber or semiconductor) with noninstantaneous re-
sponse, where the latter occurs either due to chromatic disper-
sion or filtering (in fibers) or due to finite carrier recombination
time (in semiconductors). In this paper, we will mainly refer to
all-optical 2R (reamplification and reshaping) regenerators (see,
e.g., [1]–[3]) as examples of such devices; however, our main
result will also apply to, e.g., wavelength converters [4]–[7], as
well to as other (not necessarily all-optical) signal processors.
Often (see, e.g., [1], [3], and [8]), researchers model signals
entering the regenerator as having the same shape and width but
variable peak powers. Then the output signal power depends
only on the input power, and this dependence is sometimes
referred to as the static transfer function. In such an approach,
the regenerator is considered as being fully characterized by its
static transfer function. However, due to the interplay between
the nonlinearity and time-dependent response of the device,
the signal output power depends not only on the input power,
but also on the signal’s temporal profile. That is, signals with a
given value of received power in the absence of a regenerator
have a continuum of different shapes, and, therefore, they will
have not a unique power, but a distribution of powers, at the
output of the regenerator. This is illustrated in Fig. 1, where
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Fig. 1. Schematics of the static power transfer curve and of the distribution
� �� �� � of output powers. This distribution is caused by the fact that input
signal samples with the same peak power � have a continuous distribution of
temporal shapes.

such a distribution is shown only for one value of the “input”
power. Thus, there must exist situations where modeling of the
regenerator’s action by its static power transfer function would
lead to inaccurate results. Indeed, it was recently reported
[3], [9], [10] that this is the case for the bit error rate (BER)
estimation at the output of a single 2R regenerator. Namely, the
authors of [3] and [10] showed that modeling the transformation
of a noisy signal in a regenerator using a static transfer function
would falsely predict BER values that are two-three orders of
magnitude better (i.e., lower) than those actually obtained.

In Section II of this paper, we will provide an analytical base
for the BER-related results of [3] and [10]: We will prove that
if at the output of the signal processor, logical ONEs and log-
ical ZEROs have the same distribution of powers
(see Fig. 1), then the BER after such a processor is worse (i.e.,
higher) than that immediately before it. (As explained, e.g., in
[10]–[12], a chain of regenerators distributed along the trans-
mission line will still be able to improve the BER at the re-
ceiver placed at the end of the line.) In Section III, we will ex-
plain that for a realistic case where those power distributions
for ONEs and ZEROs are different but considerably overlap,
the BER is still degraded by the signal-reshaping processor. We
will also point out that, in light of this result, a signal-retiming
or phase-restoring processor placed in front of the receiver can
improve the BER. We will draw conclusions in Section IV.

II. PROOF OF THE MAIN RESULT

In this section, we will use regenerators as a specific example
of signal processors with noninstantaneous response. In the next
section, we will discuss how the BER degradation manifests
itself in other types of such processors.
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Fig. 2. Schematics of probability densities of ZEROs and ONEs. The optimum
threshold �� and “partial thresholds” �� are defined in (2) and (15), respec-
tively. The “partial thresholds” are also shown in Fig. 4.

A. Preliminaries

Let and be the powers, detected by the receiver, of sig-
nals at the input and output of the regenerator, respectively. If
the regenerator’s response were instantaneous, then one would
have , where is the static transfer function of the
regenerator. When is a monotonic1 function for all , it is
known (see, e.g., [13]) that the BERs of and are the same.
Here, we will briefly outline the proof of this statement, as its
steps will be repeated in the proof of our main result. The BER
of is computed as

(1)

where the “1/2” is the probability of receiving a ZERO or a
ONE, are the respective probability densities that the
received nonregenerated symbol (ZERO or ONE) has power ,
and the threshold is found from the condition that be
at its minimum. The latter condition yields

(2)

We assume (and in all cases known to us it is true) that the
solution of (2) is unique (see Fig. 2).

Now let be the probability densities of the regener-
ated ZEROs and ONEs, respectively. Then the BER of is

(3)

where satisfies the counterpart of (2)

(4)

Since and are related by an algebraic relation , one
has

(5)

1For definiteness, we will now assume that ���� is increasing, but will relax
the monotonicity condition later on.

Substituting this into the last equation in (4), one obtains

(6)

where , the inverse of , exists since is mono-
tonic. Comparing (6) with (2), one concludes that

(7)

Substituting (5) and (7) into (3), one verifies that
.

Let us make two remarks about this derivation. First, the con-
dition that is strictly monotonic (e.g., increasing) may not
hold for a particular regenerator (see, e.g., [1], [9], and [10]).
However, all that is really required is that be an in-
vertible (i.e., a one-to-one) function near the threshold . This
condition holds for any regenerator considered for practical use.

Second, we stress that the key relation which allowed us to
derive that for the regenerator with instanta-
neous response was (7), which in turn was made possible by the
local relation (5) between and .

Now, for a regenerator with non-instantaneous response, the
counterpart of (5) is a nonlocal, integral relation

(8)

Here is the conditional probability density that a non-
regenerated signal with received power is transformed by the
regenerator into a signal with received power . In Fig. 1, it is de-
noted as . Note that the information about the entire
complex evolution of a signal with arbitrary shape is “lumped”
into the input-output function of only two variables. This
is adequate because the input and output received powers and

are the only variables that the receiver “knows about”. Let us
also mention that the projection of the 2-D surface onto
the -plane appears as a curved band enclosing the static
transfer curve . For this reason, we will refer to
as a “transfer band” of the regenerator. Such transfer bands for
ZEROs and ONEs, obtained numerically for a regenerator con-
sidered in [10], are shown in Fig. 3. Specifically, this figure il-
lustrates the situation where the shape of the signal varied due
to noise added to the “clean” input, with the bandwidth of the
noise being about twice that of the “clean” pulses.

Note that must satisfy the normalization condition

(9)

which means that the input power is transformed by the re-
generator into some power .

Our goal is to prove that unless , which
would imply (5), the BER is degraded by the regenerator

(10)

We will first prove this for a particular form of where this
transfer band consists of a finite set of isolated transfer curves
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Fig. 3. Contour plots of the conditional probability densities � ����� obtained
separately for ZEROs and ONEs for a regenerator considered in [10].

Fig. 4. Schematics of transfer curves � ,� � �, 2, 3, and the corresponding
“partial thresholds” �� defined by (15).

(11)

Equation (11) specifies that an input signal with power is
transformed by the regenerator into a signal having one of the
powers with probability . This is illus-
trated in Fig. 4. Here and below the subscript in parentheses, as
in , , refers to the th curve, while the sub-
script without parentheses, as in , , 1, distinguishes
between the logical symbols ZERO and ONE.

We include the proof of (10) for the restricted form (11) of
because: i) this proof will clearly show the reason behind

the BER degradation and ii) it will also show how the proof in
the general case could be constructed. The reader who is not
interested in mathematical details may skip to the last paragraph
of Section II-B for an informal interpretation of this proof.

Let us note that the situation where the action of a 2R regen-
erator was described by a set of discrete transfer curves, as in
(11), was considered in [11]. There, the “splitting” of the single
transfer curve into a set occured due to bit-pattern dependence:
the power of a pulse at the output of a regenerator was influenced
by the pulse’s interaction inside the device with its “neighbors”

in adjacent bit slots. The authors of [11] demonstrated numer-
ically the BER degradation at the regenerator’s output due to
this bit-pattern dependence, but they did not explicitly explain
the mechanism of that degradation. We will describe this mech-
anism in the next subsection.

B. Proof of (10) for Given by (11)

We assume that the functions in (11) satisfy two con-
ditions

(12a)

(12b)

The first of these conditions is a counterpart of the condition that
the static transfer function , used in the derivation above,
be monotonic. As noted after (7), this condition needs to hold
only near the threshold to guarantee that exist. The
second condition simply says that different curves do
not intersect, except possibly at (see Fig. 4).

Following the steps of the derivation found in Section II-A,
we will obtain a counterpart of the key relation (7). Substitution
of (11) into (8) yields

(13)

This is a counterpart of (5). Now, note that (4) is valid irrespec-
tive of the form of . Then, substituting (13) into that equa-
tion, we find the counterpart of (6)

(14)
Let us denote

(15)

(see Fig. 4). Since according to (12a), all , then
the sign of the terms in the square brackets in (14) must change
as changes from 1 to . That is, there is an index
such that

(16)

For example, in Fig. 2. Alternatively, one can write that

(17)

where is defined in (2). Inequalities (17) along with (15) are
the sought counterpart of (7). We now substitute (13) and (15)
into (3) to obtain

(18)
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By virtue of (2) and (17), there can be at most one term in paren-
theses in (18) that equals the r.h.s. of (1), while all the other
terms satisify

(19)

Substituting (19) into (18) and using the normalization condi-
tion for from (11), we obtain (10), as desired.

This derivation clearly shows the reason behind the BER
degradation after a regenerator whose response consists of
several transfer curves, as in (11). This reason is that, in view
of (16), all (except at most one) of the “partial thresholds”

are suboptimal for “their” transfer curves and, hence,
contribute a greater probability of error to the than the
unique optimal threshold would do. For of a general
form, i.e., not restricted to (11), the mechanism of the BER
degradation is the same spread of “partial thresholds,” as we
will now show formally.

C. Proof of (10) for a General

The mathematical trick for this proof is to represent a general
in a form analogous to (11)

(20)

where is any function satisfying, for all

(21a)

(21b)

and must satisfy the normalization condition

(22)

Conditions (21) are counterparts of conditions (12), and con-
dition (22) is a counterpart of the last equation in (11). In Ap-
pendix we prove that given any satisfying (9), represen-
tation (20)–(22) can always be (explicitly) found. Let us also
note that the formally introduced quantity in (20) can be in-
terpreted as, e.g., the width or any other continuous parameter(s)
characterizing the temporal shape of the input pulse.

We are now just a short step away from proving (10) for a
general . First, however, we need to introduce yet an-
other piece of notation: If , then
denotes the inverse of with respect to while keeping fixed.
This is guaranteed to exist by condition (21a).

Let us substitute (20) into (8) to obtain

(23)

This is the counterpart of (13). Substituting (23) into (3), we
obtain

(24)

Introducing a notation analogous to (15)

(25)

we rewrite (24) as the following counterpart of (18):

(26)

which proves (10). Here we have used (22). The “ ” sign in (26)
holds because at most one out of the continuum equals

and, thus, yields a term in the square brackets that equals
, whereas all the remaining values of contribute more

than .

III. DISCUSSION

A. Extension of the Main Result to a Realistic Regenerator,
and Implications for Regenerator Chains

In Section II, we established the BER degradation under the
restrictive assumption that the regenerator transforms ZEROs
and ONEs in exactly the same way, so that is the same
for these two logical symbols. In reality, in
general. (Here, as before, we use subscripts without parentheses
to label quantities pertaining to ONEs and ZEROs.) Examples
of such distinct transfer bands of ONEs and ZEROs for a par-
ticular regenerator can be found in Fig. 6 of [10] [Fig. 3 here
corresponds to Fig. 6(b) in [10]] and in Fig. 7 below. We will
now argue that even if and are different but
overlap significantly, the BER is still degraded after the regen-
erator in question. Given that this argument must necessarily be
qualitative (since it would be problematic to quantify the word
“significantly” in the previous sentence), we will present it only
for the case where each of and are given by
(11). To simplify the details, but still without loss of generality,
we will further assume that all curves are the same for
ONEs and ZEROs, but in general. This setup
is illustrated in Fig. 5, where and , .
Precise relations among through and through

are not important for our qualitative argument.
Proceeding as in Section II-B, one obtains the following gen-

eralization of (18):
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Fig. 5. Schematics of different, but overlapping transfer bands � ����� and
� ����� that consist of discrete transfer curves � . Dashed (solid) lines show
the transfer curves for ONEs (ZEROs).

(27)
Let us denote, for each

so that

(28)

Then (27) is rewritten as

(29)

In view of (28), the term in the last line of (29) is always positive.
For each , the terms in parentheses in the second line (multi-
plied by 1/2) are greater than [see (19)]. Moreover, since
the BER is highly sensitive to the choice of the threshold (note
the scale of the vertical axis in Fig. 2), those terms are much
greater than . On the other hand, is less, but
not much less, than unity, which is a quantitative way to express
our assumption that the overlap between and
is “significant.” Thus, in such a case, the BER after the regen-
erator is still likely to be worse than that before it.

Let us note that this conclusion agrees with numerical results
of [10]. Namely, the transfer band for ZEROs shown in Fig.
6(a) of [10] was, on average, lower than the transfer band for
ONEs (similarly to what is depicted in Fig. 5 of this paper).
Yet, the numerically computed BER was still degraded by the
regenerator (see [10, Fig. 3(a)]).

While, as explained above, it is not possible to access the
BER degradation quantitatively, it is still possible to predict that
this degradation should worsen with lowering the BER of the
input signal. Indeed, the probability density for ONEs before
the regenerator typically gets steeper into its left tail (see Fig.
2), where the decision threshold is. (The steeper the probability
density, the more a spread in the “partial thresholds” will
affect the BER.)

This stronger degradation of lower error probabilities should
have significant impact on the BER calculations for chains of
regenerators. Indeed, in such chains, the error probability after
the first few regenerators is very low (see, e.g., [15]), so it will be
most strongly degraded. On the other hand, regenerators closest
to the receiver will not be able to efficiently suppress pulse dis-
tortions because the latter may already be too large; in fact, the
last regenerator in the chain may even degrade the BER of the
received signal if placed too close to the receiver, as we showed
in this work. Thus, it may be relevant to consider the problem of
optimizing the locations of regenerators along the transmission
line. It should be noted that such an optimization will strongly
depend on the type of the signal impairments that takes place in
the specific transmission system [12]. For a system limited by
the optical signal-to-noise ratio (OSNR), the problem of the op-
timal placement of a single regenerator was considered in [8].
However, there, as in other papers on regenerator chains (see,
e.g., [16] and references therein), the regenerator was modeled
by its static transfer curve. In general, the main result of the
present work—i.e., that the regenerator necessarily degrades the
BER—suggests that the benefit of regenerators is more modest
than predicted in those papers, where the transfer-curve-based
calculations implied that the regenerators did not change the
BER.

B. Manifestation of BER Degradation in Other
Signal-Reshaping Processors

As we noted in the Introduction, wavelength converters
whose operation is based on nonlinear propagation in fibers
or semiconductors is another group of signal processors that
exhibit noninstantaneous response. Consequently, one should
expect that they, also, degrade the BER. This is confirmed by
the BER curves reported in [4]–[7] for wavelength converters
utilizing four different operation principles.

These papers give reasons for the BER degradation that do
not refer to noninstantaneous response of the device. However,
one can see that in all those cases, the converted signal will de-
pend not only on the input power or width of the input signal, but
also on its temporal shape, which is a manifestation of the nonin-
stantaneous response. For example, many authors (see, e.g., [5],
[6], [10], and [14]) mention the importance of placing a band-
pass filter in front of the signal processor to limit the amount of
optical noise entering the device. In particular, in [10], it was
shown via numerical simulations that the wider the bandwidth
of this filter, the greater the BER degradation incurred by the
processor (a regenerator, in this case). This phenomenon has a
simple explanation in the light of the result proved here. Indeed,
the wider the bandwidth of the noise allowed into the regener-
ator, the greater the variations of the temporal shape of the signal
degraded by such noise. This implies a “fatter” transfer band
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, which, in its turn, leads to a greater spread of “partial
thresholds” (see Section II) and, thus, to a greater BER
degradation.

Let us note that the BER must also be degraded by a signal
processor with noninstantaneous response operating not in
optical, but in electronic domain. An example here may be a
limiting amplifier, which is used at the front end of a receiver.
Its static transfer curve resembles that of a regenerator (see
Fig. 1). Receiver designers try to make the bandwidth of the
limiting amplifier as wide as possible to avoid distortion of
high-frequency components of the signal. As is well known, a
wide bandwidth translates into a very short response time of the
device. In other words, the response of the limiting amplifier
must be sufficiently fast (i.e., “almost instantaneous”) in order
to avoid BER degradation. This agrees with the main result
proved in this paper.

C. Why the BER can be Improved by a Timing- or
Phase-Restoring Processor

The preceding considerations pertain to phase-insensitive
(see the end of this subsection) signal-reshaping processors,
which affect the signal’s power. One prominent example of this
kind of processor is the Mamyshev regenerator [1], based on
spectral broadening and off-center filtering. When the receiver’s
optical filter is reasonably close to the optimal, i.e., matched,
filter, such signal-reshaping processors have no mechanism to
distinctly discriminate a ONE that “went below” the decision
threshold from a ZERO that “went above” it due to noise or
other distortions. In this case, the transfer bands of ONEs and
ZEROs significantly overlap (see Fig. 3), which leads to the
BER degradation as explained in Section III-A.

Regenerators that retime the signal are also unable to discrim-
inate between a ONE that is “too short” and a ZERO that is
“too tall.” Hence, they also cannot eliminate this type of error.
Now, consider a ONE that is displaced from its time slot but
whose peak power is well above the decision threshold. Before
retiming, such a ONE is detected as a ZERO since at the de-
tection instance, its power is measured at the pulse’s “tail” and,
hence, is too low. However, after proper retiming, the peak of
this pulse will occur near the decision instance, and, hence, the
pulse will be correctly detected as a ONE. On the other hand,
ZEROs may occur anywhere within the bit slot, so retiming does
not, in general, increase the probability to detect a ZERO incor-
rectly. Thus, overall, the BER is improved by proper retiming. In
terms of transfer bands, the retiming processor “raises” the left
end of the ONEs’ band (which is where the decision threshold
is; see, e.g., Fig. 3) well above the left end of the ZEROs’ band.

The benefit of retiming processors is, of course, well known,
and we included this discussion here merely to avoid possible
confusion with the main result of this paper. The simplest
retiming processor is just a section of dispersion-compensating
fiber in front of the receiver. More sophisticated signal retimers
were considered in [17], [18]. Let us note that since a 3R (2R
plus retiming) regenerator performs both reshaping and re-
timing of the signal, the BER at its output may, in principle, be
improved. Whether this improvement actually occurs for a par-
ticular degraded signal, would depend on the balance between
the BER degradation due to reshaping and its improvement due

to retiming. In other words, the change of the BER is a function
of the kind of signal degradation (i.e., the amplitude or timing
jitter) rather than a function of the particular device. As before,
this BER change can be estimated by plotting the transfer bands
for ONEs and ZEROs: if they significantly overlap, the BER is
most likely degraded; if, on the other hand, most of the ONEs’
band lies higher than most of the ZEROs’ band, the BER is
likely improved.

We can also use the analogy between the temporal position of
the pulse and its phase at the detection moment (see, e.g., [19])
to conclude that phase-restoring processors placed in front of
the receiver can improve the BER of phase-shift-keyed signals.
Such BER improvement was demonstrated numerically in [19],
[20], and experimentally in [21].

Finally, let us point out a simple phase-restoring processor
that is routinely used to improve the BER of amplitude-shift-
keyed signals. This processor is a linear dispersive fiber, already
mentioned in relation to its retiming functionality. As is well
known, it is also used to transform chirped pulses into chirp-free
ones, which makes the pulses “taller” and thereby improves the
BER. This well-known fact may seem to contradict the main
result of this paper. Indeed, a linear dispersive fiber has nonin-
stantaneous response (i.e., its output depends on the shape of
the input). Then, how can it discriminate between ONEs and
ZEROs having the same spectral bandwidth?

To resolve this seeming contradiction, let us write down the
fields and of the ZEROs and chirped ONEs, respec-
tively, at the input to the fiber: ,

, where are the noise fields and
is the field of the chirped signal without noise. (The

noise fields and are independent of one another
but otherwise have the same statistics.) The phases of the signal

and of a typical ZERO (i.e., ) that is “tall”
enough to cause an error at the receiver are shown in Fig. 6.
While the signal’s phase is nearly parabolic, the noise’s phase
has random slope and curvature. This is also true about the phase
of the other noise field . At the output of the dispersive
fiber, the ZERO’s and ONE’s fields are: ,

. The phases of
and a typical are shown in Fig. 6. Thus, the fiber makes
the signal “taller” while it does not, in general, make the noise
fields “taller.” In fact, our numerical experiments show that, on
average, it makes them lower. In terms of transfer bands, this
means that the ONEs’ band is raised and the ZEROs’ band is
lowered, as shown in Fig. 7. The corresponding probability den-
sities are shown in Fig. 8, which confirms the well-known fact
that a properly chosen linear dispersive fiber indeed improves
the BER of a chirped signal.

IV. CONCLUSION

In Section II of this paper, we showed that under a certain
conditions, a signal-reshaping processor whose output depends
on the temporal shape of the input signal, rather than just on
its power, degrades the signal BER. Specifically, let be the
signal power obtained if the receiver is placed in front of the
processor. Then the received power of the signal after the pro-
cessor can be found anywhere within some distribution ,
depending on the shape of the input. Now, let be the
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Fig. 6. Phases of the noiseless signal and a typical niose sample (i.e., a ZERO)
whose amplitude is near the decision threshold, at the input (thin solid) and
output (thick dashed) of a linear dispersive fiber. The fiber provides 200 ps/nm
of dispersion to exactly compensate for the chirp of the input signal. The OSNR
in one polarization within 0.1 nm is 17 dB. Limiting the noise bandwidth is a
third-order Gaussian filter with the optical bandwidth of 33 GHz at full width
at half maximum (FWHM). The noiseless signal is a Gaussian pulse with the
FWHM of 32 ps before the optical filter; its power profile is shown by the dotted
line. The ZERO in this figure, as well as the results shown in Figs. 7 and 8 below,
are obtained by a method described in [10].

Fig. 7. The transfer bands for ONEs and ZEROs for the conditions listed in the
caption for Fig. 6. No electrical filter is used at the receiver.

Fig. 8. The probability densities for ONEs and ZEROs at the input (thin solid)
and output (thick dashed) of a linear dispersive fiber. All parameters are as listed
in the captions for Figs. 6 and 7. The BERs at the input and output are about
� � �� and � � �� , respectively.

signal BER obtained if the receiver is placed in front of the pro-
cessor. Assume that the processor transforms logical ONEs and

ZEROs in exactly the same way. (That is, ,
i.e., the processor does not distinguish between these two sym-
bols, as would occur if the signal has been sent through the
matched filter before being processed.) Let be the BER
measured when the receiver is placed immediately after the pro-
cessor (i.e., no noise is added to the processor’s output). Then

.
A realistic processor would transform input ZEROs and

ONEs differently, since the matched filter is not achievable in
practice. Then, . However, a realistic filter
is designed to approach the performance of the matched one,
and, therefore, and overlap significantly. In
Section III-A, we argued that under this, realistic, condition,
the processor still degrades the BER. We also explained that
this degradation should be more prominent for lower values of
the input BER.

Our discussion was mostly focused on all-optical regenera-
tors. In particular, our main result provides a theoretical founda-
tion for the numerically observed BER degradation in the semi-
conductor-optical-amplifier-based [3] and fiber-based Mamy-
shev-type [10] 2R regenerators. It should be stressed, however,
that the BER is degraded if the receiver were placed immedi-
ately after the regenerator. If the regenerators (or even a single
such device [8]) is placed in the transmission line so that noise
and other distortions accumulate between them and the receiver,
such a chain of regenerators can still improve the BER [8],
[10]–[12], [15].

We pointed out, in Section III-B, that the BER is also de-
graded by other signal-reshaping processors, both in optical
(e.g., wavelength converters) and electronic (limiting amplifier)
domains, if the response of those devices is slower than, or
comparable to, variations of the temporal profile of the input
signal.

Finally, in Section III-C, we explained that the well-known
fact of the BER improvement by processors restoring
the signal’s timing or phase (for both phase- and ampli-
tude-shift-keyed transmission) does not contradict our main
result, which is that the BER is generically degraded by
signal-reshaping processors.

APPENDIX

Here, we show that given any satisfying (9), one can
find a function satisfying (21) and a function sat-
isfying (22) such that (20) holds.

Similarly to the notation introduced before (23), let us define
to be the inverse of with respect to

while keeping fixed. The existence of such an inverse is
guaranteed by condition (21b). Thus, if , then

. For example, function

(A1)

satisfies both conditions (21), and also . The inverses
and are then

(A2)

Authorized licensed use limited to: UNIVERSITY OF VERMONT. Downloaded on January 13, 2010 at 23:47 from IEEE Xplore.  Restrictions apply. 



1386 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 27, NO. 10, MAY 15, 2009

This example shows that at least one function satis-
fying conditions (21) exists; in fact, there is a continuum of such
functions. Let us select one of them and use it in what follows.
Then the integration of (20) yields

or, equivalently

(A3)

This proves that a function in (20) can be explicitly found
given and . It remains to show that this
satisfies (22). This follows straightforwardly by acting on (A3)
with and using (9).
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