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Abstract

The Conjugate Gradient method (CGM) is known to be the fastest generic iterative

method for solving linear systems with symmetric sign definite matrices. In this paper, we

modify this method so that it could find fundamental solitary waves of nonlinear Hamil-

tonian equations. The main obstacle that such a modified CGM overcomes is that the

operator of the equation linearized about a solitary wave is not sign definite. Instead, it has

a finite number of eigenvalues on the opposite side of zero than the rest of its spectrum. We

present versions of the modified CGM that can find solitary waves with prescribed values of

either the propagation constant or power. We also extend these methods to handle multi-

component nonlinear wave equations. Convergence conditions of the proposed methods are

given, and their practical implications are discussed. We demonstrate that our modified

CGMs converge much faster than, say, Petviashvili’s or similar methods, especially when

the latter converge slowly.
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1 Introduction

Solitary waves of most nonlinear evolution equations can be found only numerically. In one

spatial dimension, a variety of numerical methods for finding solitary waves are available,

with the shooting and Newton’s methods being probably the most widely used ones. How-

ever, in two and three spatial dimensions, the shooting method is no longer applicable, and

for Newton’s method, one needs to employ an alternating-direction implicit (ADI) method

to ensure that the operations count per iteration scales linearly (as opposed to quadratically

or cubically) with the number of grid points. While the ADI-based Newton’s method is

time-efficient, the complexity of its programming is considerably higher than in the case

of one spatial dimension. Also, the accuracy of the ADI-based Newton’s method is only

algebraic in the size of the spatial discretization step ∆x (typically, it is O
(
(∆x)2

)
). This

accuracy may be too low for some applications, since in two or three spatial dimensions,

one tends to take larger discretization steps than in one dimension in order to limit the

computational time and the size of stored numeric arrays. Therefore, it is desirable to have

a method that would: (i) be easier to program than Newton’s method; (ii) have the ex-

ponential accuracy in ∆x, as spectral methods; and (iii) converge sufficiently fast under

known conditions.

A number of such methods are available. The well-known iterative method proposed by

Petviashvili [1] can be used to find stationary solitary waves of equations with power-law

nonlinearity:

−Mu + up = 0 , u(x) → 0 as |x| → ∞, (1.1)

where u is the real-valued field of the solitary wave, M is a positive definite and self-adjoint

differential operator with constant coefficients, and p is a constant. For example, the solitary

wave of the nonlinear Schrödinger equation in D spatial dimensions,

iUt +∇2U + |U |2U = 0 , U(|x| → ∞) → 0 ,

∇2 ≡ ∂2

∂x2
1

+ · · ·+ ∂2

∂x2
D

,
(1.2)

upon the substitution U(x, t) = eiµtu(x), where u(x) ∈ R, reduces to Eq. (1.1) with p = 3

and

M = µ−∇2 . (1.3)

The parameter µ > 0 is referred to as the propagation constant of the solitary wave.

Convergence conditions of the Petviashvili method for Eq. (1.1) were established in [2].

Studies of solitary waves in nonlinear photonic lattices and Bose–Einstein condensates

motivated the interest in finding solitary waves of equations that have a more general form

than (1.1):

−Mu + F (u,x) = 0 , u(x) → 0 as |x| → ∞, (1.4)
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where F (u,x) is a real function. For example, solitary waves in nonlinear photonic lattices

with Kerr nonlinearity satisfy the following equation of the form (1.5):

∇2u + V0(cos2 x + cos2 y) u + u3 = µu , (1.5)

where the second term accounts for the effect of the periodic potential provided by the

lattice. Various modifications of the Petviashvili method for obtaining solutions of (1.4)

were proposed; see, e.g., [3, 4, 5]. However, convergence conditions of those modifications

were not studied. In Ref. [6, 7], J. Yang and the present author proposed two alternative

iterative methods which satisfied conditions (i)–(iii) stated before Eq. (1.1); in particular,

the conditions of their convergence to fundamental (see below) [6] and both fundamental

and non-fundamental solitary waves (also known as ground and excited states, respectively)

[7] were given. In Refs. [8, 7], a technique referred there as mode elimination was proposed,

which was shown to provide considerable acceleration of iterative methods when the later

converged slowly to the respective solitary wave.

In this paper, we propose yet another family of numerical methods for finding fundamen-

tal solitary waves of Hamiltonian nonlinear evolution equations. This proposal is motivated

as follows. Consider a linear system

Ay − b = 0, (1.6)

for the unknown vector y, where A is a real symmetric matrix and b is a known vector. Then

the methods proposed here are extensions of the well-known Conjugate Gradient method

(CGM) for the linear system (1.6) to the nonlinear boundary-value problem (1.4), and they

converge even faster than, e.g., the generalized Petviashvili method [6] accelerated by mode

elimination [8].

The main part of this paper is organized as follows. In Section 2, we explain how

the methods introduced in [6, 7, 8] for the nonlinear problem (1.4) are related to some

well-known iterative methods of solving the linear system (1.6) with a real and symmetric

matrix A. This comparative review will lead us to explaining the main issue that needs

to be resolved in order to extend the CGM in such a way that it could find fundamental

solitary waves. In Section 3, we present such an extension of the CGM for the case where the

solitary wave of the single-component Eq. (1.4) has a prescribed value of the propagation

constant µ. In Section 4, we present a modification of the CGM for finding fundamental

waves of (1.4) with a prescribed value not of the propagation constant but of a quadratic

invariant often referred to as power and defined as

P =
∫

u2(x) dx , (1.7)

where the integration is over the entire spatial domain. Let us note that another method

for finding solitary waves with a specified value of power was previously considered in, e.g.,
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[9, 10, 11, 12], with its convergence conditions for (1.4) being established in [12]. We will

refer to this method as the imaginary-time evolution method. In Section 5, we generalize

the modified CGMs of Sections 3 and 4 to multi-component equations. In Section 6, we

compare the performances of the generalized Petviashvili and imaginary-time evolution

methods accelerated by the mode elimination technique [8, 7] with the performances of the

respective modified CGMs from Sections 3–5. In Section 7 we summarize this work and

mention alternative methods related to the original CGM that may also be employed for

finding solitary waves. Appendix 1 contains proofs and discussions of some auxiliary results

of Sections 3 and 4. Appendix 2 contains an alternative method to the modified CGM of

Section 3. Appendix 3 contains a sample code of a modified CGM for a two-component

equation considered in Section 6.

Before concluding this Introduction, we need to discuss what we will refer to as a fun-

damental solitary wave. In fact, we are not aware of a universal definition of this term.

In many situations, one can intuitively identify a solitary wave as being fundamental if it

satisfies two easily-verifiable conditions. First, it is to have one main peak, with smaller

peaks possibly existing around the main one. Second, for envelope solitary waves (e.g., those

satisfying the complex-valued Eq. (1.2)), the propagation constant of the fundamental wave

must lie in the semi-infinite spectral bandgap; see Fig. 1 in Section 6. (Typically, only equa-

tions with periodic potentials or systems describing more than two linearly coupled waves

propagating with different group velocities have more than one spectral bandgap.) Alter-

natively, for carrier (e.g., Korteweg–de Vries-type) solitary waves, the velocity, rather than

the propagation constant, of a fundamental wave must lie in the semi-infinite gap. More

rigorous characterization of fundamental waves is possible in special cases. For instance,

when the spatial operator in the wave equation is the Laplacian (as, e.g., in (1.2) or (1.5)),

the fundamental wave is known to be nonzero for all x (see, e.g., [13]); however, for a more

general operator as, e.g., in the Kadomtsev–Petviashvili equation, the fundamental wave

may have zeros [14]. For some equations (see, e.g., [15, 16]), it was rigorously shown that

the fundamental solution minimizes a functional known as the action.

The property of an S-component fundamental solitary wave that we will rely on in this

paper is that for many such waves, the linearized operator of the stationary equation has

no more than S positive eigenvalues. To the author’s knowledge, there is no general proof

of this property even for a single-component Eq. (1.4), let alone for the S-component case.

(See, however, a recent review of solitary wave stability in lattices [17].) Therefore, we

simply declare this property to be our working definition of a fundamental solitary wave for

the purpose of this paper. Again, we do not imply that any solitary wave that has the

two intuitive properties described at the beginning of the previous paragraph also satisfies

the above property about the positive eigenvalues of the corresponding linearized operator.

Rather, we only say that it is only for the waves that do have the latter property that the

4



numerical methods developed in this paper will be guaranteed to converge (with possible

restrictions, as described in subsequent sections). For solitary waves whose corresponding

linearized operators have more positive eigenvalues than the number of the wave’s compo-

nent, our modified CGMs are not guaranteed to converge. Alternative methods for finding

such nonfundamental solitary waves are briefly discussed at the end of Section 7.

2 Comparative review of iterative methods for nonlinear prob-

lem (1.4) and for linear problem (1.6)

The reader who is not interested in such a review and wants to see the description of new

algorithms proposed in this paper may skip to Section 3.

For reference purposes, let us rewrite (1.4) as

L(0)u = 0 . (2.1)

For the purposes of this section it will suffice to consider the case of a single-component

solitary wave. Consequently, here and in Sections 3 and 4, the solitary wave u is assumed to

be real-valued. For a complex-valued u, one simply considers its real and imaginary parts

as the components of vector u; this case is treated in Section 5.

An important role in our analysis will be played by the linearized operator L of the

nonlinear Eq. (2.1). Let u be the exact solution of (2.1), un be the approximation of that

solution obtained at the nth iteration, and

un = u + ũn, where |ũn| ¿ |u|. (2.2)

Then

L(0)un = L(0)u + Lũn + O(|ũn|2) = Lũn + O(|ũn|2) . (2.3)

For example, for the nonlinear equation (1.5), the linearized operator is

L = −M + V0(cos2 x + cos2 y) + 3u2 . (2.4)

In our discussion, the linear system (1.6) is a counterpart of the nonlinear equation (2.1) and

matrix A is the counterpart of the linearized operator L. For Hamiltonian wave equations

that give rise to (2.1), operator L is always self-adjoint, which is the counterpart of matrix A

being real and symmetric. Having stated this correspondence between the nonlinear problem

(2.1) and its linear counterpart (1.6), we will, from now on, refer to them interchangeably,

because our statements will apply to both of them equally.

As we will explain below, the linearized forms of the iterative methods proposed in

[1, 6, 7] for solving the nonlinear problems (1.1) and (1.4) are related to Richardson’s

method1 (see, e.g., [18], p. 274) of solving the linear problem (1.6):

yn+1 = yn + (Ayn − b)∆τ , (2.5)
1also known as Picard’s or fixed-point iterative method
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The necessary condition for the iteration scheme (2.5) to converge to the solution, y =

A−1b, is that A be negative definite. Choosing the parameter ∆τ in (2.5) so that ∆τ <

−2/λmin, where λmin is the minimum (i.e., most negative) eigenvalue of A, one ensures

that Richardson’s method for (1.6) with a negative definite A converges.

A naive counterpart of (2.5) for the nonlinear problem (2.1) is

un+1 = un + L(0)un ∆τ . (2.6)

However, in most cases it will not converge to a solitary wave. Indeed, from (2.3), the

linearized form of (2.6) is

ũn+1 = ũn + Lũn∆τ . (2.7)

This equation is a counterpart of (2.5), and so a necessary condition for its convergence

is that operator L be negative definite. However, for most fundamental single-component

solitary waves, the corresponding linearized operator L has one positive eigenvalue (see the

last paragraph of the Introduction2), which causes divergence of small deviations ũn in (2.7)

and, thereby, divergence of the iterations (2.6).

To overcome this divergence, the iterative methods of [1, 6, 7] replaced L(0)un in (2.6)

by a modified expression L(0,mod)un such that: (i)
(
L(0)u = 0

) ⇔ (
L(0,mod)u = 0

)
and

(ii) the corresponding linearized operator L(mod) was guaranteed to be negative definite.

For example, in [7],

L(0,mod)u = −LL(0)u, (2.8)

so that L(mod) = −L2. In terms of the linear system (1.6) where A is real symmetric but

not sign definite, this is equivalent to applying Richardson’s method (2.5) to the so called

normal equation

−A2y = −Ab, (2.9)

where the matrix on the left-hand side is always negative definite.

In [6], we proposed an alternative idea of constructing a negative definite L(mod). This

idea will play an important role in the development of this paper, and here we will explain it

as applied to the linear system (1.6). As noted above, for most single-component fundamen-

tal solitary waves, the linearized operator L has only one positive eigenvalue. Accordingly,

let λ(1) be the only positive eigenvalue of matrix A in (1.6), with the corresponding eigen-

vector being z(1). In the context of the nonlinear equation (2.1), the eigenvector of L

corresponding to its only positive eigenvalue is related to the solution u of (2.1) [6], as we

will explain later. Hence it can be considered as approximately known once the iterative

solution un is sufficiently close to u, which we will always assume to be the case (see (2.2)).
2There are — rare — cases where fundamental waves have no positive eigenvalues: see, e.g., Example 2

in [12], where even the first excited state had no positive eigenvalues.
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Now, instead of (1.6), consider an equivalent3 system
(

I − γz(1)
(
z(1)

)T
)

(Ay − b) = 0 , (2.10)

where I is the identity matrix and γ is any number greater than one. Note that the term

z(1)
(
z(1)

)T
is the projection matrix onto the unstable direction z(1). Using the spectral

decomposition of a real symmetric p× p matrix A:

A =
p∑

i=1

λ(i)z(i)
(
z(i)

)T
, (2.11)

where the eigenvectors z(i) form an orthonormal set:

(
z(i)

)T
z(j) =

{
1, i = j

0, i 6= j,
(2.12)

it is straightforward to show that (2.10) and hence (1.6) is equivalent to

A(mod)y −
(

I − γz(1)
(
z(1)

)T
)

b = 0, (2.13a)

where

A(mod) ≡ λ(1)(1− γ)z(1)
(
z(1)

)T
+

p∑

i=2

λ(i)z(i)
(
z(i)

)T
. (2.13b)

Since λ(1)(1 − γ) < 0 and λ(i) < 0 for i ≥ 2 by our assumptions about A and γ, the

matrix A(mod) in (2.13b) is negative definite, and hence Richardson’s method (2.5) for it

can converge.

Note that if one chooses [6]

γ = 1 + 1/(λ(1)∆τ) (2.14)

and uses the resulting A(mod) in Richardson’s method (2.5), one thereby forces the projection

of the error ỹn ≡ yn − y on the direction of the unstable eigenvector z(1) to be zero at

every iteration. This idea of zeroing out the projection of the iteration error on the unstable

direction lies behind the original Petviashvili method [2] and its generalization for Eq. (1.4)

[6]. This is also the idea that we will use later in this paper for the development of modified

CGMs.

So far we have discussed how Richardson’s method for (1.6) with a sign indefinite A can

be made to converge. The next issue is, how fast it converges. This is quantified by the

convergence factor R, such that the number of iterations required for the iteration error to

decrease by a factor of e is (asymptotically) inversely proportional to logR. For the optimal

value of ∆τ , the convergence factor of Richardson’s method is (see, e.g., Sec. 5.2.2 in [19],

or [7]):

R =
cond(A(mod)) + 1
cond(A(mod))− 1

, (2.15)

3The matrix on the left-hand side of (2.10) is nonsingular.
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where the condition number is related to the eigenvalues of A(mod):

cond(A(mod)) = λmin/λmax ≡ |λmin|/|λmax| (2.16)

(recall that all the eigenvalues of A(mod) are negative and so cond(A(mod)) > 1). For

cond(A) À 1, convergence to a prescribed accuracy occurs in O(1/ log(R)) = O(cond(A))

iterations. That is, the greater the condition number, the slower the convergence of the

iterative method. A common method to reduce the condition number is to use a precondi-

tioner, which can drastically lower |λmin| (see, e.g., Lecture 40 in [18]). The preconditioned

Richardson’s method is

yn+1 = yn + B−1(Ayn − b)∆τ , (2.17)

where B is the preconditioning matrix4. For the Richardson-type method (2.6) with L(0)

replaced by L(0,mod), a convenient preconditioning operator, N , has a form similar to that

of M . For example, if M is as in (1.3), the convenient form for N is:

N = c−∇2, c > 0 , (2.18)

where c is some constant.

Even if the condition number is lowered by reducing |λmin| via preconditioning, the

convergence of an iterative method may still be slow due to |λmax| being close to zero.

In the context of the nonlinear problem (1.4), examplified by (1.5), this occurs when the

propagation constant µ is close to the edge of the spectral bandgap of the linear potential

(i.e., V0(cos2 x+cos2 y) in (1.5)); see, e.g., Fig. 4(a) in [20] or Fig. 1 in Section 6 below. In [8,

7] we proposed to accelerate the iterations by eliminating the slowest-decaying eigenmode,

i.e., the component of the error ũn that corresponds to the eigenvalue λmax. This effectively

removes this slowest eigenmode from the spectrum of L(mod) and thereby increases the

magnitude of its maximum eigenvalue. This, in its turn, increases the convergence rate of

the method via (2.16) and (2.15). The slowest mode can be eliminated in exactly the same

way as the unstable mode (i.e., the mode with the positive eigenvalue λ(1)) in (2.10). The

slowest mode can be approximated by [8]

zslow ∝ yn − yn−1 , (2.19)

and a preconditioned Richardson’s method is then applied not to (1.6) but to an equivalent

equation (see the footnote before (2.10))
(

I − γz(1)
(
z(1)

)T
− γslowzslow

(
zslow

)T
)

(Ay − b) = 0 , (2.20)

where γslow is computed similarly to (2.14). The explicit form of a counterpart of (2.20) for

the nonlinear problem (2.1) will be given in Section 6.
4For example, the well-known Jacobi and Gauss–Seidel iterative methods reduce to (2.17) for appropriate

choices of B.
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In [6, 7] we demonstrated that when the convergence of an iterative method is slow, the

slowest mode elimination technique described above can considerably (by a factor of five to

ten times) accelerate the convergence. However, it is well known (see, e.g., [18], p. 341 and

[19], p. 451) that the fastest generic method for a linear system (1.6) with a real symmetric

and sign definite matrix A is the Conjugate Gradient method (CGM), whose algorithm is

given by Eqs. (3.1) of the next section. The convergence factor of the CGM satisfies (see,

e.g., [18], p. 299):

R ∼
√

cond(A) + 1√
cond(A)− 1

, (2.21)

which for matrices with large condition numbers implies considerably faster convergence

than does (2.15). Therefore, if one could modify the CGM so that it would be guaranteed

to converge when A (or the linearized operator L) is not negative definite but has one

positive eigenvalue, then such a modified CGM is expected to be faster than a Richardson-

type method accelerated by mode elimination.

In this paper we present several versions of such a modified CGM for nonlinear problem

(2.1) and its generalizations and compare them with the Richardson-type methods of [6, 12]

accelerated by mode elimination. We find that, as expected, the modified CGMs are the

faster of these two groups of methods. As we noted after Eq. (2.14), the main idea behind

all these versions of the modified CGM is to eliminate the component of the error ũn that

is aligned along certain unstable eigenmode(s) of the linearized iteration operator. Our

modified CGMs are guaranteed to converge in almost all situations where a fundamental

solitary wave with a prescribed (set of) propagation constant(s) is sought. Moreover, even

for those rare situations where our guarantee is formally void, we will show a simple and

practical way to still make the corresponding modified CGM converge. For the situations

where a solitary wave with a prescribed (set of) power(s) is sought, our modified CGM is

guaranteed to converge in the same parameter space where the Richardson-type method

[12, 21] converges.

3 Modified CGM for solitary waves with prescribed propa-

gation constant

In this section, we will first state the algorithm of the CGM for the linear Eq. (1.6). Then,

we will briefly review the generalized Petviashvili method [6] for solitary waves and re-cast

it in a form more convenient for the present analysis. This will prepare the ground for the

key step of our modification of the CGM to the problem of finding fundamental solitary

waves with a prescribed value of the propagation constant. Finally, we will present the

correspondingly modified CGM. All analysis in this section is done for the single-component

case; its generalization for multi-component solitary waves is presented in Section 5.
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3.1 CGM for the linear Eq. (1.6)

The original CGM algorithm for Eq. (1.6) with a real symmetric and sign definite matrix

A and starting with an initial guess y0, is:

r0 = Ay0 − b, d0 = r0, (3.1a)

αn = − 〈rn, dn〉
〈Adn, dn〉 , (3.1b)

yn+1 = yn + αndn, (3.1c)

rn+1 = Ayn+1 − b, (3.1d)

βn = −〈rn+1, Adn〉
〈Adn, dn〉 , (3.1e)

dn+1 = rn+1 + βndn . (3.1f)

Here 〈a,b〉 denotes the natural inner product between the real-valued vectors a and b.

Equations (3.1a) define the initial residual vector r0 and the initial search direction d0.

Equation (3.1c) updates the solution by adding to the previous solution a vector αndn along

the search direction dn. The value of αn is set by (3.1b) to guarantee the orthogonality of

the new residual, defined by (3.1d), to the search direction dn:

〈rn+1, dn〉 = 0 . (3.2)

Finally, Eq. (3.1f) updates the search direction, where βn is set by (3.1e) so that

〈dn+1, Adn〉 = 0 . (3.3)

The condition that A be real symmetric is inherently required for the derivation of

algorithm (3.1). In particular, it guarantees that the orthogonality relations (3.2) and (3.3)

between quantities at two consecutive iterations imply more general orthogonality relations

among such quantities at all iterations (see, e.g., [22] or [18], p. 295):

〈rn+1, dj〉 = 0 , j ≤ n , (3.4)

〈dn+1, Adj〉 = 0 , j ≤ n . (3.5)

The orthogonality relation (3.5) with a sign definite A ensures that the CGM at each

iteration produces a search direction that is linearly independent from all previous search

directions. This implies that the error (in a certain norm) decreases with each iteration; this

fact can be restated by saying that the CGM is an optimal iterative method for Eq. (1.6)

with a sign definite matrix A (see, e.g., [18], p. 296).

The condition that A be sign definite is also needed to guarantee that the denominators

of αn and βn never vanish (or, for practical purposes, never become too close to zero). Thus,

applying the CGM to an equation with a sign indefinite matrix A would come without the
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guarantee that this method would be optimal and that it would even converge. However,

it should be emphasized that the CGM may converge when applied to problem (1.6) with

a sign indefinite matrix A (see, e.g., [22], or [18], p. 301). This is in stark contrast to

Richardson’s method (2.5), which, for a generic initial guess y0, is guaranteed to diverge in

such a case.

The CGM (3.1) is straightforwardly extended to solve the nonlinear equation (2.1)

whose linearized operator L is self-adjoint, by replacing Ayj − b with L(0)uj (j = 0 or

n+1) in (3.1a) and (3.1d) and A with L in (3.1b) and (3.1e). In fact, for the CGM applied

to a nonlinear problem, several choices of parameter βn that are equivalent in the linear

approximation, will produce different versions of the method. Two most widely used such

versions are known as Fletcher–Reeves and Polak–Ribière (see, e.g., [23]). In the following

we will not attempt to compare these two versions because the focus of this paper is not

on the extension of the linear algorithm (3.1) to the nonlinear case but on the extension

of that algorithm to the case when the counterpart of matrix A has one eigenvalue of the

opposite sign than the rest of the spectrum.

Let us also note that, unlike the algorithm (3.1) for linear equations, its extension to

nonlinear problems described in the previous paragraph may fail if the linearized operator

K is negative definite but has one or more eigenvalues close to zero. This can occur if, at

some iteration, the search direction dn becomes aligned primarily along the eigenmode(s)

corresponding to the small eigenvalue(s). Then the denominator in (3.1b) will be small

and hence the increment αndn of the solution in (3.1c), large. If the nonlinear equation

admits more than one solution for the considered values of its parameters, which typically

occurs near a bifurcation, then a large shift, αndn, of the solution may cause the iterations

to converge to a different solution than initially intended, or to diverge. Such a failure of

the method can be avoided simply by changing the initial guess y0. We will discuss this in

more detail in Section 6.

3.2 Review of the generalized Petviashvili method

In [6], we proposed the following iterative method for finding the fundamental solitary wave

u of the nonlinear problem (2.1):

un+1 − un =

(
N−1L(0)un − γ

〈un, L(0)un〉
〈un, Nun〉 un

)
∆τ , (3.6)

where

〈f, g〉 ≡
∫

f(x)g(x) dx

and the integration is over the entire spatial domain. In (3.6), a self-adjoint and positive def-

inite differential operator N with constant coefficients is chosen so that u is an approximate

eigenvector of N−1L corresponding to its largest eigenvalue λ(1):

N−1Lu ≈ λ(1)u . (3.7)
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The role of the γ-term in (3.6) and the meaning of the approximate equality in (3.7) are

discussed at the end of this subsection. The Sylvester law of inertia (see, e.g., [24]) guaran-

tees that the signs of the eigenvalues of N−1L are the same as the signs of the respective

eigenvalues of L. Then, according to our definition of a fundamental solitary wave at the

end of Introduction, λ(1) may be positive and all the other eigenvalues of N−1L are negative.

The explicit form of N is usually taken to be similar to that of M . For example,

when M is given by (1.3), N has the form (2.18) where the constant c can be computed

algorithmically from un [6]. (For the equation (1.1) with power-law nonlinearity, N = M

and the equality in (3.7) is exact [2].) The constant γ in (3.6) is given by (2.14) and

λ(1) ≡ λ
(1)
n is found from

λ(1)
n = 〈un, Lun〉/〈un, Nun〉 . (3.8)

In practice, N , γ, and λ(1) are computed until the iteration error reaches some predefined

tolerance, after which their last-computed values are used for all subsequent iterations. Since

N is a differential operator with constant coefficients, it has a simple representation in the

Fourier space. Therefore, quantities like N−1L(0)un, Nun, etc. are easily computed using

the direct and inverse Fast Fourier Transforms, which are available as built-in commands

in all major computing software.

In what follows we will frequently refer to the linearized form of (3.6), which is:

ũn+1 − ũn =
(

N−1Lũn − γ
〈u, Lũn〉
〈u,Nu〉 u

)
∆τ . (3.9)

Note that the operator N−1L in the leading term of (3.9) is not self-adjoint. Therefore,

we introduce a commonly employed change of variables to rewrite that equation in a form

involving a self-adjoint operator. Namely, we denote

v = N1/2u, ṽn = N1/2ũn, K = N−1/2LN−1/2 , (3.10a)

K(0)vn ≡ N−1/2L(0)un . (3.10b)

Note that operator K is self-adjoint, since L is self-adjoint and N is self-adjoint and

positive definite. Let us stress that K and v have been introduced only for the convenience

of carrying out the subsequent analysis with self-adjoint operators. Once the derivation

of the algorithm in this framework is complete, we will recast it in terms of the original

variable un and operator L.

With the notations (3.10), Eqs. (3.7), (3.6), and (3.9) are rewritten as:

Kv ≈ λ(1)v , (3.11)

vn+1 − vn =

(
K(0)vn − γ

〈vn,K(0)vn〉
〈vn, vn〉 vn

)
∆τ , (3.12)

ṽn+1 − ṽn =
(

Kṽn − γ
〈v, Kṽn〉
〈v, v〉 v

)
∆τ . (3.13)
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Equations (3.12) and (3.13) are the nonlinear and linearized counterparts of the linear

problem (2.10) with a symmetric matrix A. The γ-terms in these equations are needed to

eliminate the component of the error ṽn+1 along the unstable “direction” v; see (3.11) and

the end of the paragraph following relation (3.7). If the equality in (3.11) (and (3.7)) is

exact, which occurs only for equations with power-law nonlinearity, (1.1), this elimination is

complete. This is the reason behind the success of the Petviashvili method [1], as was shown

in [2]. However, for the majority of equations (1.4) with a more complicated nonlinear term,

the corresponding equation (3.7) (and (3.11)) can be enforced — by the choice of N via an

algorithm presented in [6] — only approximately. A practical measure of this approximation

can be the cosine of the “angle” between Nu and Lu, or, equivalently, between v and Kv:

cos2(v̂,Kv) = cos2(N̂u, Lu) =
〈Nu,Lu〉2

〈Nu,Nu〉〈Lu,Lu〉 . (3.14)

For single-component equations considered in [6], this quantity was about 0.98 . . . 0.99.

Thus, the γ-terms in (3.12) and (3.13) strongly suppress, although do not completely elimi-

nate, the component along the unstable eigenmode. This strong suppression is sufficient to

turn the unstable eigenmode approximated by v into a stable one in the generalized Petvi-

ashvili method [6]. For the modified CGM described in the next subsection, this incomplete

elimination of the unstable mode may lead to divergence. However, we will discuss how

such divergence can be overcome.

In the remainder of this section, we will continue using Eq. (3.13) with the self-adjoint

operator K for all derivations, and only at the final steps of those derivations will convert

to the original variable un.

3.3 A modified CGM

As we noted at the end of Sec. 3.1, the straightforward nonlinear generalization of the CGM

applied to Eq. (2.1) or, equivalently, to

K(0)v = 0, (3.15)

whose linearized operator K is self-adjoint but not sign definite, may diverge. For equations

that we consider in Section 6 below, this method indeed diverges. To modify the method

so that it could converge, one can use the idea stated before Eq. (2.8). Namely, replace

(3.15) with an equivalent equation K(0,mod)v = 0 such that the corresponding linearized

operator K(mod) is self-adjoint and sign definite. In Appendix 1 we show that the expres-

sion in (3.16a) below, which mimics that on the right-hand side of (3.12), comes close to

satisfying these properties: (i) it is equivalent to K(0)v, (ii) its linearized operator K(mod)

is approximately self-adjoint, and (iii) its eigenvalues that are not too close to zero are all

negative. Statements (ii) and (iii) are approximate5 rather than exact because so is relation
5However, as we point out in Appendix 1, in all the examples that we tried and some of which are reported

in Section 6, statement (iii) holds in a more definite sense, i.e.: all eigenvalues of K(mod) are negative.
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(3.11). We will discuss the implications of the approximate character of statement (ii) after

we present the algorithm of the modified CGM.

Thus, denoting

K(0,mod)v = K(0)v − Γ
〈v, K(0)v〉
〈v, v〉 v , (3.16a)

Γ = 1 +
1

λ(1)
, (3.16b)

K(mod)ṽ = Kṽ − Γ
〈v, Kṽ〉
〈v, v〉 v , (3.16c)

we propose the following modified CGM for finding the fundamental solitary wave of (3.15).

It mimics algorithm (3.1) with the following modifications: Ay − b in (3.1a) and (3.1d) is

replaced with K(0,mod)v, A in (3.1b) and (3.1e) is replaced with K(mod), and vectors r and

d are renamed r̄ and d̄. Upon the change of variables

r̄n = N1/2rn, d̄n = N1/2dn, (3.17)

and (3.10), this modified CGM is:

r0 = N−1L(0,mod)u0, d0 = r0, (3.18a)

αn = − 〈Nrn, dn〉
〈L(mod)dn, dn〉

, (3.18b)

un+1 = un + αndn, (3.18c)

rn+1 = N−1L(0,mod)un+1 (3.18d)

βn = −〈rn+1, L(mod)dn〉
〈L(mod)dn, dn〉

, (3.18e)

dn+1 = rn+1 + βndn . (3.18f)

where

L(0,mod)u = L(0)u− Γ
〈u, L(0)u〉
〈u,Nu〉 Nu , (3.19a)

L(mod)d = Ld− Γ
〈u, Ld〉
〈u,Nu〉 Nu . (3.19b)

In a practical implementation of algorithm (3.18), iterations should be carried out with

the generalized Petviashvili method (3.6) until the error reaches some predefined tolerance

(usually, between 1 and 10%), so that the computed parameters of operator N and the

constants λ(1) and Γ may be considered as known with the corresponding accuracy. After

that, the iterations should be carried out with the modified CGM (3.18), which is expected

to converge considerably faster than the generalized Petviashvili method.

Let us now discuss convergence of algorithm (3.18). As noted in Section 3.1, a suffi-

cient condition for this convergence would be negative definiteness of K(mod) in (3.16c),

which, in turn, would have taken place if v were an exact eigenvector of K (see (3.11)
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or (3.7)). However, (3.11) and (3.7) are exact only for equations with power-law nonlin-

earity, (1.1). Therefore, for other nonlinear wave equations, K(mod) can be sign indefinite

and then 〈K(mod)d̄n, d̄n〉 (and hence 〈L(mod)dn, dn〉 in (3.18b) and (3.18e)) can become

arbitrarily close to zero. In such situations algorithm (3.18) could fail, and we will now

point out when this should be expected. As we explain in Appendix 1, the slight non-self-

adjointness of K(mod), which occurs due to the approximate nature of relation (3.11), can

cause 〈K(mod)d̄n, d̄n〉 to become too close to zero when some of the negative eigenvalues

of the linearized operator K of (3.15) (or, equivalently, L of (2.1)) are close to zero. In

single-component equations, this typically occurs when the solitary wave bifurcates from

the edge of the continuous spectrum, while for multi-component equations this can also

happen when, say, an asymmetric wave bifurcates from one with a symmetry (see, e.g., [25]

and references therein).

Our numerical experiments confirm that algorithm (3.18) converges whenever the eigen-

values of L are sufficiently far from zero6, and also that is may diverge in the opposite sit-

uation, as described above. Recall, from the last paragraph of Section 3.1, that in exactly

the same situation, a CGM for a nonlinear problem can fail even if the quadratic form

〈d̄n, K(mod)d̄n〉 were negative definite. Thus, there are two different reasons that can cause

the modified CGM to fail, and they both can occur only when L has near-zero eigenvalues.

Moreover, they both require that at some iteration, the search direction become primarily

“aligned” with the eigenmode of L corresponding to a small eigenvalue. Therefore, a simple

and practical way to avoid divergence of the algorithm is to change the initial guess u0 in

a certain manner. In Section 6 we show that this way does indeed work.

Before concluding this section, let us note that one could develop a modified version of

the CGM based on a different idea than the elimination of the unstable eigenmode from

the underlying operator, as in (3.16). Instead, one can employ the original operators K(0)

and K but force all search directions d̄n to be orthogonal to the unstable eigenmode of K

approximated by the exact solitary wave v. Since (3.11) holds approximately, the search

directions can be made only approximately orthogonal to the true unstable eigenmode of

K. One can show that this causes this other modified CGM to be prone to failure under the

same circumstances as the modified CGM (3.18), i.e. when L has eigenvalues that are close

to zero. Our numerical experiments show that the simple trick that can help algorithm

(3.18) overcome that failure, is not as effective for the other modified CGM. Moreover, the

coding of the latter method is slightly more complicated than that of (3.18). For these

reasons, we only present that alternative modified CGM in Appendix 2, but do not discuss

it further in this paper.
6Note that if the solitary wave is translationally invariant, L has a zero eigenvalue corresponding to

the respective translational eigenmode. As we show in Appendix 1, such a mode presents no problem for

convergence of the iterations since it would simply slightly shift the solitary wave. Therefore, in the following

we ignore the possible presence of such zero eigenvalues of L.
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4 Modified CGM for solitary waves with prescribed power

We first review the preconditioned imaginary-time evolution method (ITEM) [12], which

is a Richardson-type iterative method for finding solitary waves with a specified value of

power, and then present a modified CGM that can be used for the same purpose. This

modified CGM converges under the same conditions as the ITEM, but faster.

4.1 Review of the ITEM

When one seeks a solitary wave with a prescribed value of power (1.7), problem (2.1)

should be redefined because the propagation constant µ, which enters L(0) via operator M

(see (1.3)), is no longer known exactly. Instead, it is estimated at each iteration, as shown

below. Thus, we rewrite (1.4) as

L(00)u− µu = 0, (4.1a)

where

L(00)u = ∇2u + F (u,x), µ =
〈f(u), L(00)u〉
〈f(u), u〉 , (4.1b)

and f(u) is a function of u whose choice will be specified shortly.

The preconditioned ITEM whose convergence conditions are found in [12] is:

µn =
〈N−1u, L(00)u〉
〈N−1u, u〉 , (4.2a)

ûn+1 = un + N−1
(
L(00)un − µnun

)
∆τ , (4.2b)

un+1 = ûn+1

√
P

〈ûn+1, ûn+1〉 . (4.2c)

Here P is the prescribed value of the power and N is a preconditioning operator of the

form (2.18) where now c is an arbitrary (unlike in Section 3) positive number.

In what follows we will need a few facts about the linearized method (4.2) [12]. First,

the condition that 〈un, un〉 = P = const entails the orthogonality between the error and

the exact solution:

〈ũn, u〉 = O(ũ2
n) . (4.3)

Next, the linearized form of the operator in parentheses in (4.2b) is:

Lũn ≡ Lũn − 〈N−1u, Lũn〉
〈N−1u, u〉 u . (4.4)

(Note that operator L involves the propagation constant µ. Even though µ is not specified

when we seek the solitary wave, we can still use it in analyses of iterative methods.) Using

the last two equations, one can straightforwardly show that the last line, (4.2c), of the

ITEM does not change the linearization of the preceding line. Equation (4.2c) is needed

to ensure that the power of the solitary wave equals P exactly rather than in the linear

approximation.
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The ITEM (4.2) converges when its linearized operator, L, has only negative eigenvalues

(see the footnote at the end of Section 3). Loosely speaking (see [12] for a more precise

statement), for a wide subclass of equations (1.4), this occurs when operator L has none or

one positive eigenvalues. Moreover, in the latter case, the following condition has to hold:

dP/dµ > 0 . (4.5)

Below we will use the change of variables (3.10a) and similar notations:

K(00)vn ≡ N−1/2L(00)un , K(0)vN ≡ K(00)vn − µnN−1vn , (4.6)

where µn is given by (4.2a). The linearization of K(0)vn is an operator

Kṽn ≡ Kṽn − 〈N−1v, Kṽn〉
〈N−1v,N−1v〉N

−1v . (4.7)

When the convergence condition of the ITEM (4.2), stated near (4.5), hold, operator K is

[12] self-adjoint and negative definite on the space of functions satisfying the exact form of

the orthogonality relation (4.3):

〈ṽn, N−1v〉 = 0 . (4.8)

4.2 A modified CGM

The idea of this modified CGM is to ensure that both the iteration error ṽn and the search

direction be orthogonal, in the sense of (4.8), to the exact solution v. Then, according

to the last sentence in the previous subsection, operator K is guaranteed to be negative

definite on this space of functions, and hence the following modified CGM is guaranteed to

converge under the same conditions as the ITEM (4.2):

r̄0 = K(0)v0, d̄0 = r̄0 − 1
P
〈N−1v0, r̄0〉 v0, (4.9a)

αn = − 〈r̄n, d̄n〉
〈d̄n, Kd̄n〉

, (4.9b)

v̂n+1 = vn + αnd̄n , vn+1 = v̂n+1

√
P

〈v̂n+1, N−1v̂n+1〉 , (4.9c)

r̄n+1 = K(0)vn+1 (4.9d)

βn = −
〈r̄n+1, Kd̄n〉 − 1

P
〈vn+1,Kd̄n〉〈N−1vn+1, r̄n+1〉
〈d̄n, Kd̄n〉

, (4.9e)

d̄n+1 = r̄n+1 + βnd̄n − 1
P
〈N−1vn+1, r̄n+1 + βnd̄n〉 vn+1 . (4.9f)

The definitions of d̄0 in (4.9a) and d̄n+1 in (4.9f) ensure that

〈d̄n, N−1vn〉 = 0 (4.10)
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at every iteration. Here we use the fact that our iterative solution has a fixed value of

power:

〈vn, N−1vn〉 = P (4.11)

for all n. Since the error ṽn at the nth iteration satisfies the orthogonality condition (4.8),

the first of Eqs. (4.9c) and Eq. (4.10) ensure that the error ṽn+1 at the next iteration also

satisfies (4.8). The second of Eqs. (4.9c) does not change this relation; it only forces (4.11)

to be satisfied exactly rather than in the linear approximation. Equations (4.9b–d) entail

the counterpart of (3.2):

〈r̄n+1, d̄n〉 = O(ṽ3
n) , (4.12)

and Eqs. (4.9e,f) entail a counterpart of (3.3):

〈d̄n+1, Kd̄n〉 = O(ṽ3
n) . (4.13)

We demonstrate these relations in Appendix 1.

Let us note that condition (4.10), in addition to ensuring (4.8) at each iteration, plays

one other important role in this algorithm. Namely, it ensures that in the inner product on

the left-hand side of (4.13), K is a self-adjoint operator: see the sentence before (4.8). This

property of K entails the counterpart of (3.5), which together with negative definiteness of

K implies that all search directions d̄n are linearly independent and the error decreases as

the iterations proceed. In Section 3.1 we noted that this means that the CGM is an optimal

iterative method (see, e.g., [18], p. 296, and [23]).

Thus, the modified CGM (4.9) is guaranteed to converge under the same conditions

as its Richardson-type counterpart (4.2). This, mathematically, is a more rigorous result

than what we obtained for the modified CGM (3.18), which is guaranteed to converge in a

slightly narrower parameter space than its Richardson-type counterpart (3.6).

Finally, we present algorithm (4.9) in the original variables:

r0 = N−1L(0)u0, d0 = r0 − 1
P
〈u0, r0〉u0 , (4.14a)

αn = −〈rn, Ndn〉
〈dn, Ldn〉 , (4.14b)

ûn+1 = un + αndn , un+1 = ûn+1

√
P

〈ûn+1, ûn+1〉 , (4.14c)

rn+1 = N−1L(0)un+1 (4.14d)

βn = −
〈rn+1, Ldn〉 − 1

P
〈un+1,Ldn〉〈un+1, rn+1〉
〈dn, Ldn〉 , (4.14e)

dn+1 = rn+1 + βndn − 1
P
〈un+1, rn+1 + βndn〉un+1 . (4.14f)

Here L, which is the linearization of

L(0)un ≡ L(00)un − 〈N−1un, L(00)un〉
〈N−1un, un〉 un , (4.15)

is given in (4.4).
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5 Modified CGMs for multi-component solitary waves

Here we present the multi-component versions of the modified CGMs (3.18) and (4.14) for

fundamental solitary waves with prescribed values of, respectively, propagation constants

and quadratic conserved quantities that are the counterparts of power (1.7). We will not

give derivations of these methods because they are similar to those found in Sections 3 and

4.

We begin with stating the generalized Petviashvili method from [6] for finding a multi-

component solitary wave u = [u(1), . . . , u(S)]T of the equation

L(0)u = 0 (5.1)

whose linearized operator is L:

un+1 = un +


N−1L(0)un −

S∑

k=1

γ(k)

〈
e(k)

n , L(0)un

〉
〈
e(k)

n , Ne(k)
n

〉 e(k)
n


∆τ . (5.2)

Here N = diag
(
N (1), . . . , N (S)

)
where each N (k) has a form similar to the linear differential

part of the kth component of L(0); e.g., for a system of nonlinear Schrödinger-type equations,

N (k) = c(k) − b(k)∇2, (5.3)

and c(k), b(k) are computed by formulas found in [6]. Furthermore, e(k) are the approximate

eigenvectors of N−1L:

Le(k) ≈ λ(k)Ne(k) , (5.4)

which are mutually orthogonal with weight N:

〈e(k),Ne(m)〉 = 0 for k 6= m. (5.5)

Note that (5.4) is the multi-component counterpart of (3.7). In particular, the exact equality

in it holds only for a special class of coupled power-law equations, which for the two-

component case were found in Appendix 4 of [6]. For other coupled equations, the equality in

(5.4) can only be enforced — by the choice of N — to hold approximately. The quantitative

measure of this approximation is the cosine of the “angle” between Lek and Nek defined

similarly to (3.14). The form of e(k)’s is related to the solution of (5.1) by

e(1)
n = un, e(k) =

(
ρ(k,1)u(1), . . . , ρ(k,S)u(S)

)T
, (5.6)

where ρ(k,k) = 1 and the rest of ρ(k,j) are found as explained in [6]. Finally, the constants

λ(k) and γ(k) in (5.2) are found similarly to (3.8) and (2.14):

λ(k) = 〈e(k),Le(k)〉/〈e(k),Ne(k)〉 , γ(k) = 1 + 1/(λ(k)∆τ) . (5.7)
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The multi-component version of the modified CGM of Section 3 looks as (3.18), with the

scalar functions un, rn, dn being replaced by the S-dimensional vectors un, rn, dn, operator

N being replaced by its matrix counterpart given before Eq. (5.3), and the operators L(0,mod)

and L(mod) being given by expressions generalizing (3.19):

L(0,mod)un = L(0)un −
S∑

k=1

Γ(k)

〈
e(k)

n , L(0)un

〉
〈
e(k)

n , Ne(k)
n

〉 Ne(k)
n , (5.8a)

Γ(k) = 1 +
1

λ(k)
, (5.8b)

L(mod)dn = Ldn −
S∑

k=1

Γ(k)

〈
e(k)

n , Ldn

〉
〈
e(k)

n , Ne(k)
n

〉 Ne(k)
n . (5.8c)

A sample code of this algorithm for a two-component system considered in Section 6 is

presented in Appendix 3.

Let us note that the purpose of the terms under the sum in (5.8) is to eliminate the

eigenmodes e(k) of L whose eigenvalues λ(k) could be positive. By our definition of the fun-

damental solitary wave, stated at the end of Introduction, eliminating S such eigenmodes

should be sufficient to turn the positive eigenvalues of L into negative eigenvalues of L(mod).

As explained in Section 3, due to the approximate character of relations (5.4), this unstable

mode elimination still may not always guarantee convergence of the multi-component mod-

ified CGM (3.18), (5.8) when L has small negative eigenvalues. However, a simple approach

based on perturbing the initial guess, as discussed in Section 6, overcomes this divergence.

We now turn to the case where a set of quadratic conserved quantities related to the

solution components’ powers are prescribed. We need to introduce a number of new no-

tations. Let us denote the s-component vector of these quantities by ~Q, so that its kth

component is

Q(k) =
S∑

l=1

q(kl)P (l), P (l) = 〈u(l), u(l)〉, k = 1, . . . , s ≤ S , l = 1, . . . , S. (5.9)

Note that the number of these conserved quantities can be less than the number of the

components of the solitary wave: s ≤ S. To emphasize this fact, we use a different vector

notation for ~Q than for u. The number of the components of ~Q equals the number of the

propagation constants that one can prescribe independently. One example of this situation

is the system of three waves interacting via quadratic nonlinearity [26] (see also [7]). Another

example, which we discuss in more detail below to make our notations clear, is the system

describing the evolution of pulses in a two-core nonlinear directional coupler [25]:

iU
(k)
t + U (k)

xx +
(
|U (k)|2 + κ|U (k+2)|2

)
U (k) + U (3−k) = 0

iU
(k+2)
t + U

(k+2)
xx +

(|U (k+2)|2 + κ|U (k)|2)U (k+2) + U (5−k) = 0
k = 1, 2 , (5.10)
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where U (k) and U (k+2) are the orthogonal polarization components of the pulse in the kth

core. Upon the substitution



U (1)(x, t)
U (2)(x, t)
U (3)(x, t)
U (4)(x, t)




=




u(1)(x) 0
u(2)(x) 0

0 u(3)(x)
0 u(4)(x)




(
eiµ(1)t

eiµ(2)t

)
, (5.11)

where u(k) can be chosen to be real-valued, system (5.10) reduces to:



u
(1)
xx +

(
(u(1))2 + κ(u(3))2

)
u(1) + u(2)

u
(2)
xx +

(
(u(2))2 + κ(u(4))2

)
u(2) + u(1)

u
(3)
xx +

(
(u(3))2 + κ(u(1))2

)
u(3) + u(4)

u
(4)
xx +

(
(u(4))2 + κ(u(2))2

)
u(4) + u(3)



−




u(1) 0
u(2) 0
0 u(3)

0 u(4)




~µ =




0
0
0
0




, (5.12)

where ~µ =
(
µ(1), µ(2)

)T
. Thus, in this example, S = 4, s = 2, and the vector of quadratic

conserved quantities (verified from the time-dependent equations (5.10)) is

~Q =

(
P (1) + P (2)

P (3) + P (4)

)
≡

(
1 1 0 0
0 0 1 1

)



P (1)

P (2)

P (3)

P (4)




. (5.13)

Generalizing the above example, one can see that the counterpart of Eq. (5.1) when ~Q

rather than ~µ is prescribed, is the following extension of Eq. (4.1a):

L(00)u− U 〈N−1U , U〉−1 〈N−1U , L(00)u〉 = 0 , (5.14a)

U ≡ δ ~Q

δu
. (5.14b)

For example, in (5.12), L(00)u is the first term (the 4× 1 vector), and U is the first factor

of the second term (the 4× 2 matrix) on the left-hand side.

For the convenience of subsequent notations, we will assume that the matrix
(
q(kl)

)

in (5.9) is put into the reduced echelon form (see any textbook on undergraduate linear

algebra) and, in addition, its columns are rearranged so that

q(kl) =

{
0, l < k

1, l = k .
(5.15)

For example, for the 2× 4 matrix in (5.13) this would imply switching the second and third

columns. Then for the powers of the solitary wave components whose indices equal the

indices of the pivot columns of
(
q(kl)

)
, one has from (5.9):

P (k) = Q(k) −
S∑

l=k+1

q(kl)P (l) , k = 1, . . . , s ≤ S . (5.16)
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We will use this fact in the next paragraph.

With the convention (5.15), the multi-component version of the ITEM is:

ûn+1 = un + N−1
(
L(00)un − Un 〈N−1Un, Un〉−1 〈N−1Un, L(00)un〉

)
∆τ , (5.17a)

u
(k)
n+1 = û

(k)
n+1

√√√√Q(k) −∑S
l=k+1 q(kl)P̂

(l)
n+1

P̂
(k)
n+1

, k = 1, . . . , s ≤ S , (5.17b)

where

P̂
(k)
n+1 ≡ 〈û(k)

n+1, û
(k)
n+1〉 , k = 1, . . . , S .

In analogy to the algorithm (4.2) for single-component equations, Eq. (5.17b) does not

change the linearized form of (5.17a); its role is to guarantee that the s components of

vector ~Q equal their prescribed values exactly rather than in the linear approximation.

To our knowledge, the multi-component ITEM (5.17) has not been presented in the liter-

ature before; however, its close “relative” (related to a family of squared-operator methods)

was stated in [7]. The convergence conditions for (5.17) are [21]: (i) the s × s Jacobian

∂ ~Q/∂~µ must be nonsingular, and (ii) the number of positive eigenvalues of this Jacobian

must equal the number of positive eigenvalues of the linearized operator L of Eq. (5.1).

These conditions are a counterpart of (4.5). They guarantee that the linearized operator,

Lũn ≡ Lũn − U 〈N−1U , U〉−1 〈N−1U , Lũn〉 (5.18)

of the expression L(0)un appearing inside the parentheses in (5.17a), is negative definite on

the space of vector functions satisfying an analog of the orthogonality relation (4.3):

〈U , ũn〉 = ~0 . (5.19)

The corresponding multi-component version of the modified CGM (4.14) is:

r0 = N−1L(0)u0, d0 = r0 − U0 〈U0, U0〉−1 〈U0, r0〉 , (5.20a)

αn = −〈rn, Ndn〉
〈dn, Ldn〉 , (5.20b)

ûn+1 = un + αndn , u
(k)
n+1 = û

(k)
n+1

√√√√Q(k) −∑S
l=k+1 q(kl)P̂

(l)
n+1

P̂
(k)
n+1

, k = 1, . . . , s ≤ S ,

(5.20c)

rn+1 = N−1L(0)un+1 (5.20d)

βn = −〈rn+1, Ldn〉 − 〈Ldn, Un+1〉〈Un+1, Un+1〉−1 〈Un+1, rn+1〉
〈dn, Ldn〉 , (5.20e)

dn+1 = rn+1 + βndn − Un+1 〈Un+1, Un+1〉−1 〈Un+1, rn+1 + βndn〉 . (5.20f)

This method is guaranteed to converge to a fundamental solitary wave with a prescribed

vector of conserved quantities ~Q under the conditions stated before Eq. (5.18).
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6 Numerical examples

Here we compare the performance of the modified versions of the CGM presented in Sections

3–5 with the performance of the corresponding Richardson-type methods accelerated by the

mode elimination (ME) technique [8, 7].

The model equations are (1.5) and its two-component extension:

∇2u(1) + V0(cos2 x + cos2 y)u(1) +
(
F (1)(u(1))2 + F (12)(u(2))2

)
u(1) = µ(1)u(1)

∇2u(2) + V0(cos2 x + cos2 y)u(2) +
(
F (12)(u(1))2 + F (2)(u(2))2

)
u(2) = µ(2)u(2)

(6.1)

where the constants

F (1) = 1, F (2) = 4, F (12) = 0.5 .

Note that Eq. (1.5) is equivalent to Eqs. (2.1), (2.2) of [27], where µ[27] = 2V0 − µthis paper.

The values of V0 and the propagation constant(s) or power(s) are specified below, so that

each modified CGM and the corresponding Richardson-type method accelerated by ME are

tested for three cases. We label these cases as mildly numerically stiff, stiffer, and stiffest,

based on the observed rates of convergence of the iterative methods. (In the stiffest case the

methods take the most number of iterations to converge.) A code for the most complicated

of these methods — the modified CGM (3.18), (5.8) for the two-component Eqs. (6.1) —

is presented in Appendix 3. (A counterpart of this code for a single-component equation

is considerably simpler and can be easily written based on a code from Appendix 1 in [6].

Codes seeking solitary waves with prescribed power are also much simpler than the code in

Appendix 3 below, because they do not compute quantities N, e(k), etc.)

We begin by describing the simulations setup for the methods where the propagation

constant(s) is (are) specified. We compare the modified CGMs (3.18) (for the single equa-

tion (1.5)) and (3.18), (5.8) (for the two-component system (6.1)) with the ME-accelerated

generalized Petviashvili method. The latter method is the closest competitor of the modi-

fied CGM among all the Richardson-type iterative methods that we developed earlier; see

Section 2. For a single equation, it is [8]:

un+1 = un +

[
N−1L(0)un − γ

〈un, L(0)un〉
〈un, Nun〉 un − γslow

n

〈φslow
n , L(0)un〉

〈φslow
n , Nφslow

n 〉 φslow
n

]
∆τ ; (6.2a)

which for a multi-component system extends to:

un+1 = un+


N−1L(0)un −

S∑

k=1

γ(k)

〈
e(k)

n , L(0)un

〉
〈
e(k)

n , Ne(k)
n

〉 e(k)
n − γslow

n

〈
Φslow

n , L(0)un

〉

〈Φslow
n , NΦslow

n 〉 Φslow
n


∆τ .

(6.2b)

Here the notations are as in (5.2) above and in addition,

Φslow
n = un − un−1, γslow

n = 1 +
h

λslow
n ∆τ

, λslow
n =

〈
Φslow

n , LΦslow
n

〉

〈Φslow
n , NΦslow

n 〉 , (6.3)
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where h is the fraction of the slowest-decaying mode that is subtracted at each iteration.

In [8] we advocated subtracting around 70% of such a mode for robust and nearly optimal

performance; accordingly, here we use h = 0.7 in all examples.

For all the methods listed in the previous paragraph, we designate the following sets of

parameters in Eqs. (1.5) and (6.1) as corresponding to the mildly stiff, stiffer, and stiffest

cases.
For (1.5) : mildly stiff ⇒ V0 = 4, µ = 5.03;

stiffer ⇒ V0 = 4, µ = 4.95;

stiffest ⇒ V0 = 6, µ = 7.89;

(6.4a)

For (6.1) : mildly stiff ⇒ V0 = 4, µ(1) = 5.03, µ(2) = 5.5;

stiffer ⇒ V0 = 4, µ(1) = 4.95, µ(2) = 6.5;

stiffest ⇒ V0 = 6, µ(1) = 7.89, µ(2) = 8.5 .

(6.4b)

Figure 1 shows schematically the power-versus-µ plots for Eq. (1.5), with the three cases

of (6.4a) labeled. Figure 2 shows the solution for the stiffer case for Eqs. (6.1); note the

vastly different amplitudes and widths of the two components. In the other two cases the

solution looks qualitatively the same. The obtained solutions of the single Eq. (1.5) look

qualitatively as the first component of the solution in Fig. 2. In general, the closer the

propagation constant to the edge of the band gap, the broader and lower the corresponding

solution.

For both the modified CGMs and the ME-accelerated generalized Petviashvili methods,

we start the iterations by the non-accelerated generalized Petviashvili method, and when

the error, defined as

εn =
S∑

k=1

〈
(L(0)un)(k), (L(0)un)(k)

〉
〈
u

(k)
n , u

(k)
n

〉 , (6.5)

reaches a threshold

εacceleration threshold = 5 · 10−2, (6.6)

we begin the acceleration by either the modified CGM or ME and carry on the itera-

tions until the error reaches 10−10. The parameters of N, e(k), λ(k), and γ(k) (or their

single-component counterparts) stop being computed at the threshold (6.6) and the latest

computed values of these parameters are used from that moment on. (As was demonstrated

in [6], for Eqs. (6.1) the eigenvector e(2) of N−1L is computed not too accurately. Yet, we

show below that this does not prevent the modified CGM (3.18), (5.8) from performing

quite well.)

In regards to the specific numeric value on the right-hand side of (6.6), we observed

that the accelerated methods converge in all cases when this value is not too high (say, is

less than 10−1). If the error is substantially higher, the computed parameters of N etc.

may be too inaccurate, so that the corresponding operator K(0,mod) would be “too far”

from self-adjoint, which might then prevent the convergence of algorithms (3.18) or (5.8).
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In addition, only for the modified CGM in the stiffest case, the value of the acceleration

threshold should not be too low (e.g., should be higher than about 5 · 10−3); otherwise,

the modified CGM in this case would diverge. The explanation of this fact was sketched

in the last paragraph of Section 3.1. Here we present specific details for it; for the sake

of convenience, we do it for the single Eq. (1.5) and use the transformed variables (3.10),

(3.17).

First, as is well known (see, e.g., [27] and references therein), when µ in (1.5) is very close

to the edge of the spectral gap of the linear part of K(0) (i.e. in the “stiffest” case considered

here), the shape of the exact solution of (1.5) is very similar to that of the eigenmode(s) of

K with negative near-zero eigenvalue(s). In particular, the solution is broad, as illustrated

in the top panel of Fig. 2. Next, from (3.18a,b) and an analog of (2.3) it follows that at the

first CGM iteration, the step size α0 along the search direction d0 is

α0 =
〈K(0,mod)v0, K(0,mod)v0〉

〈K(mod) K(0,mod)v0, K(0,mod)v0〉
≈ 〈K(mod) ṽ0, K(mod) ṽ0〉
〈(K(mod))2 ṽ0, K(mod) ṽ0〉

À 1 . (6.7)

(Here the iteration’s number is referenced from the start of the CGM algorithm.) The

last strong inequality follows from two facts: (i) operator K (= N−1/2LN−1/2) has a

band of negative essential spectrum that comes very close to zero (see, e.g., Fig. 4(a) in

[20] for a related problem), and (ii) it is precisely a superposition of the corresponding

eigenmodes that dominates the error ṽ0 obtained by the generalized Petviashvili method

after sufficiently many iterations (because these modes decay the slowest in Richardson-type

methods; see, e.g., [7]). Having α0 À 1 and hence a large first step in the CGM adds to

v0 some superposition of near-zero eigenmodes of K and thereby makes the solution at the

next iteration, v1, more broad and hence even more resembling the near-zero eigenmodes.

Then the step size α1, computed at the next iteration, becomes even greater than α0, and

the solution at the following iteration, v2, is made even more broad. This quickly leads

to divergence of the iterations. (Practically, the solution converges to a nonlocalized two-

dimensional Bloch wave.) On the other hand, if the acceleration by the modified CGM

starts when the error ṽ0 is not too small and hence still contains a significant contribution

from the eigenmodes whose eigenvalues are not too close to zero, the corresponding step

size α0 is not too large, and subsequent CGM iterations are able to gradually reduce the

error ṽn.

The above consideration explains why the CGM iterations should start when the itera-

tion error is not too low. In practice, however, this is not a limitation, since in numerically

stiff cases, one wants to start the acceleration by the CGM sooner rather than later since

this considerably reduces the computational time, as we will demonstrate below.

The initial guess in all cases that we consider is taken as

u0 = 1.5 · e−(x2+y2) · (1 + εxx + εyy), εx = 0.1, εy = −0.2 (6.8a)
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for Eq. (1.5) and as
(

u(1)

u(2)

)

0

=

(
0.8

1.5

)
· e−(x2+y2) · (1 + εxx + εyy), εx = 0.1, εy = −0.2 (6.8b)

for Eqs. (6.1). The exact values of the amplitude(s) and width of the initial guess are not

essential; all methods converge for a wide range of these parameters. As for the asymmetry

parameters εx and εy, these can be also varied quite a bit as long as the shape if the initial

guess resembles a pulse with one main peak. However, these parameters should not be set to

zero (or too close to zero) for the modified CGMs (3.18) and (5.8) in the stiffest case. (That

is, in the other two, less stiff, cases, the modified CGMs converge even for a symmetric

initial guess.) The reason for this is similar to the reason why the acceleration threshold

in (6.6) should not be chosen too small. Namely, iterations of the generalized Petviashvili

method which start with a symmetric u0, i.e., (6.7) with εx = εy = 0, produce symmetric

solutions at all subsequent iterations. These solutions increasingly resemble the near-zero

eigenmode of the linearized operator L. Then when the CGM starts, the first step α0 along

the search direction d0 becomes too large, which leads to divergence of the iterations, as

explained after Eq. (6.7). On the other hand, having an asymmetric initial guess leads to

the iteration error being asymmetric, and such an asymmetric error can have a considerable

content of eigenmodes of L whose eigenvalues are not close to zero. This reduces the step

size α0 at the first CGM iteration, and the modified CGM is able to converge. Note that

from the practical perspective, starting with an asymmetric initial guess is not a limitation

of the method.

While the ME-based acceleration does not require an asymmetric initial guess for conver-

gence, we still use the same expressions (6.8) for all methods, so as to make our performance

comparison uniform.

We now comment on the choices of the “fictitious time” step size ∆τ . For each sim-

ulation, we first selected its nearly optimal value for the corresponding non-accelerated

generalized Petviashvili method. This takes just a couple of trials since the optimal ∆τ

is only slightly less than the maximum value of this parameter for which the generalized

Petviashvili method still converges. (See, e.g., Eqs. (2.5) and (2.6) in [8] and Fig. 1(d) in

[7], based on the same equations, although for another iterative method.) Once this ∆τopt

has been determined, we use a slightly smaller (specifically, by 0.1) value of the step size

for the method accelerated by ME; the analysis of ME [8] predicts that this should lead

to a more robust and smooth peformance than using ∆τopt. For example, if we find that

∆τopt = 0.9 for the non-accelerated generalized Petviashvili method, we then use ∆τ = 0.8

for the ME-accelerated version of this method. For the method accelerated by a modified

CGM, we also start the iterations using ∆τ = ∆τopt−0.1, although this does not noticeably

affect its performance (since the CGM itself does not involve ∆τ).

Finally, the domain for all our numerical simulations is [−6π, 6π] × [−6π, 6π], with
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Iterative method

Case in (6.4a) non-accelerated (3.6) accel. by ME (6.2a) accel. by CGM (3.18)

mildly stiff, ∆τ = 1.1 300 iterations, 130 s 110 iterations, 60 s 60 iterations, 40 s

stiffer, ∆τ = 1.1 920 iterations, 390 s 290 iterations, 170 s 100 iterations, 60 s

stiffest, ∆τ = 1.0 3700 iterations, 1560 s 430 iterations, 240 s 200 iterations, 120 s

Table 1: Comparative performance of the generalized Petviashvili method accelerated by
ME (6.2a) and the modified CGM (3.18) for the single-component Eq. (1.5).

Iterative method

Case in (6.4b) non-accelerated (5.2) accel. by ME (6.2b) accel. by CGM (5.8)

mildly stiff, ∆τ = 1.0 330 iterations, 310 s 120 iterations, 130 s 70 iterations, 70 s

stiffer, ∆τ = 1.0 780 iterations, 740 s 200 iterations, 220 s 130 iterations, 130 s

stiffest, ∆τ = 0.9 3330 iterations, 3110 s 550 iterations, 610 s 240 iterations, 250 s

Table 2: Comparative performance of the generalized Petviashvili method accelerated by
ME (6.2b) and the modified CGM (3.18), (5.8) for the two-component Eq. (6.1).

28 × 28 grid points.

Tables 1 and 2 list the numbers of iterations and time (both rounded to the nearest ten)

for each of the three methods (non-accelerated generalized Petviashvili method and its two

versions accelerated by ME and CGM) in the three cases (6.4) for Eqs. (1.5) and (6.1). In

accordance to the note above, the value of ∆τ is listed only for the non-accelerated method.

In Fig. 3 we plot the iteration error (6.5) versus the iteration number for the stiffest case for

Eq. (1.5). The error evolutions shown there are representative of all the other cases, except

that in the less stiff cases, the curves corresponding to the ME and CGM are less jagged.

We also verified that a straightforward extension of the CGM, as described at the end of

Section 3.1, would diverge for all cases listed above and even for non-stiff cases (not listed

here).

From these tables we see that, as expected, both ME- and CGM-based accelerations

considerably improve the performance of the iterative method, with the stiffer the case, the

more the improvement. Furthermore, the CGM-based acceleration performs better than

the ME-based one by a factor of 2–2.5; again, the stiffer the case is, the more improvement

the CGM provides over the ME.

We now present similar results when the power (1.7), or its multi-component counterpart

(5.9), of the solution is specified. The non-accelerated methods are the ITEMs (4.2) and

(5.17) applied to the single- and multi-component Eqs. (1.5) and (6.1), respectively. When

the ME-based acceleration is applied, the lines updating the intermediate solutions ûn+1
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and ûn+1 of these methods become:

ûn+1 = un +

[
N−1

(
L(00)un − µnun

)
− γslow

n

〈φslow
n , L(0)un〉

〈φslow
n , Nφslow

n 〉 φslow
n

]
∆τ ; (6.9a)

ûn+1 = un +
[
N−1

(
L(00)un − Un 〈N−1Un, Un〉−1 〈N−1Un, L(00)un〉

)

− γslow
n

〈
Φslow

n , L(0)un

〉

〈Φslow
n , NΦslow

n 〉 Φslow
n

]
∆τ , (6.9b)

where γslow
n and Φslow

n are defined as in (6.3) and L(0)un is the term in parentheses in

(6.9b); the last lines remain the same as in the respective methods (4.2) and (5.17). The

modified CGMs for the single- and two-component equations are (4.14) and (5.20).

The three cases of increasing numerical stiffness are chosen as,

For (1.5) : mildly stiff ⇒ V0 = 4, P = 2.1 (µ = 5.08);

stiffer ⇒ V0 = 4, P = 1.94 (µ = 5.01);

stiffest ⇒ V0 = 6, P = 0.92 (µ = 7.93);

(6.10a)

For (6.1) : mildly stiff ⇒ V0 = 4, P (1) = 1.50 (µ(1) = 5.10), P (2) = 1.00 (µ(2) = 5.92);

stiffer ⇒ V0 = 4, P (1) = 0.50 (µ(1) = 4.98), P (2) = 1.50 (µ(2) = 6.62);

stiffest ⇒ V0 = 6, P (1) = 0.49 (µ(1) = 7.93), P (2) = 0.60 (µ(2) = 8.55) ,

(6.10b)

where the values of µ, as computed within the methods, are listed for reference only. Note

that for the single-component equation, we had to choose the parameters for which the

solution would satisfy the stability condition (4.5) (see Fig. 1) of the iterative methods

(4.2), (6.9a), and (4.14). For the two-component equation, the parameters were chosen by

trial and error.

The preconditioning operator was taken to be of the form (2.18) or, in the two-component

case, as

N =
(
c−∇2

)
diag(1, 1) (6.11)

with c = 1 (which did not necessarily result in the optimal convergence rate). The “fictitious

time” step ∆τ for the ME-based methods was chosen as ∆τ = ∆τopt − 0.1, as described

above, where ∆τopt was the optimal step size for the non-accelerated ITEM. The computa-

tional domain and the initial conditions were taken as for the methods that find solutions

with prescribed values of the propagation constant. Note that here, the modified CGMs

(4.14) and (5.20) are guaranteed to converge to the solution for any initial conditions that

resemble a two-dimensional pulse. Nonetheless we used (6.8) with εx = 0.1 and εy = −0.2

just for uniformity of all our simulations. For the same reason, we also started the acceler-

ation at the same threshold (6.6), even though both the ME-based methods (6.9) and the

modified CGMs (4.14) and (5.20) could be employed at the very first iteration. The results
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Iterative method

Case in (6.10a) non-accelerated (4.2) accel. by ME (6.9a) accel. by CGM (4.14)

mildly stiff, ∆τ = 0.9 330 iterations, 140 s 90 iterations, 50 s 50 iterations, 40 s

stiffer, ∆τ = 1.0 1670 iterations, 710 s 160 iterations, 100 s 120 iterations, 90 s

stiffest, ∆τ = 0.6 4690 iterations, 1980 s 550 iterations, 330 s 210 iterations, 150 s

Table 3: Comparative performance of the ITEM accelerated by ME (6.9a) and the modified
CGM (4.14) for the single-component Eq. (1.5).

Iterative method

Case in (6.10b) non-accelerated (5.17) accel. by ME (6.9b) accel. by CGM (5.20)

mildly stiff, ∆τ = 0.6 300 iterations, 260 s 120 iterations, 150 s 60 iterations, 80 s

stiffer, ∆τ = 0.6 850 iterations, 740 s 220 iterations, 280 s 120 iterations, 130 s

stiffest, ∆τ = 0.5 1610 iterations, 1400 s 380 iterations, 480 s 130 iterations, 160 s

Table 4: Comparative performance of the ITEM accelerated by ME (6.9b) and the modified
CGM (5.20) for the two-component Eq. (6.1).

are summarized in Tables 3 and 4. Respective error evolutions look qualitatively similar to

those in Fig. 3 and hence are not shown.

Again, as expected, we see that both ME- and CGM-based accelerations considerably

improve the performance of the iterative method, with the stiffer the case, the more the

improvement. Furthermore, the CGM-based acceleration performs better than the ME-

based one by a factor of 2–3 for the two-component equation, with the stiffer the case, the

more imrovement being provided by the CGM over the ME. Interestingly, however, for the

single-component equation, the modified CGM provides an improvement over the ME only

for the stiffest case; for somewhat less stiff cases, the improvement (in terms of computing

time) is only marginal.

7 Conclusions and discussion

In this work, we proposed modifications of the well-known Conjugate Gradient method

(CGM) that are capable of finding fundamental solitary waves of single- and multi-component

Hamiltonian nonlinear equations. Our modified CGMs converge much faster than previously

considered ierative methods of Richardson’s type, like the (generalized) Petviashvili and

imaginary-time evolution methods. Moreover, the slower the convergence of the Richardson-

type method, the more speedup the modified CGM provides.

The classic CGM for a linear system of equations is known to converge when the matrix

of this system is sign definite. For most solitary waves, the linearized operator about them,
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which is a counterpart of the matrix in the previous sentence, is not sign definite. While,

in theory, this does not automatically imply that a straightforward generalization of the

CGM to stationary nonlinear wave equations should fail (e.g., diverge), we verified that

for the equations considered in Section 6, it does indeed fail. Then, the thrust of this

work was to modify the CGM in such a way that it would be guaranteed to converge even

when the linearized operator has eigenvalues of either sign. More precisely, our goal was

to develop such modified versions of the CGM in the case when the number of the positive

eigenvalues of that operator does not exceed the number of the components of the solitary

wave. According to our “definition” at the end of Introduction, this situation would hold

for fundamental solitary waves.

Not all of the modified CGMs that we proposed in Sections 3 – 5 do, strictly speaking,

meet that goal. However, we show below that they come as closely as theoretically possible

to doing so. Moreover, as far as their practical applications, we demonstrated that all of

our modified CGMs can be forced to converge in the same parameter regions as the earlier

proposed (and slower) iterative methods. This convergence can be achieved by a simple

perturbation of the initial guess, which has a theoretical explanation given in Section 6. We

now present more detailed summaries or each of the two versions of the modified CGM.

When finding solitary waves with prescribed values of the propagation constants, we

consider an equivalent nonlinear equation whose linearized operator is modified in such a

way that its only positive eigenvalue is essentially turned into a negative one; see Eqs. (3.19)

and (5.8). This, however, makes the modified linearized operator “slightly” non-self-adjoint,

because the generalized eigenfunction(s) of the original linearized operator, as in (3.11) and

(5.4), is (are) available only approximately; see the end of Section 3.1. This is a fundamental

fact about all nonlinear equations except for their very narrow subclass, equations with

power-law nonlinearity (1.1) (see also their two-component generalization in [6]), and hence

it, in general, cannot be improved. Thus, this fact causes “slight” non-self-adjointness of the

modified linearized operator. This, in turn, leads to sign indefiniteness of the quadratic form

in (3.18b,e) and thereby prevents one from obtaining a rigoroius guarantee that the modified

CGM would always converge. However, we explained in Section 6 and Appendix 1 that the

method can diverge only when the linearized operator L of the stationary wave equation

has small eigenvalues, and for those cases pointed out that a mere asymmetric perturbation

of the initial guess will suffice to make the modified CGM to actually converge.

For finding solitary waves with prescribed values of the power (1.7) or, more generally,

quadratic conserved quantities (5.9), the situation is different. There, the modified CGM

is caused to converge not by modifying a linearized operator but by making the search

directions satisfy a certain orthogonality relation; see (4.3) and (5.19). The linearized

operator employed by the method can be shown [12] to be self-adjoint in the space of

functions satisfying those orthogonality relations, but it is negative definite only under
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conditions stated before Eqs. (4.5) and (5.18). This restriction is intrinsic to a method

seeking a solution with a prescribed power, and hence cannot be relaxed for any nonlinear

wave equations.

Thus, we have justified why the modified CGMs proposed in this work come as closely

as theoretically possible to guaranteeing that they would converge to fundamental solitary

waves. In practice, however, these methods can always be forced to converge, as have been

mentioned above and demonstrated in Section 6.

The modified CGMs are faster not only than Richardson-type methods, but also than

those methods accelerated by the slowest-decaying mode elimination (ME) technique [8, 7].

Namely, in comparison to the ME-accelerated methods, the modified CGMs provide an

improvement of about a factor of two to three in terms of computing time; see Tables

1–4 in Section 6 for details. Importantly, the CGMs do so in the most numerically stiff

cases, when the respective non-accelerated methods would converge extremely slowly and

hence the acceleration would be most desirable. In such cases, it would pay off to use the

modified CGMs instead of ME, even though the latter is a little easier to program into a

code. On the other hand, in non-stiff cases, i.e. when the non-accelerated methods would

converge in just a few tens of iterations, both the modified CGMs and ME would provide

only modest improvement in computing time; compare (2.15) and (2.21). In such cases, it

may be simpler to use ME or even the non-accelerated method. Let us point out one other,

practical, advantage of the ME-based acceleration over the CGMs. Namely, the fact that

we were able to construct modified CGMs is critically grounded in the existence of relations

(3.19), (5.8) or (4.3), (5.19), as we explained above. On the contrary, ME can be used to

accelerate any Richardson-type iterative method, e.g., methods from [3]–[5] or the ITEM

with amplitude normalization [12]. Of course, while these methods do converge in many

cases, their convergence conditions are not known, and hence their use with or without

ME-based acceleration would come without a guarantee that they would converge.

Finally, let us briefly mention alternative iterative methods, other than Newton’s method

proper, which can be used to compute solitary waves, both fundamental and non-fundamental.

First, it should be noted that a number of methods had been proposed that are related to

the original CGM and are applicable when matrix A in (1.6) is real symmetric but sign

indefinite. These methods include the orthogonal direction algorithm (Orthodir) [28], MIN-

RES and SYMMLQ [29], and CG-MRES [30]. They all minimize the iteration error in a

somewhat different metric than does the CGM and also require two previously computed

search directions, dn−1 and dn, to compute dn+1. This allows them to avoid having small

or potentially zero denominators (like 〈Adn, dn〉 in (3.1b) and (3.1e)). Consequently, they

can be employed for finding not only fundamental, but also nonfundamental solitary waves

of Hamiltonian equations, whose linearized operator L has arbitrarily many eigenvalues on

the “wrong” side of 0. This is a clear advantage of those methods over the modified CGMs
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proposed here7. Therefore, it is appropriate to point out some advantages of the modified

CGMs over the extensions of the linear algorithms of [28]–[30] to nonlinear problems. First

of all, the idea of the CGM is well known and is described in many textbooks, whereas the

other methods in question can be found only either in the original papers or in advanced

literature directed towards experts in numerical linear algebra (e.g., none of these methods

except for the CGM are described in [18, 19]). Second, programming of these methods,

except for the Orthodir, is more complicated than for the CGM and in all cases, requires

more operations per iteration. (Here, however, the advantage of the modified CGMs is not

apparent since they also require more computational effort than the original CGM.) Third,

as can be concluded from the estimates found in [31] for MINRES and in [30] for CG-MRES,

the convergence rates of these methods are on the order of that of the CGM (see (2.21))

provided that the linearized operator L has only one positive eigenvalue8. However, when it

has two or more positive eigenvalues and the minimum-modulus eigenvalues on both sides of

0 are small — which is precisely when one desires to considerably accelerate the iterations

— the convergence rates of MINRES and CG-MRES can greatly decrease to a value of

order (2.15). In such a case, a simpler method described in the next paragraph can be used

instead. Thus, a detailed comparison of the modified CGM and the methods of [28]–[30] is

an open issue.

Let us also note that in a recent numerical study [32], Yang showed that a certain

combination of the CGM and Newton’s method converged to both fundamental and non-

fundamental solitary waves for all of the examples considered in that study. It is remarkable,

and at the moment has no rigorous explanation, that the straightforward generalization of

the CGM outlined at the end of Section 3.1 was found to diverge for most of the same

examples for which Yang’s method converges. Thus, Yang’s method can be used in practice;

however, it should be kept in mind that there may exist situations where it would diverge.

Alternatively, if one seeks a non-fundamental solitary wave, one can “square” the equation

(see (2.8) and (2.9)) and apply the original CGM to it. For linear systems, this trick has long

been known (see, e.g., [18], p. 304), and some researchers used it for finding non-fundamental

solitary waves [33]. Let us note, however, that “squaring” an equation leads to squaring the

condition number of the corresponding linearized operator (since cond(A2) = (cond(A))2),

which, according to (2.21), slows down the convergence; also, more arithmetic operatons

per iteration are required for a “squared” method.
7Strictly speaking, our modified CGM can, in some cases like Example 1 in [8], be extended to converge

for the lowest excited states, but such an extension would come at the expense of additional programming

effort and hence may not be worth it.
8This author could not find convergence rate estimates for Orthodir and SYMMLQ.
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Appendix 1: Technical results for Sections 3 and 4

Here we will first prove statements (i)–(iii) found in the first paragraph of Section 3.3 and,

in this process, also explain the choice (3.16b) for the constant Γ. Then we will prove that

the fact that L may have a zero eigenvalue due to a translational eigenmode will not cause

the CGM to break down. Finally, we will supply missing steps in the derivations of (4.12)

and (4.13).

From (3.16a),

K(0,mod)v = 0 ⇒ K(0)v = χv, χ ≡ Γ
〈v, K(0)v〉
〈v, v〉 . (A1.1)

Substituting the second equation in (A1.1) into the definition of χ we find:

χ = Γ
〈v, χv〉
〈v, v〉 = χΓ . (A1.2)

Since Γ 6= 1 (see (3.16b)), Eq. (A1.2) implies that χ = 0, which along with the second

equation in (A1.1) shows that (K(0)v = 0) ⇔ (K(0,mod)v = 0). This proves statement (i).

Statement (ii), i.e. that K(mod) defined in (3.16c) is approximately self-adjoint, follows

by considering the following inner product for arbitrary functions f and g:

〈
f, K(mod)g

〉
= 〈f, Kg〉 − Γ

〈v, Kg〉
〈v, v〉 〈f, v〉

≈ 〈f, Kg〉 − Γ
〈v, λ(1)g〉 〈v, f〉

〈v, v〉
≈ 〈g,Kf〉 − Γ

〈v, g〉 〈v,Kf〉
〈v, v〉

=
〈
g, K(mod)f

〉
. (A1.3)

The two approximate equalities above are due to the approximate relation (3.11), and we

have also used the fact that K is self-adjoint.

Statement (iii), i.e. that all eigenvalues of K(mod) that are not too close to zero are

negative, is a counterpart for nonlinear equations of the statement found after the linear

Eq. (2.13b). Here a quantitative measure of being “too close to zero” is related to how close

the approximate relation (3.11) (or, equivalently, (3.7)) is to being exact; see (3.14) and the

text around it. Below we demonstrate statement (iii) in several steps. First, due to (3.11),

33



one eigenfunction, ψ(1), of K(mod) is close to v, and for it,

K(mod)ψ(1) ≈ K(mod)v ≈ λ(1)(1− Γ)v ≈ λ(1)(1− Γ)ψ(1) . (A1.4)

When Γ is chosen according to (3.16b), the eigenvalue corresponding to ψ(1) is approximately

−1, which is near the accumulation point of the spectrum of K [12]. It is convenient to

“place” this eigenvalue inside (as opposed to at the edge of) the spectrum of K(mod) because

then it does not affect the condition number of the operator and hence the convergence factor

of the iterative method; see (2.16), (2.15), (2.21). Thus, we have shown that the “main

culprit” of sign indefiniteness of K — the eigenvalue λ(1) > 0 — has been successfully dealt

with, i.e. made substantially negative.

To finish the proof of statement (iii), let us show that K(mod) can acquire small positive

eigenvalue(s) only if the original linearized operator L has near-zero eigenvalues. To this

end, we first note that small eigenvalues of L imply small eigenvalues of K (and vice versa).

Indeed, the eigenvalues of K = N−1/2LN−1/2 are the same as those of N−1L. According to

the Sylvester law of inertia [24], eigenvalues of N−1L and L have the same signs. Moreover,

for reasonable choices of N (i.e., for c = O(1) in (2.18)), the eigenvalues of both operators are

of the same order of magnitude. Next, let ψ(k), k ≥ 2 be eigenfunctions of K with negative

eigenvalues. Since v is only an approximate eigenfunction of the self-adjoint operator K,

then 〈v, Kψ(k)〉 = 〈Kv, ψ(k)〉 differs slightly from zero, which causes the eigenfunctions,

and hence eigenvalues, of K(mod) to differ slightly from those of K. Hence small negative

eigenvalues of K can, in principle, become small positive eigenvalues of K(mod) 9. However,

those negative eigenvalues of K that are “not small” cannot be made positive eigenvalues

of K(mod) by a small term 〈v, Kψ(k)〉 in (3.16c). This concludes our demonstration of

statement (iii).

Let us note that even if K(mod) has only negative eigenvalues, the quadratic form

〈d̄n, K(mod)d̄n〉 may still not be negative definite because K(mod) is not self-adjoint. Since,

however, K(mod) is only “slightly” non-self-adjoint, the sign indefiniteness of the above

quadratic form can occur only when some eigenvalues of K(mod) are close to zero, as illus-

trated by the following 2× 2 example:

(3ε 1)

(
−1 5ε

0 −4ε2

)(
3ε

1

)
= 2ε2 > 0 . (A1.5)

Note that, for ε ¿ 1, the vector (3ε 1)T in (A1.5) is aligned primarily with the eigenvector,

(5ε 1)T , corresponding to the smaller eigenvalue of the matrix. The practical implication

of the sign indefiniteness of the quadratic form 〈d̄n, K(mod)d̄n〉 is that it, and hence the
9This, however, did not appear to be the case in any of the numerical experiments conducted in [6]

and in this paper. Indeed, if the corresponding K(mod) had acquired small positive eigenvalues, then the

generalized Petviashvili method (3.6) would diverge (see the text near the end of Section 3.1), which was

never encountered in the aforementioned numerical experiments.
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denominators in (3.18b,e), can become arbitrarily close to zero. This may cause divergence

of the modified CGM (3.18).

Let us now show that if operator L has an eigenmode ψtrans corresponding to transla-

tional invariance of the solitary wave, this would not cause a breakdown of algorithm (3.18).

As before, we will perform the analysis in transformed variables (3.10) and (3.17) and in

the linear approximation with respect to ṽn, r̄n, and d̄n.

The accordingly transformed translational eigenmode satisfies

K(mod)ψ̄trans = 0 . (A1.6)

Let us also write down the counterparts, respectively numbered, of the lines of algorithm

(3.1) that we will refer to:

r̄n+1 = K(0,mod)vn+1 = K(mod)ṽn+1 . (A1.7d)

d̄n+1 = r̄n+1 + βnd̄n . (A1.7f)

αn+1 = − 〈r̄n+1, d̄n+1〉
〈K(mod)d̄n+1, d̄n+1〉

. (A1.7b)

We will show by contradiction that if d̄n is not proportional to ψ̄trans then neither will be

d̄n+1. Then, clearly, since all the eigenvalues of K(mod) other than ψ̄trans are negative, the

denominator in (A1.7b) will never vanish and hence the CGM will not break down. First,

the solvability condition (Fredholm alternative) for (A1.7d) implies that

r̄n+1 = ψ̄⊥, where 〈ψ̄⊥, ψ̄trans〉 = 0, (A1.8)

and hence βn 6= 0 since K(mod)d̄n 6= 0. Second, from (3.2) and (A1.8) it follows that

〈d̄n, ψ̄⊥〉 = 0 . (A1.9)

Third, let us assume that for some n, d̄n+1 = aψ̄trans. Note that by (3.2) and (A1.7f), a 6= 0.

Then from (A1.7f) it follows that

d̄n =
aψ̄trans − ψ̄⊥

βn
⇒ 〈d̄n, ψ̄⊥〉 =

a

βn
〈ψ̄⊥, ψ̄⊥〉 6= 0. (A1.10)

This contradicts (A1.9), and hence d̄n+1 can never become proportional to ψ̄trans, which

proves our assertion. Note that if ṽn+1 becomes proportional to ψ̄trans, then r̄n+1 = 0, in

which case the iterations converge to (v + const · ψ̄trans), which is just a translated solitary

wave v.

Finally, let us show that (4.12) and (4.13) hold. Since, as we noted in Section 4.2, the

second equation in (4.9c) does not change the linearized form of the first equation, we can

use v̂n+1 instead of vn+1 in (4.9d). Then

r̄n+1 = r̄n + αnKd̄n + O(ṽ2
n) . (A1.11)
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Along with (4.9b), this implies (4.12). Next, the only step that requires some explanation

in the derivation of (4.13) is the omission of 〈d̄n, N−1vn+1〉. By (4.10), this inner product

is

〈d̄n, N−1vn+1〉 = 〈d̄n, N−1vn〉+ O(ṽ2
n) = O(ṽ2

n) , (A1.12)

so that its omission does not change the accuracy implied by the right-hand side of (4.13).

Appendix 2: An alternative modified CGM for Section 3

Since, for the reasons explained at the end of Section 3, we do not employ this algorithm

for numerical examples presented in this paper, below we will present it only in terms of

the transformed variables defined in (3.10) and (3.17).

r̄0 = K(0)v0, d̄0 = r̄0 − 〈r̄0, v0〉
〈v0, v0〉v0, (A2.1a)

αn = −
〈r̄n, d̄n〉 − 〈vn,Kd̄n〉〈r̄n, vn〉

λ(1)〈vn, vn〉
〈d̄n, Kd̄n〉

, (A2.1b)

vn+1 = vn + αnd̄n − 〈vn, K(0)vn〉
λ(1)〈vn, vn〉

vn, (A2.1c)

r̄n+1 = K(0)vn+1 (A2.1d)

βn = −
〈r̄n+1, Kd̄n〉 − 〈vn,Kd̄n〉〈r̄n+1, vn+1〉

〈vn+1, vn+1〉
〈d̄n, Kd̄n〉

, (A2.1e)

d̄n+1 = r̄n+1 + βnd̄n − 〈vn+1, r̄n+1 + βnd̄n〉
〈vn+1, vn+1〉 vn+1 . (A2.1f)

The definitions of d̄0 in (A2.1a) and d̄n+1 in (A2.1f) ensure that

〈d̄n, vn〉 = 0 (A2.2)

at every iteration. Equation (A2.1c) ensures that vn = v + ṽn where

〈ṽn, v〉 → 0 as n increases . (A2.3)

Equations (A2.1b–d) entail the counterpart of (3.2):

〈r̄n+1, d̄n〉 = O(ṽ3
n) , (A2.4)

and Eqs. (A2.1e,f) entail a counterpart of (3.3):

〈d̄n+1, Kd̄n〉 = O(ṽ3
n) . (A2.5)

The last three relations can be proved similarly to relations (4.12) and (4.13).
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Appendix 3: Sample code of modified CGM for a two-component

solitary wave with prescribed propagation constants

We will first present the code which uses the modified CGM (3.18), (5.8) to find a solitary

wave of Eqs. (6.1), then explain some of its steps, and, finally, discuss how this code could

be simplified. This code can be downloaded from

http://www.cems.uvm.edu/~lakobati/posted_papers_and_codes/code_in_Appendix3.m.

% ----- Spatial and spectral domains: ------------------------------------------

xlength=12*pi; ylength=12*pi; % domain lengths along x and y

Nx=2^8; Ny=Nx; % number of points along x and y

dx=xlength/Nx; dy=dx; % mesh sizes along x and y

x=[-xlength/2:dx:xlength/2-dx]; y=x; % domains along x and y

[X,Y]=meshgrid(x,y); % X and Y arrays of size Ny-by-Nx

kx=2*pi/xlength*[0:Nx/2-1 -Nx/2:-1]; ky=kx; % spectral domains along x and y

[KX,KY]=meshgrid(kx,ky); % KX and KY arrays of size Ny-by-Nx

DEL(:,:,1)=-(KX.^2+1*KY.^2); DEL(:,:,2)=DEL(:,:,1); % Fourier symbol of Laplacian

% ----- Coefficients in the equation: ------------------------------------------

mu(1)=7.89; mu(2)=8.5; % mu values

W(:,:,1)=6*( (cos(X)).^2 + (cos(Y)).^2 ) - mu(1);

W(:,:,2)=6*( (cos(X)).^2 + (cos(Y)).^2 ) - mu(2); % potential minus mu

F(1)=1; F12=0.5; F(2)=4; % nonlinearity coefficients

Dt=0.9; % Delta tau

% ----- Initial condition: ------------------------------------------

u(:,:,1)= 0.8*exp(-1*(X.^2 + Y.^2)).*(1+0.1*X-0.2*Y);;

u(:,:,2)= 1.5*exp(-1*(X.^2 + Y.^2)).*(1+0.1*X-0.2*Y);;

% ----- Loop control variables: ------------------------------------------

normDu=1; % initialize the error norm to start the loop

normDu_accel=0.05; % Acceleration begins when the error reaches this threshold;

% parameters c, b, gamma are computed until this threshold.

accelerate=0; % this marker indicates that the acceleration has started

counter=0; % counter of the number of iterations

% ----- Iterate until the error reaches the prescribed tolerance ---------------

while normDu >= 10^(-10)

counter=counter+1;

if normDu >= normDu_accel & accelerate == 0 % compute N, E2, gammas -------

% STEP 1: Compute parameters of N: b(2), c(1), c(2) ~~~~~~~~~~~~~~~~~~~~~

DELu=real( ifft2(DEL.*fft2(u)) ); usq=u.^2;

for k=1:2
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L0u(:,:,k)=DELu(:,:,k)+(W(:,:,k)+F(k)*usq(:,:,k)+F12*usq(:,:,3-k)).*u(:,:,k);

u_L0u(k)=trapz(trapz( u(:,:,k).*L0u(:,:,k) )); % <u, L0u> componentwise

end

L11u1=L0u(:,:,1)+2*F(1)*usq(:,:,1).*u(:,:,1); L12u2=2*F12*u(:,:,1).*usq(:,:,2);

L22u2=L0u(:,:,2)+2*F(2)*usq(:,:,2).*u(:,:,2); L21u1=2*F12*u(:,:,2).*usq(:,:,1);

SumjLkjEj1(:,:,1)=L11u1+L12u2-L0u(:,:,1);

SumjLkjEj1(:,:,2)=L21u1+L22u2-L0u(:,:,2);

for k=1:2

u_SumjLkjEj1(k)=trapz(trapz( u(:,:,k).*SumjLkjEj1(:,:,k) ));

DELu_SumjLkjEj1(k)=trapz(trapz( DELu(:,:,k).*SumjLkjEj1(:,:,k) ));

u_u(k)=trapz(trapz( u(:,:,k).*u(:,:,k) ));

u_DELu(k)=trapz(trapz( u(:,:,k).*DELu(:,:,k) ));

DELu_DELu(k)=trapz(trapz( DELu(:,:,k).*DELu(:,:,k) ));

end

b(1)=1;

for k=1:2

kappa(k)=( u_DELu(k)*DELu_SumjLkjEj1(k)-DELu_DELu(k)*u_SumjLkjEj1(k) )/...

( u_u(k)*DELu_SumjLkjEj1(k)-u_DELu(k)*u_SumjLkjEj1(k) );

end

b(2)=b(1)*(kappa(1)*u_u(1)-u_DELu(1)) * u_SumjLkjEj1(2) / ...

( (kappa(2)*u_u(2)-u_DELu(2)) * u_SumjLkjEj1(1) );

c=b.*kappa;

u_Nu=c.*u_u-b.*u_DELu; % <u, Nu> componentwise

% STEP 2: Compute eigenvector E2 = [rho2(1)*u1 rho2(2)*u2]^T and fft(N) ~~~

rho2(1)=-u_Nu(2)/u_Nu(1); rho2(2)=1;

rho1(1)=1; rho1(2)=1; % these coefficients of E1 are for uniform notations

for k=1:2

E1(:,:,k)=rho1(k)*u(:,:,k); E2(:,:,k)=rho2(k)*u(:,:,k);

fftN(:,:,k)=c(k)-b(k)*DEL(:,:,k); % Fourier symbol of N componentwise

end

% STEP 3: Compute gammas ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

E_NE(1)=sum( (rho1.^2).*u_Nu );

E_NE(2)=sum( (rho2.^2).*u_Nu );

SumjLkjEj2(:,:,1)=rho2(1)*L11u1+rho2(2)*L12u2-L0u(:,:,1);

SumjLkjEj2(:,:,2)=rho2(1)*L21u1+rho2(2)*L22u2-L0u(:,:,2);

E_LE(1)=u_SumjLkjEj1(1)+u_SumjLkjEj1(2);

E_LE(2)=sum( trapz(trapz( E2.*SumjLkjEj2 )) );

lambda=E_LE./E_NE; gamma=1+1./(lambda*Dt);
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% STEP 4: Update the solution: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

E_L0u(1)=rho1(1)*u_L0u(1)+rho1(2)*u_L0u(2);

E_L0u(2)=rho2(1)*u_L0u(1)+rho2(2)*u_L0u(2);

u = u + Dt*( real( ifft2(fft2(L0u)./fftN) ) - ...

gamma(1)*E_L0u(1)/E_NE(1)*E1 - gamma(2)*E_L0u(2)/E_NE(2)*E2 );

else % ----- use last computed N,E1,E2,lambda,gamma and start CGM -------------

if accelerate == 0

accelerate = 1;

for k=1:2

L0u(:,:,k)=real( ifft2(DEL(:,:,k).*fft2(u(:,:,k))) ) + ...

(W(:,:,k)+F(k)*u(:,:,k).^2+F12*u(:,:,3-k).^2).*u(:,:,k);

u_L0u(k)=trapz(trapz( u(:,:,k).*L0u(:,:,k) ));

GAMMA(k)=1+1/lambda(k);

end

E_L0u(1)=rho1(1)*u_L0u(1)+rho1(2)*u_L0u(2);

E_L0u(2)=rho2(1)*u_L0u(1)+rho2(2)*u_L0u(2);

NE1=real( ifft2(fft2(E1).*fftN) );

NE2=real( ifft2(fft2(E2).*fftN) );

LL0u=L0u-GAMMA(1)*E_L0u(1)/E_NE(1)*NE1-GAMMA(2)*E_L0u(2)/E_NE(2)*NE2;

r=real( ifft2(fft2(LL0u)./fftN) ); d=r;

end

for k=1:2

Ld(:,:,k)=real( ifft2(DEL(:,:,k).*fft2(d(:,:,k))) ) + ...

(W(:,:,k)+3*F(k)*u(:,:,k).^2+F12*u(:,:,3-k).^2).*d(:,:,k)+...

2*F12*u(:,:,k).*u(:,:,3-k).*d(:,:,3-k);

end

E1_Ld=sum( trapz(trapz(E1.*Ld)) ); E2_Ld=sum( trapz(trapz(E2.*Ld)) );

LLd=Ld-GAMMA(1)*E1_Ld/E_NE(1)*NE1-GAMMA(2)*E2_Ld/E_NE(2)*NE2;

Nr_d=sum( trapz(trapz(LL0u.*d)) ); LLd_d=sum( trapz(trapz(d.*LLd)) );

alpha = -Nr_d/LLd_d;

u = u+alpha*d;

for k=1:2

L0u(:,:,k)=real( ifft2(DEL(:,:,k).*fft2(u(:,:,k))) ) + ...

(W(:,:,k)+F(k)*u(:,:,k).^2+F12*u(:,:,3-k).^2).*u(:,:,k);

u_L0u(k)=trapz(trapz( u(:,:,k).*L0u(:,:,k) ));

end

E_L0u(1)=rho1(1)*u_L0u(1)+rho1(2)*u_L0u(2);

E_L0u(2)=rho2(1)*u_L0u(1)+rho2(2)*u_L0u(2);
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LL0u=L0u-GAMMA(1)*E_L0u(1)/E_NE(1)*NE1-GAMMA(2)*E_L0u(2)/E_NE(2)*NE2;

r = real( ifft2(fft2(LL0u)./fftN) );

beta = max(-sum( trapz(trapz(r.*LLd)) )/LLd_d, 0);

d = r + beta*d;

end

normDu= norm(L0u(:,:,1))/norm(u(:,:,1))+norm(L0u(:,:,2))/norm(u(:,:,2));

normDu_recorded(counter)=normDu;

end

figure(1); mesh(x,y,u(:,:,1)); figure(2); mesh(x,y,u(:,:,2));

figure(3); plot([1:counter],log10(normDu_recorded))

Step 1 inside the while-loop implements Eqs. (4.12) and (4.13) (see also (4.21)) of [6]

using the notations of that paper. For example, DELu, L0u, SumjLkjEj1 in the code stand, re-

spectively, for ∇2un, L0un,
∑2

j=1 Lkjej1; note that all these quantities are two-dimensional

vectors. Notations involving the underscore denote inner products; for example, u_L0u(k)

denotes 〈u(k)
n , (L0u)(k)

n 〉, k = 1, 2, where the superscript (k) means the kth component of

the two-dimensional vector.

Step 2 implements Eqs. (4.15)–(4.18) of [6]. Here rho1(k) denotes ρ(1,k) in the nota-

tions of Eq. (5.6) of this paper; note that, for the convenience of coding, the order of the

superscripts is reversed compared to [6].

Step 3 implements Eqs. (4.5) of [6]. Note that αk of [6] is denoted as λ(k) in this

paper. Also note that in the code, quantities like E_NE(1) denote 〈e(1), Ne(1)〉, i.e. here,

the superscript refers to the particular eigenvector e(k) of N−1L.

Step 4 implements Eq. (4.19) of [6].

At the first iteration of the CGM, in addition to implementing Eqs. (3.18a) of this paper,

one also computes Γ(k) and Ne(k), k = 1, 2, so that these quantities are not computed again

at subsequent iterations of the CGM. Notations LL0u and LLd stand for L(0,mod)un and

L(mod)dn. The remainder of the code implements Eqs. (3.18) and (5.8) of this paper.

Note that the CGM iterations start when N, e(k), and Γ(k) are found rather imprecisely:

accuracy (i.e., the value of normDu_accel) of 5% is used in the above code and in the

examples reported in Section 6, and we verified that the code still worked when this accuracy

was lowered to as much as 10%. Moreover, even if N etc. were computed up to a higher

accuracy, the functions e(k) could still satisfy the eigenrelations (5.4) only approximately.

While this approximation is very close (99% in the least-squares sense) for e(1), it is only

about 70% for e(2); see the second column in Table 1 of [6]. These considerations suggest

that the code could still work if the N given by the expression above Eq. (5.3) is replaced by

a simpler expression (6.11). The constant c there should be computed by a straightforward

generalization of Eq. (3.11) of [6], whereby the lines in Step 1 of the above code starting

with the second for-loop through the end of that step are replaced by:
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for k=1:2

u_u(k)=trapz(trapz( u(:,:,k).*u(:,:,k) )); % <u, u> componentwise

u_DELu(k)=trapz(trapz( u(:,:,k).*DELu(:,:,k) )); % <u, DELu> componentwise

end

DELu_DELu=sum( trapz(trapz( DELu.*DELu )) ); % <DELu, DELu> as a scalar, etc

u_SumjLkjEj1=sum( trapz(trapz( u.*SumjLkjEj1 )) );

DELu_SumjLkjEj1=sum( trapz(trapz( DELu.*SumjLkjEj1 )) );

c = ( u_SumjLkjEj1*DELu_DELu - DELu_SumjLkjEj1*sum(u_DELu) )/...

( u_SumjLkjEj1*sum(u_DELu) - DELu_SumjLkjEj1*sum(u_u) );

u_Nu=c*u_u-u_DELu; % <u, Nu> componentwise

Note that the reason why the inner products u_u(k) and u_DELu(k) are computed for

each component of un rather than for the entire vector function, as DELu_DELu etc, is that

they are needed to compute the individual components of u_Nu. The latter are needed to

compute ρ(2,1) in Step 2.

We did not test the performance of such a simplified code because the goal of this paper

is the proposal of modified CGMs for solitary waves and not optimization of those methods.
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Figure 1: Schematics of the P (µ) curves for fundamental solitary waves of Eq. (1.5) with
V0 = 4 and V0 = 6. The axes, markers, etc. are drawn not to scale. The three cases of
increased numerical stiffness, listed in (6.4a), are labeled with filled circles. The shaded
areas represent the first spectral bands of the linearized operator L for the two values of V0.
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Figure 2: The two-component solution of the stiffer case in (6.4b) for Eq. (6.1). Note the
different vertical scales of the two components.
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Figure 3: Evolutions of the iteration error, defined by (6.5) with S = 1, for the stiffest case
(6.4a) for Eq. (1.5). The methods referred to in the plot are: the non-accelerated generalized
Petviashvili method (3.6), its ME-accelerated form (6.2a), and the modified CGM (3.18),
(3.19). The curve for the non-accelerated generalized Petviashvili method is not shown in
full so as not to obscure the details of the other two curves.
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