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Abstract

We analyze a numerical instability that occurs in the well-known split-step
Fourier method on the background of a soliton. This instability is found to be
very sensitive to small changes of the parameters of both the numerical grid and
the soliton, unlike the instability of most finite-difference schemes. Moreover,
the principle of “frozen coefficients”, in which variable coefficients are treated as
“locally constant” for the purpose of stability analysis, is strongly violated for
the instability of the split-step method on the soliton background.

Our analysis quantitatively explains all these features. It is enabled by the
fact that the period of oscillations of the unstable Fourier modes is much smaller
than the width of the soliton. Our analysis is different from the von Neumann
analysis in that it requires spatially growing or decaying harmonics (not localized
near the boundaries) as opposed to purely oscillatory ones.
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1 Introduction

The split-step Fourier method is widely used in numerical simulations of nonlinear

wave equations. In particular, it is the mainstream method in nonlinear optics, where

the fundamental equation describing propagation of an electromagnetic pulse or beam

is the nonlinear Schrödinger equation

iuz − βutt + γu|u|2 = 0 , u(t, 0) = u0(t). (1.1)

In this paper, we use notations adopted in fiber optics [1], whereby u is proportional to

the complex envelope of the electric field, z is the propagation distance along the fiber,

and t is the time in the reference frame moving with the pulse. (The subscripts denote

partial differentiation.) Thus, z and t are the evolution and spatial variables, respec-

tively. Also, in Eq. (1.1), β and γ are proportional to the group velocity dispersion and

nonlinear refractive index of the optical fiber, respectively. Although these real-valued

constants can be scaled out of the equation by an appropriate nondimensionalization,

we will keep them in our analysis to distinguish contributions of the dispersive and

nonlinear terms. Solitons with u(z, |t| → ∞) → 0 exist in (1.1) for βγ < 0.

The idea of the split-step method is the following. Equation (1.1) can be solved

analytically when only one of the dispersive and nonlinear terms is nonzero. Then, the

approximate numerical solution of (1.1) can be obtained in a sequence of steps which

alternatingly account either for the dispersion or for the nonlinearity:

for n from 1 to nmax do:

unonlin(t) = un(t) exp
(
iγ|un(t)|2∆z

)

un+1 = F−1
[
exp(iβω2 ∆z)F[

unonlin(t)
]]

end

(1.2)

Here ∆z is the step size along the evolution variable, and the subscript n now denotes

the value at the nth step1. In algorithm (1.2), the evolution due to the dispersive term

is computed using the Fourier transform F and its inverse F−1, where, e.g.:

F [u](ω) =

∫ ∞

−∞
u(t)e−iωtdt . (1.3)

For equations of the form (1.1), such an algorithm was originally applied in [2] – [4]

and later comprehensively studied in [5]. Implementations where the dispersive term is

computed using finite-difference discretization in t can be used as well, but the Fourier-

based implementation is preferred in optics, not only because of its higher accuracy

(exponential versus algebraic in ∆t for smooth pulses), but also because it allows one

to easily handle more complicated dispersive terms than in (1.1). In this paper, we

specifically focus on the Fourier-based implementation (1.2) of the split-step method.

1Using subscripts to denote iteration steps, as in (1.2), and partial differentiation, as in (1.1), will
not lead to confusion.
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Since the split-step method is explicit, one expects it to be only conditionally stable.

However, the standard von Neumann stability analysis on the background of the trivial

solution u(t) = 0 does not reveal any instability. Weideman and Herbst [6] were

the first to rigorously show that the split-step method is indeed conditionally stable,

with the instability being able to develop over the background of a finite-amplitude

monochromatic wave

ucw = A exp(iKz − iΩcwt), K = βΩ2
cw + γ|A|2, A = const. (1.4)

A few years later, Matera et al [7] obtained a similar result by a more heuristic method.
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Figure 1: Schematics of the numerical instability increment of method (1.2) over the

background of a monocromatic wave (1.4) as a function of frequency ω. Only the part

for ω > 0 is shown, since the graph is symmetric about ω = 0. The width of the

instability peak near ωkπ, where k = 1, 2, . . ., equals |γA2/(βωkπ)| (see Appendix 3).

Note that the case corresponding to β < 0 is shown; in the case of β > 0, the peaks

will occur on the opposite sides of ωπ and ω2π.

The numerical instability increment of the split-step method of Eq. (1.1) with the

background solution ū ≡ ucw (1.4), found by Weideman and Herbst, is schematically

shown in Fig. 1 for a particular case of Ωcw = 0. (The formulae describing the location

and growth rate of unstable modes are given in Appendix 3.) Here the notations are

the following. The numerical solution of (1.1) is assumed to have the form

un = ū + ũn, |ũn| ¿ |ū|, (1.5a)

ũn = Ã exp(λzn − iωt), zn = n∆z, ω =
2π `

T
, (1.5b)

where −T/2 ≤ t ≤ T/2 and the limits for the integer index ` are determined by the

number of grid points. In Fig. 1,

ωπ =

√
π

|β|∆z
, i.e. |β|ω2

π∆z = π, (1.6)
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and, similarly, |β|ω2
2π∆z = 2π. Instability peaks of the same height exist also near

±ω3π, as long as ωmax ≡ π/∆t, where ∆t is the mesh size along t, extends beyond ω3π;

etc.

Note that the instability depicted in Fig. 1 is mild, in the sense that the numerical

error grows by a factor exp
(
O(1)

)
over propagation distances of order O(1). Further-

more, this instability remains mild even when ∆z significantly exceeds its threshold

∆zthresh ≈ π

|β|ω2
max

(1.7)

(see (1.6)). This should be contrasted with the behavior of finite-difference explicit

schemes, e.g., the Runge–Kutta scheme for the Heat equation, where the instability be-

comes strong (i.e. the numerical error grows by a factor of exp
(
O(1)

)
over propagation

distances of only O(∆z)) whenever the step size along the evolution variable exceeds

the instability threshold. Another remarkable property of the instability in Fig. 1 is

that it occurs only in a finite (and rather narrow, of width O(γA2/(|β|ωπ) = O(
√

∆z))

band of spatial frequencies ω, whereas instabilities of other explicit schemes occur, typ-

ically, for all frequencies higher than a certain minimum value. Let us note a curious

consequence of this spectral selectivity of the instability of the split-step method: The

method can be found stable even when ∆z exceeds the threshold (1.7). This can occur

when the width of the instability peak is less than the mesh size ∆ω in the frequency

domain [6]; see also Appendix 3.

In this paper, we will show, first via numerical simulations and then by an analyt-

ical calculation, that the properties of the instability of the split-step Fourier method

on the background of a soliton solution are considerably different from properties of

such instability on the monochromatic wave background. In particular, these new

properties are even more distinct from some propeties of instabilities of well-known

finite-difference explicit schemes. Highlights of these new properties include: high

sensitivity to (i) the step size ∆z and (ii) the length T of the time window (recall

that time t in (1.1) is the spatial coordinate), and also (iii) a violation of the so called

principle of “frozen coefficients” (see below). Property (i) has been considered both

numerically and analytically for the monochromatic wave background, and numeri-

cally for the soliton background, in [8]. We will explain later on that this property,

i.e. the high sensitivity of the instability to the step size ∆z, has different dependence

on the time window length T , and also requires a different mathematical description,

for the monochromatic and soliton backgrounds. As for properties (ii) and (iii), they,

to the best of our knowledge, have not been previously systematically studied for any

numerical scheme.

In Section 2, we will present results of our numerical simulations of Eq. (1.1) by

the split-step Fourier method (1.2) on the background of the soliton

usol = A

√
2

γ
sech

( A t√−β

)
exp

(
iKz

) ≡ U(t)eiKz, K = A2 . (1.8)
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These will illustrate the unusual instability properties listed in the previous paragraph.

In Section 3, we will develop an analytical theory of the instability of the slit-step

Fourier method on the background of the soliton which explains all these observed

propeties. A comparison of this theory with numerical simulations is presented in

Section 4. In Section 5 we extend our analysis to higher-order versions of the split-step

method. In Section 6 we summarize this work. Appendices 1 and 2 contain auxiliary

results, and Appendix 3 recovers the results of Weideman and Herbst [6], illustrated

in Fig. 1, via the analytical method presented in Section 3.

2 Numerical study of the instability of the split-

step Fourier method on the background of a soli-

ton

We numerically simulated Eq. (1.1) with β = −1, γ = 2 on the background of the

soliton (1.8) with A = 1 using algorithm (1.2). We added to the initial soliton a very

small white (in t) noise component, which served to reveal unstable Fourier modes

sooner than if they had developed from the round-off error. Thus, the initial condition

for our numerical experiments was

u0(t) = A sech (At) + ξ(t), A = 1, (2.1)

and ξ(t) was a Gaussian random process with zero mean and the standard deviation

10−10.

To begin, we considered the spatial grid −T/2 < t ≤ T/2 with 210 grid points

and width T = 32π, i.e. about two orders of magnitude wider than the soliton. This

results in the spectral grid being the interval −32 < ω ≤ 32 with the frequency

spacing of ∆ω = 2π/T = 0.0625. As expected, we did not observe any instability for

∆z < ∆zthresh ≈ 0.0031. Above the threshold, we ran the simulations with ∆z ranging

from 0.004 to 0.006 with the increment of 0.0001 (i.e., ∆z = 0.0040, 0.0041, . . . 0.0060)

up to the maximum distance of zmax = 500 and observed instability only at a few values

of ∆z listed in Table 1. A typical Fourier spectrum of the unstable solution at zmax is

illustrated in Fig. 2 for ∆z = 0.0040. The instability increment (see (1.5b)) listed in

Table 1 was computed as

Re(λ) =
(peaks’ exponent) − (noise’s exponent)

zmax

ln 10 , (2.2)

where the peaks’s exponent refers to the average of the decimal exponents of the two

peaks in Fig. 2(b), and the exponent corresponding to the average noise level was

estimated to be −8.8 for this set of simulations. Estimate (2.2) may not be very

accurate, as the so computed increment depends on the noise levels at the frequencies

5



∆z ω
(+)
left − ωπ ωπ ω

(+)
right − ωπ Re(λ)

0.0040 -0.72 28.03 0.66 0.019

0.0048 -0.39 25.58 0.35 0.031

0.0054 -0.62 24.12 0.57 0.022

0.0055 -0.52 23.90 0.48 0.024

0.0058 -0.46 23.27 0.42 0.022

Table 1: Parameters of the unstable frequencies’ peaks when T = 32π, number of grid

points is 210, and ∆z is varied as 0.0040, 0.0041, 0.0042, . . . , 0.0060. The notations

ω
(+)
right, left are introduced in Fig. 2.

of the unstable Fourier modes (hence the peaks in Fig. 2 are slightly different), but it

still provides a reasonable measure of the instability rate.

¿From Fig. 2 we first observe that the instability peaks at negative frequencies are

not reflectionally symmetric relative to such peaks at positive frequencies, in contrast

to the instability peaks on the background of a monochromatic wave (see the caption

to Fig. 1). Rather, for all the simulations we ran, the negative-frequency peaks appear

to be a shifted replica of the positive-frequency peaks. Moreover, the frequencies of the

left and right peaks on the same side of ω = 0 are slightly asymmetric with respect

to ωπ: see Table 1. To further investigate how the peaks are related to one another,

we ran a simulation where we placed a narrow filter that totally suppressed the field

around ω = ω
(+)
right. As a result, the peak at ω = ω

(−)
right was suppressed but the peaks at

ω = ω
(±)
left remained intact. This corraborated the aforementioned observation that the

pairs of peaks appear to be shifted replicas of each other rather than reflected about

ω = 0. In light of this, it might be somewhat surprising that the peak’s frequencies are

found to be related by a reflectional symmetry:

ω
(−)
left = −ω

(+)
right, ω

(−)
right = −ω

(+)
left . (2.3)

All these observations are explained by the theory in Section 3.

Another conspicuous observation, made from Table 1, is that there seems to be

no apparent order in the frequencies and heights of the instability peaks as func-

tions of ∆z. To expand on this, we zoomed in on the interval 0.0045 ≤ ∆z ≤
0.0046, at the end points of which we had found no instability. We varied ∆z =

0.00451, 0.00452, . . . 0.00459 and found that the instability occured at ∆z = 0.00451

and persisted up to ∆z = 0.00456, with its increment Re(λ) gradually decreasing from

0.036 to 0.014 and the inter-peak spacing ω
(+)
right−ω

(+)
left gradually increasing from 0.25 to

1.56. A weaker instability, with the inter-peak spacing of about 2.0, was also observed

at ∆z = 0.00459; note that no instability was observed at ∆z = 0.00457 and 0.00458.

One could argue that such an irregular dependence of the instability on ∆z occurs

simply because the width of the band of unstable modes is just slightly greater than
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Figure 2: The spectrum of the solution of (1.1) and (2.1) at z = 500 with ∆z = 0.0040,

computed by method (1.2). Other parameters are listed in the text after Eq. (2.1).

the mesh size ∆ω of the frequency grid. Indeed, the unstable band’s width estimated

from the monochromatic-background case is γA2/(|β|ωπ) ≈ 0.07 for the parameters

listed above (see the caption to Fig. 1 and formula (A3.6) in Appendix 3), while

∆ω ≡ 2π/T = 0.0625. In such a case, the instability features should be strongly

sensitive to where inside the instability band the frequency 2π`/T falls. This was

pointed out in [8]; see also the end of Appendix 3 below. Then one would expect

that the aforementioned sensitivity is to be alleviated by taking a wider time window,

because then the frequency mesh size ∆ω would decrease and more frequencies from

the numerical grid would fall into the unstable band.

To verify the validity of such an argument, we re-run the simulations described

above taking a four times wider time window, i.e. T = 128π, while retaining the same

∆t (thus quadrupling the number of grid points). For these new simulations, we esti-

mate that instability peaks should contain about four grid points and hence may expect

that the high sensitivity to the value of ∆z reported above is to be alleviated. What

we find instead is an opposite of this statement: the dependence of the locations and

heights of the instability peaks remains at least as irregular as for the smaller value of
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Figure 3: Instability increment and unstable peaks’ half-separation at z = 2000, as a

function of the step size ∆z. The initial condition is (2.1). The numerical domain has

length T = 128π and contains 212 grid points. Note that for ∆z = 0.0040, where no

instability is found, we defined the corresponding ωright − ωleft = 0. The open circles

and solid line correspond, respectively, to the numerical results and to the results of

analytical calculations reported in Section 4.2.

T , but now the instability is observed “more often” than in Table 1. In Figs. 3 and 4 we

plot the observed values of the instability increment and half of the inter-peak spacing,

(ω
(+)
right − ω

(+)
left )/2, when ∆z is varied between 0.0039 and 0.0050 with step 0.0001 and

between 0.00471 and 0.00479 with step 0.00001. Since the instability rates have now

been found to be about a factor of four lower than in Table 1, we had to run our simu-

lations up to a greater distance, zmax = 2000. Note that the instability characteristics

reported for 0.0040 ≤ ∆z ≤ 0.0050 in Table 1 do not match those shown in Fig. 3.

Moreover, we find that the spectra of unstable modes may look qualitatively different

than in Fig. 2. Namely, these spectra for ∆z = 0.0044, 0.0045, 0.00474, 0.0049, look

like the one shown in Fig. 5(a), while for ∆z = 0.0050 it is shown in Fig. 5(b). Also,

contrary to our expectation, we observe that in most cases the instability peaks still

contain only one grid point; exceptions are the central peak for ∆z = 0.0050 and the

peaks for ∆z = 0.00478, which are spaced very closely. This fact will be emphasized

when we describe a challenge in the analytical description of the instability in Section

3.

We have already mentioned that keeping the spatial mesh size ∆t intact but increas-

ing the spatial window’s length T by a factor of four considerably changes parameters of

the instability. We now show that just slightly changing T (and hence correspondingly

slightly changing ∆t) may change instability parameters dramatically. Such a sensi-

tivity to the length of the spatial window is not observed for finite-difference methods.

Note that T = 128π ≈ 402.1. In Table 2 we list the instability parameters observed

when we decrease T by about 1% or even less. Again, these results appear to be totally
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Figure 4: Same as in Fig. 3, but for a different interval of ∆z values.
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Figure 5: “Less typical” instability spectra. Both panels are for initial condi-

tion (2.1), the propagation distance z = 2000, and the numerical domain with

T = 128π and 212 grid points. (a) ∆z = 0.0049; similar spectra are found for

∆z = 0.0044, 0.0045, 0.00474; (b) ∆z = 0.0050.

irregular. Similarly to the situation mentioned at the end of the previous paragraph,

only the closely spaced instability peaks at T = 398 contain several grid points; the

peaks for the other values of T each contain only one grid point.

Finally, let us show that the so called principle of “frozen coefficients” [9], which

is known to apply to finite-difference schemes, does not hold for the split-step Fourier

method (1.2) on the background of a soliton. This principle says the following. Sup-

pose one has an evolution equation with a spatially varying coefficient, say c(t) (recall

that in this paper, t is the spatial variable, while z is the evolution variable). Near

each t = t0, this coefficient can be approximated by c(t0). Then one can apply the

standard von Neumann stability analysis to the equation with the constant (“frozen”)

coefficient c(t0). Then the scheme is deemed unstable if such an analysis reveals insta-
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T ω
(+)
left − ωπ ω

(+)
right − ωπ Re(λ)

397 -0.44 0.40 0.0062

398 -0.10 0.08 0.0096

399 -1.09 1.02 0.0024

400 -0.33 0.29 0.0076

128π -0.39 0.36 0.0076

Table 2: Parameters of the unstable frequencies’ peaks when ∆z = 0.0043 (ωπ = 27.03),

number of grid points is 212, and T is varied.

bility for at least one value of c(t0). This principle works quite well for finite-difference

schemes. An intuitive explanation fot this is that the unstable modes usually have

high spatial frequency, and so they “see” a relatively slowly-varying coefficient c(t) as

being approximately constant near each t = t0. For the split-step Fourier method, the

unstable modes also have high spatial frequencies, ≈ ±ωπ. Yet, the principle of “frozen

coefficients” does not apply to this method, as we illustrate below.

One manifestation of this fact, as we have already seen, is that the instability of

method (1.2) on the background of a soliton is different from that on the background

of a monochromatic wave of the same amplitude. This observation was originally made

by Weideman and Herbst, who, however, did not provide any details about it (see the

last section in [6]). Now we will present three examples that deal with a multi-soliton

background. Conclusions from these examples are at odds with our intuition based

on the experience with finite-difference schemes, and they reveal yet another way in

which the principle of “frozen coefficients” is violated for method (1.2). As at the

beginning of this Section, let us use the numerical domain with T = 32π ≈ 100.5 and

210 grid points, but instead of the single-soliton initial condition (2.1), consider three

well-separated solitons:

u0(t) = sech (t + 33.5) + sech (t) + sech (t− 33.5) + ξ(t), (2.4)

where ξ(t) is the same as in (2.1). The spacing between the solitons is chosen to be

sufficiently large so as to avoid their interaction. According to the principle of “frozen

coefficients”, the instability with this initial condition must be the same as with (2.1).

However, it turns out to be quite different. First, for ∆z = 0.0040, when there was an

instability (see Table 1) for the initial condition (2.1), there is no instability for initial

condition (2.4). Second, for ∆z = 0.0052, when there was no instability according to

Table 1, now there is a strong instability with the increment of about 0.10 (i.e., more

than three times greater than the largest increment in Table 1). Third, for ∆z = 0.0058,

the instability was observed with both initial conditions (2.1) and (2.4), but for the

latter case it was more than three times as strong (having the increment of 0.072).
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To summarize, in this Section we have presented results of numerical simulations

of the split-step Fourier method (1.2) with soliton initial conditions. These results

illustrate the following features that are drastically distinct from features exhibited by

unstable finite-difference schemes:

• The spectra of the unstable modes exhibit strong and irregular sensitivity to the

values of the step size ∆z and the length of the spatial window T ;

• Instability on the background of several well-separated — and hence non-interacting

— pulses can be drastically different from the instability on the background of a

single pulse (or a different number of pulses).

The theory that we will present in the next section is able to quantitatively explain all

these features.

3 Analytical theory of the instability of the split-

step Fourier method on the background of a soli-

ton

3.1 Key idea and main challenge

First, we will show that a straightforward application of the von Neumann analysis

is unlikely to provide analytical insight about stability or instability of the split-step

method on the soliton background. Then we will outline the idea of an alternative

approach and point out the mathematical challenge that such an aproach would have

to resolve.

Substituting expression (1.5a) with ū = usol into algorithm (1.2) and keeping only

terms linear in ũn, one obtains after taking the Fourier transform:

F [ũn+1] = eiβω2∆z F
[
eiγ|usol|2∆z

(
ũn + iγ∆z(u2

solũ
∗
n + |usol|2ũn)

)]
, (3.1)

where usol is given by (1.8). The right-hand side (r.h.s.) of (3.1) describes coupling

of Fourier modes F [ũn](ω`) with different ω` = 2π`/T , ` = 0, ±1, ±2, . . . via, e.g.,

the convolution term F[|usol|2ũn

]
, because |usol| is a function of the spatial variable

t. (Note that this problem did not occur in the stability analysis on the background

of a monochromatic wave (1.4) since there |ū| = |ucw| is t-independent and hence the

corresponding equation, studied by Weideman and Herbst, coupled only the modes

ω` and −ω`.) Solving for eigenvalues of such a coupled multi-mode system, while

numerically feasible, would unlikely provide any insight of how the instability can

occur. Such an insight is provided by an alternative analytical approach described

below.
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The key idea of this approach comes from the instability spectra shown in Figs. 1, 2,

and 5. Namely, we note that only narrow bands of Fourier modes with frequencies near

±ωπ can become unstable. The reason for this will be presented later. Therefore, it is

appropriate to seek the numerical error ũn, defined in (1.5a), as consisting of two quasi-

monochromatic waves whose carrier frequencies are approximately ±ωπ. These waves

can become unstable via their interaction mediated by their scattering on the soliton.

Since these are high-frequency waves (see (1.6) and note that ∆z ¿ 1), they “see” the

soliton, whose temporal width is O(1), as a narrow, and hence small, perturbation.

This is one of the reasons that the instability is weak, as seen in Section 2. Using the

weakness of the instability, we will approximate its evolution by a differential, rather

than difference, equation. Analysis of the former kind of equation is considerably easier

than that of the latter one.

The main mathematical challenge that this approach needs to address is a three-

scale nature of this problem, as can be seen from Fig. 2. One scale is set by ωπ À 1,

where the strong inequality is a consequence of ∆z ¿ 1 (see (1.6)), as is usually the

case in simulations. Accordingly, let us define a small parameter

ε =
1

ωπ

¿ 1, ε = O
(√

∆z
)
, (3.2)

which will play a prominent role in what follows. In addition to this O(ε−1) scale,

there is also a scale O(1): The separation between ωπ and the frequencies of the most

unstable modes, seen as peaks in Fig. 2, appears to be of this order of magnitude.

Finally, the third scale is set by the spectral width of the instability peaks. Indeed, as

noted in Section 2, even for the highest spectral resolution reported there, those peaks,

in most cases, contain only one grid point. (The pedestals seen around these peaks can

be shown to occur due to modulational instability on the background of the peaks, i.e.

are not directly caused by a numerical instability.) Based on the information provided

by Figs. 2 and 5, it is even impossible to tell whether this third scale is determined by ε.

We will show below that it is rather determined by several parameters of the problem.

Incidentally, let us note that the instability on the background of a monochromatic

wave has only two scales: the location ±ωπ = O(ε−1) of the instability peaks and the

peaks’ width, O(ε); see Fig. 1 and Appendix 3.

3.2 Details of the theory

Step 1: Derivation of a differential equation for the evolution of a numerical error ũn.

First, let us simplify the r.h.s. of (3.1) by noting that in practice, ∆z is always

taken so as to guarantee γ|usol|2∆z ¿ 1. Then, discarding terms O
(
(γ|usol|2∆z)2

)
, one

reduces (3.1) to

F [ũn+1] = eiβω2∆z F [
ũn + iγ∆z(u2

solũ
∗
n + 2|usol|2ũn)

]
. (3.3)

12



Let us now use the observation made in the previous subsection: As follows from Figs.

1, 2, and 5, the instability occurs only in narrow spectral bands near ±ωπ, ±ω2π, etc.

We will focus on the instability near ±ωπ; the analysis near ±ω2π etc. is similar. (In

Appendix 2 we will show that the instability can occur only near ±ωπ, ±ω2π, etc.,

thereby recovering the results presented below.) Accordingly, let us rewrite (3.3) as

F [ũn+1] = (−1) · eiβ(ω2−ω2
π)∆z F [

ũn + iγ∆z(u2
solũ

∗
n + 2|usol|2ũn)

]
. (3.4)

where the (−1) in front of the r.h.s. occurs due to the definition of ωπ, Eq. (1.6).

Note also that β(ω2 − ω2
π)∆z = O(ε), which follows from (3.2) and the fact that we

consider frequencies satisfying |ω − (±ωπ)| = O(1); see the end of Section 3.1. Thus,

exp[iβ(ω2 − ω2
π)∆z] = 1 + O(ε) ≈ 1 for the frequencies of interest.

To enable further analysis of the still intractable difference equation (3.4) in the

frequency domain, let us convert it into a partial differential equation in the time

domain. To this end, we first observe that for the variable

ṽn = (−1)nũn , (3.5)

Eq. (3.4) describes a small increment occurring from nth to (n + 1)th step:

F [ṽn+1] = eiβ(ω2−ω2
π)∆z F [

ṽn + iγ∆z(u2
solṽ

∗
n + 2|usol|2ṽn)

]
. (3.6)

Indeed, from (3.6) and the estimate exp[iβ(ω2 − ω2
π)∆z] = 1 + O(ε) it follows that

ṽn+1 − ṽn = O(ε). Accordingly, we define a continuous variable ṽ(z, t) which at zn =

n∆z is related to ũn by (3.5). Then, we show in Appendix 1 that a variable w̃ = ṽ e−iKz

satisfies an equation

w̃z = −iβ(w̃tt + ω2
πw̃)− iKw̃ + iγU2(w̃∗ + 2w̃), (3.7)

where K and U ≡ U(t) are defined in (1.8), and we have neglected terms of magnitude

O(ε) (see Appendix 1). Note that the first group of terms on the r.h.s. of (3.7) has

the order of magnitude O(1/ε) (see the text after (3.4)), and thus it describes waves

rapidly oscillating in both z and t, as we have announced in Section 3.1.

Step 2: Approximate solution of Eq. (3.7).

We seek a solution of (3.7) as

w̃ = p e−iωπt + m∗ eiωπt , (3.8)

where p(t, z) and m(t, z) are assumed to vary in time on a scale O(1). This agrees

with the numerical observation in Section 2 that frequencies of unstable Fourier modes

differ from ±ωπ by O(1) in most cases. Substituting (3.8) into (3.7) and separating

terms proportional to exp(±iωπt), one obtains:

pz = −2(β/ε)pt − iKp− iβptt + iγU2(m + 2p), (3.9a)
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mz = 2(β/ε)mt + iKm + iβmtt − iγU2(p + 2m), (3.9b)

where we have used definition (3.2). Using again the aforementioned numerical obser-

vation from Section 2, we seek solutions of (3.9) in the form

p = pslow(τ) exp [−iΩt + 2i(β/ε)Ωz + βΛz] , (3.10a)

m = mslow(τ) exp [iΩt + 2i(β/ε)Ωz + βΛz] , (3.10b)

where

Ω = O(1) (3.11)

labels a particular Fourier mode of w̃, parameter Λ is to be determined later, and

τ = εt, Λ ≡ ΛR + iΛI . (3.12)

Note that βΛR equals Re(λ) in (1.5b). When writing that pslow and mslow, as well as

P (τ) and M(τ) in (3.15) below, are functions of the “slow” time τ , we mean that

(pslow)t, (mslow)t, Pt, Mt are all of order O(ε). (3.13)

The order-of-magnitude estimate (3.11), which we empirically deduced from numerical

experiments, will be generalized at the end of Section 4.

Let us stress that in ansatz (3.10), the p- and m-components of the solution are

assumed to have different t-dependences on the O(1) scale (due to the exponents±iΩt).

As we show in Appendix 3, this assumption is one of the key steps that distinguishes the

instability analysis on the soliton background from that on the monochromatic-wave

background.

Next, substitution of (3.10) into (3.9) produces a pair of z-independent equations:

2(1 + εΩ)(pslow)τ =
(−iK/β + iΩ2 − Λ

)
pslow + i(γ/β)U2(τ/ε)

(
mslow e2iΩτ/ε + 2pslow

)
,

(3.14a)

2(1−εΩ)(mslow)τ =
(−iK/β + iΩ2 + Λ

)
mslow+i(γ/β)U2(τ/ε)

(
pslow e−2iΩτ/ε + 2mslow

)
.

(3.14b)

In writing these equations we have neglected terms O(ε2), which will be justified by

subsequent calculations. Note also that the soliton background, U2(τ/ε), presents a

narrow obstacle for pslow(τ) and mslow(τ). Since outside the soliton, pslow and mslow are

not coupled to each other, we use yet another substitution:

pslow = P exp

[
i(−K/β + Ω2)− Λ

2(1 + εΩ)
τ

]
, (3.15a)

mslow = M exp

[
i(−K/β + Ω2) + Λ

2(1− εΩ)
τ

]
. (3.15b)

Then P and M change only in the vicinity of the soliton according to

Pτ =
iγ U2(τ/ε)

2β(1 + εΩ)

(
M e2iΩ·τ/ε+O(1)·τ + 2P

)
, (3.16a)
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Mτ =
iγ U2(τ/ε)

2β(1− εΩ)

(
P e−2iΩ·τ/ε+O(1)·τ + 2M

)
. (3.16b)

Integrating these equations over the entire time window −εT/2 ≤ τ ≤ εT/2, one

obtains:

P (+εT/2)− P (−εT/2) = iε
γ

2β

(F [U2](−2Ω) M(0) + 2F [U2](0) P (0)
)
, (3.17a)

M(+εT/2)−M(−εT/2) = iε
γ

2β

(F [U2](2Ω) P (0) + 2F [U2](0) M(0)
)
. (3.17b)

Here we have neglected terms O(ε2) and used the definition (1.3) of the Fourier trans-

form and the fact that the soliton is centered at τ = 0. These relations prompt us to

denote relative jumps εJP and εJM that P and M undergo across the soliton:

P (±εT/2) ≡ P (0) (1± εJP /2), M(±εT/2) ≡ M(0) (1± εJM/2). (3.18)

Thus, by definition, JP,M = O(1). According to (3.17) and with the same accuracy,

these jumps satisfy

JP = i
γ

2β

(F [U2](−2Ω) R + 2F [U2](0)
)
, (3.19a)

JM = i
γ

2β

(
F [U2](2Ω)

1

R
+ 2F [U2](0)

)
, (3.19b)

where R = M(0)/P (0). Thus, the leading-order (in ε) approximate solution of

Eqs. (3.9) can be obtained from (3.10), (3.15), (3.18), and (3.19). Qualitatively speak-

ing, this solution is a superposition, (3.8), of fast-oscillating waves p exp[−iωπt] and

m∗ exp[iωπt], each of which experiences weak (due to ε ¿ 1) scattering on the soliton.

The jumps of these fast-oscillating waves due to such scattering are determined by

(3.19).

Step 3: Imposing the spatial periodicity condition.

Let us pause for a moment and recall what we are trying to do: We want to deter-

mine the instability increment βΛR for the Fourier mode whose frequency is related to

Ω by (3.10) and (3.8). The two equations (3.19) for three unknowns JP,M and R are

insufficient for this purpose; note that they do not even involve Λ. The missing rela-

tions that will allow us to complete our task are supplied by the periodicity condition

satisfied by P (τ) and M(τ) and are obtained as follows. First, note that the numerical

error ũn(t), and hence w̃(t, z) defined before (3.6), satisfies periodic boundary condi-

tions in t by virtue of the split-step method (1.2) using the discrete Fourier transform.

Second, since p(t, z) and m∗(t, z) have different z-dependences (see (3.10)), then by

virtue of (3.8) each one of these functions must satisfy periodic boundary conditions

in t. Third, along with (3.8), (3.10), and (3.15), this implies that

P (+εT/2)

P (−εT/2)
= exp

[
i (K/β − Ω2) + Λ

2(1 + εΩ)
εT + i(ωπ + Ω)T

]
, (3.20a)
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M(+εT/2)

M(−εT/2)
= exp

[
i (K/β − Ω2)− Λ

2(1− εΩ)
εT + i(ωπ − Ω)T

]
. (3.20b)

Finally, using the identity exp[2iπN ] = 1 for integer N and Eqs. (3.20) and (3.18),

and neglecting terms O(ε2), we obtain:

[
i
(
K/β − Ω2

)
+ Λ

]
(1− εΩ) εT/2 + i(δωπ + Ω)T = 2iπNP + εJP , (3.21a)

[
i
(
K/β − Ω2

)− Λ
]
(1 + εΩ) εT/2 + i(δωπ − Ω)T = 2iπNM + εJM , (3.21b)

where NP,M are some integer numbers and δωπ is “the fractional part” of ωπ: If

ωπ = 2πn/T (where n is not necessarily an integer) and Nπ is the integer part of n,

then δωπ ≡ 2π(n−Nπ)/T . Note that δωπ = O(1/T ).

We can now justify neglecting the terms O(ε2) in (3.14) and in subsequent calcula-

tions. Indeed, if such terms had been retained, they would have contributed amounts

O(ε2) and O(ε2Ω · εT ) to (3.21). The former amount would be a higher-order contri-

bution than that provided by terms εJP,M , which we need to determine. The latter

amount, strictly speaking, depends on the order of magnitude of (εT ), but it will be

clear from our subsequent calculations that even terms O(εΩ · εT ) can be neglected in

the leading-order analysis.

Step 4: Completing the analysis using the results of Steps 2 and 3.

We will now use Eqs. (3.19) and (3.21) to determine for what values of Ω the

instability increment βΛR is nonzero. To this end, we first subtract Eqs. (3.21) from

each other and take the real part, obtaining:

ΛR =
Re(JP − JM)

T
. (3.22)

Next, adding Eqs. (3.21) one obtains:

ε(JP + JM) =
(
iK/β − iΩ2 − Λ εΩ

)
εT + 2iδωπT − 2iπ(NP + NM) . (3.23)

Using Eq. (3.22) one notices that the real part of the the r.h.s. of (3.23) is of order O(ε2)

and hence should be neglected. Thus we conclude that in the main order, (JP + JM)

is purely imaginary. For future use, we also display the result of taking the imaginary

part of the difference of the two equations (3.21):

Im(JP − JM) =
(− (

K/β − Ω2
)
εΩ + ΛI

)
εT + 2ΩT − 2π(NP −NM) . (3.24)

Since ΛR is proportional to the real part of (JP − JM), we solve for the latter

quantity using Eqs. (3.19). To that end, we first solve for R by adding these equations

and then substitute the answer in their difference, obtaining:

JP − JM = ±iγ

β

√(
2F [U2](0) + i(β/γ)(JP + JM)

)2 −
∣∣F [U2](2Ω)

∣∣2 . (3.25)
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Now recall that, as noted after (3.23), (JP + JM) is purely imaginary. Also, F [U2](0)

is real. Then the real part of the r.h.s. of (3.25) is nonzero when

−
∣∣F [U2](2Ω)

∣∣ ≤ 2F [U2](0) + i(β/γ)(JP + JM) ≤
∣∣F [U2](2Ω)

∣∣ . (3.26)

Under this condition, one also has

Im(JP − JM) = 0. (3.27)

Thus, the instability increment, βΛR, is found from Eqs. (3.22) and (3.25), where

(JP + JM) is determined from (3.23). The last two equations, in their turn, involve

three yet undetermined quantities: Ω, which labels the frequency of an unstable Fourier

mode, parameter ΛI introduced in (3.10), and (NP + NM). We will now show that

within the accuracy adopted in our calculations, the former two quantities enter all

equations in a unique combination (Ω + εΛI/2), and hence the number of yet unde-

termined quantities reduces to two. Indeed, upon substitution of (3.15) into (3.10),

we observe that up to terms O(ε2), both t- and z-dependences of p and m involve Ω

and ΛI only in the aforementioned combination (Ω + εΛI/2). Next, by inspection of

formulae (3.23) and (3.24), one can easily see that, within the same accuracy, they also

involve Ω and ΛI only in that combination. This means that one can set ΛI = 0. Then

from (3.24) and (3.27) one finds:

Ω = π(NP −NM)/T , (3.28)

where we have discarded terms O(ε2). Then (3.23) is rewritten as

i(JP + JM) = −
(

K

β
+

2δωπ

ε

)
T +

(
π2(NP −NM)2

T
+

2π(NP + NM)

ε

)
. (3.29)

Finally, one substitutes the last two equations into (3.26) and determines those values

of (NP ±NM) where the instability can occur. The instability increment is computed

from (3.22) and (3.25), and the frequency of the unstable mode, from (3.28). Examples

of such a calculation, producing the theoretical results shown in Figs. 3 and 4, are given

in Section 4.2.

Comment: The main difference between the von Neumann and present analyses.

In the standard von Neumann analysis, an instability can be found by expanding

the numerical error in a set of Fourier harmonics that are purely oscillatory in the

spatial coordinate. In contrast, the unstable harmonics in the above analysis exhibit

slow exponential growth or decay in the spatial variable t: see (3.10) and (3.15) and

note that for those harmonics, ΛR 6= 0. Purely oscillatory harmonics do not become

unstable on the soliton’s background.

The exponentially growing or decaying spatial harmonics in (3.15) are also different

from those required for the standard numerical stability analysis of initial-boundary-

value problems (see, e.g., [10]). The latter harmonics decay rapidly away from the
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boundary, so that they do not “see” the other boundary of the spatial domain. In other

words, the standard analysis of stability of initial-boundary-value problems is local to

each point of the boundary of the spatial domain [10]. In contrast, the exponentially

growing or decaying harmonics in (3.15) are not local to each boundary since they must

satisfy periodic boundary conditions. What allows those spatially growing or decaying

modes to satisfy periodic boundary conditions is the jump that they undergo on the

soliton; see (3.17) and (3.20). This is also shown schematically in Fig. 6 for a mode in

the p exp[−iωπt]-wave.

before
scattering

after
scattering

p e−iω
π
t p e−iω

π
t

Figure 6: A schematics showing that in order to satisfy periodic boundary conditions,

a mode that changes its amplitude due to scattering on the soliton must be spatially

growing or decaying rather than purely oscillatory.

In Appendices 2 and 3 we present related technical results. Namely, in Appendix 2

we show that if one seeks unstable modes not specifically near ±ωπ, as we did at the

beginning of this subsection, but instead near an arbitrary pair of frequencies ±ω0, one

discovers that the instability can arise only near ±ωπ, ±ω2π, etc. In Appendix 3 we

modify the analysis of this subsection to apply to a monochromatic-wave background

(1.4) and thereby recover results that can be deduced from those obtained by Weideman

and Herbst [6].

4 Validation of the theory

In the first subsection below, we will give qualitative explanations of the instability

features described in Section 2: the locations and widths of the instability peaks, and

high sensitivity of the instability to the step size, the time window length T , and

the shape of the background solution. In the second subsection, we will work out

an example showing how Eqs. (3.22), (3.25), (3.26), (3.29), and (3.28) were used to

compute the increment and frequency of the unstable Fourier modes reported in Figs. 3
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and 4. We will conclude by generalizing the order-of-magnitude estimate (3.11) for the

unstable modes’ separation frequency, 2Ω.

4.1 Qualitative explanation of instability features reported in

Section 2

The results of Section 3.2 allow us to explain why the instability peaks, shown in Fig.

2, are not reflectionally symmetric about ω = 0 (see the paragraph after Eq. (2.2)).

Indeed, from Eqs. (3.8), (3.10), and (3.15), one sees that the frequencies of two coupled

unstable modes are

(
ωπ + Ω− ε(−K/β + Ω2)/2

)
and − (

ωπ − Ω− ε(−K/β + Ω2)/2
)
. (4.1)

Thus, given the sign difference of the second terms inside the parentheses above, the

mode at ω
(+)
right is coupled to the mode at ω

(−)
right and not to that at ω

(−)
left , as it would have

been in the case of reflectional symmetry.

Similarly, two other features of the instability spectra reported in Section 2 can

also be explained. First, note from (3.28) and (3.29) that if a value Ω > 0 is found

to correspond to an instability peak, then so is −Ω < 0. This observation, along with

relations

ω
(±)
right = ±([

ωπ−ε(−K/β+Ω2)/2
]±Ω

)
and ω

(±)
left = ±([

ωπ−ε(−K/β+Ω2)/2
]∓Ω

)
,

(4.2)

which follow from (4.1), explains why relations (2.3) hold. Second, the slight asymme-

try of the frequencies ω
(±)
right and ω

(±)
left about the respective ±ωπ, is also easily explained.

Indeed, the frequencies of, say, the peaks at ω
(+)
right and ω

(+)
left , as seen from (4.2), are

centered about
[
ωπ − ε(−K/β + Ω2)/2

]
and not about ωπ. The maginitude of the

shift, −ε(−K/β +Ω2)/2, agrees with the numerically observed values. For example, in

the experiments reported in Table 1, K = 1, β = −1, ε ∼ 0.04, and Ω ∼ 0.5, and hence

−ε(−K/β + Ω2)/2 ∼ −0.025. This should be compared to the experimental values of[
(ω

(+)
left −ωπ)+ (ω

(+)
right−ωπ)

]
/2, which from Table 1 are seen to vary between −0.02 and

−0.03 2.

Next, we can explain why in most cases, as mentioned in Sections 2 and 3.1, the

instability peaks contain just one node3. Consider Eqs. (3.28) and (3.29) and assume

that at frequency labeled by Ω0, corresponding to a particular (NP − NM)0, there is

an instability. The frequency at the adjacent node differs from this Ω0 by 2π/T , and

2A more detailed comparison would require keeping at least one more significant digit in the data
of Table 1, but such a comparison does not appear to be needed. Rather, it is the quantitative
agreement of our theory and numerical experiments, reported in Figs. 3 and 4 and presented in the
next subsection, which seems to be the most important test confirming the validity of the theory.

3As we already mentioned in Section 2, the pedestals around the peaks arise due to a non-numerical
— modulational — instability, and those pedestals are hence unrelated to the foregoing explanation.
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hence, according to (3.28), the corresponding (NP −NM) differs from (NP −NM)0 by 2.

Consistently with this, one can take (NP +NM) = (NP +NM)0. Then the corresponding

value of the r.h.s. of (3.29) differs from that value at Ω0 by 2π2(NP−NM)0/T ·2 = 4πΩ0.

On the other hand, the interval of values where i(JP +JM) corresponds to an instability

is found from (3.26) to have the width 2
∣∣(γ/β)F [U2](2Ω0)

∣∣. Thus, whenever

4πΩ > 2
∣∣(γ/β)F [U2](2Ω)

∣∣, (4.3)

the instability peak can contain only one node. Using expression (1.8) for U(t), one

finds that condition (4.3) holds for Ω > 0.46. In other words, it is only when the peaks

at ωleft and ωright are separated by less than 0.92 that they can contain more than one

node. In practice, the separation should be even smaller, given a random location of

the node with the unstable frequency within the instability interval. In fact, among

the simulations reported in Section 2, we observed multiple nodes per peak only when

(ωright − ωleft) was about 0.25 or less.

The high sensitivity of the instability to the length T of the time window, which was

highlighted in Section 2 (see also Table 2 there), is also easily explained using (3.29).

Suppose this length is changed from T0 to T , so that the relative change (T − T0)/T0

is small. Then the r.h.s. of (3.29) is changed by an amount

−
(

2δωπ

ε
+ Ω2

)
· T0 · T − T0

T0

. (4.4)

The coefficient in front of (T − T0)/T0 is large due to T0 being large and the terms in

parentheses being O(1). Note that this does not necessarily imply that the instability

will disappear, since new values of NP and NM may exist for which the r.h.s. of (3.29)

will be inside the instability interval (3.26); see the next subsection for a quantitative

example in a similar situation where not T but ∆z, is varied.

Similarly, the high sensitivity of the instability to the soliton’s amplitude A occurs

because K ≡ A2 on the r.h.s. of (3.29) is multiplied by a large parameter T .

Finally, while instability on the background of several well-separated solitons cannot

be computed from Eqs. (3.25) and (3.26), which were obtained for a single soliton, one

can still explain why the instability is sensitive to the number of the solitons and their

relative locations. Indeed, the number of solitons determines the number of jumps in

the “slow” variables P and M ; see (3.16)–(3.19). Its is those jumps that allow modes

that exponentially grow/decay (in t) away from the jumps to exist in the presence of

periodic boundary conditions in t; see (3.21). And its is those modes, exponentially

growing or decaying (as opposed to purely oscillating) in t, that are also exponentially

growing (i.e., are unstable), in the evolution variable z; note the same exponent Λ

in (3.15) and in (3.10). As for the relative locations of the solitons, they (as well as

the solitons’ phases) determine the counterparts of parameter R in a generalization of

Eqs. (3.19) for a multi-soliton background.
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4.2 Example of calculation of instability increment and fre-

quency

Here we will explain in detail how the instability increment and frequency for the

generic case are found. Such a generic case corresponds to, e.g., ∆z = 0.0043 in Fig. 3,

for which we will present the calculations below. Its instability spectrum is qualitatively

the same as that shown in Fig. 2. Then we will comment on less common cases, whose

spectra are shown in Fig. 5. We will conclude this section by establishing a general

dependence of Ω as a function of ε and T .

For all cases considered here, the parameters in the background soliton (1.8) are:

β = −1, γ = 2, A = 1, whence K = 1 and U(t) = sech(t). The time window is

T = 128π and the number of grid points is 212. These are the same parameters as were

used in obtaining Figs. 3 – 5.

To begin, let us recall from (3.25) and (3.26) that for the mode labeled by Ω to be

unstable, the left-hand side (l.h.s.) of (3.29) must fall within the interval

(
4F [U2](0)− 2

∣∣F [U2](2Ω)
∣∣ , 4F [U2](0) + 2

∣∣F [U2](2Ω)
∣∣ )

(4.5)

(here we have used that γ/β = −2). While Ω is yet undetermined and hence
∣∣F [U2](2Ω)

∣∣
is not known exactly, it cannot exceed F [U2](0) = 2, and hence interval (4.5) is always

inside the interval (4, 12). Thus, this interval contains values of order 1, i.e. much

smaller than any of the terms on the r.h.s. of (3.29), which are proportional to the

large parameters T and 1/ε = ωπ. This observation motivates our strategy of finding

suitable values of (NP ±NM).

First, given the above values of parameters, one finds ωπ = 1/ε ≈ 27.03, δωπ ≈
0.0140, and then the first term on the r.h.s. of (3.29):

−
(

K

β
+

2δωπ

ε

)
T ≈ 96.86 . (4.6)

Next, since the first term in the second parentheses, (π(NP − NM))2/T , is always

positive, we seek such an integer value for (NP + NM) that an expression

−
(

K

β
+

2δωπ

ε

)
T +

2π(NP + NM)

ε
(4.7)

is as close to zero as possible but negative4. Since 2π/ε ≈ 169.84, the corresponding

NP + NM = −1, yielding the value of −72.98 for (4.7). Finally, an integer value of

(NP − NM) is sought to make the value of the r.h.s. of (3.26) fit within the interval

(4.5). To this end, one first estimates (NP −NM) by forcing that r.h.s. to equal zero:

(NP −NM)estimated =

√
T

π2

[(
K

β
+

2δωπ

ε

)
T − 2π(NP + NM)

ε

]
. (4.8)

4Modifications of this requirement will give rise to “less common” cases, considered later.
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Here (NP−NM)estimated is not an integer; e.g., for the example above it is approximately

54.53. Then a nearby integer value for (NP −NM) is found by trial and error so that

it makes the r.h.s. of (3.29) fit within the interval (4.5) (see a clarification in the next

paragraph). For the above example, this value is (NP −NM) = 57, yielding Ω ≈ 0.45

(see (3.28)). Substitution of this value into (3.25) and (3.22) yields βΛR = 0.0066.

Comparison of so computed βΛR = Re(λ) and Ω = (ωright − ωleft)/2 (see (4.2)) with

respective values found numerically is shown in Figs. 3 and 4 for various values of ∆z.

Two notes are in order about the last step described above. First, since both NP

and NM are integers, then (NP + NM) and (NP − NM) are either both odd or both

even. Second, once a guess is made about (NP −NM), then Ω is computed from (3.28)

and hence
∣∣F [U2](2Ω)

∣∣ in (4.5) and (3.25) is found from (1.3). A Matlab code that

facilitates the calculations presented above can be found at

http://www.cems.uvm.edu/~lakobati/posted_papers_and_codes/2010_splitstep.

We will now briefly describe what we have referred to above as “less common”

cases, depicted in Fig. 5. Let us first address the situation depicted in Fig. 5a, which

occurs for, e.g., ∆z = 0.0044, 0.0045, 0.00474, 0.0049. The inner pair of instability

peaks is found in these cases as described above. For example, for ∆z = 0.0049, it is

obtained using (NP + NM) = −2 and (NP −NM) = 62. The corresponding calculated

instability increment and the peak separation are βΛR ≈ 0.0051 and 2Ω ≈ 2 · 0.48,

which are very close to the experimentally observed values. However, if for the same

value of ∆z one takes (NP + NM) = −3, then one finds that an instability can exist at

Ω ≈ 0.78, corresponding to (NP −NM) = 101. The calculated and observed values of

the instability increment for this outer pair of peaks are 0.0030 and 0.0039, respectively.

Let us note that we checked — by trial and error, as described in the previous para-

graph — for the existence of a secondary pair of instability peaks for every value of ∆z

reported in Figs. 3 and 4. For each ∆z where such a secondary pair was observed in nu-

merics, we also found it analytically, with the agreement between the calculated and ob-

served values of Ω being excellent and those of ΛR being good (the discrepancy between

such values for ∆z = 0.0049, reported above, was the worst one we found). We even

found, both numerically and analytically, small tertiary peaks for ∆z = 0.0044. On the

other hand, we analytically found secondary peaks for ∆z = 0.0042, 0.00475, 0.00477

where they were not observed in numerics at z = zmax = 2000. However, at smaller

z, such secondary peaks were indeed observed. The reason they were not observed

for z = 2000 was that they were “drowned” by the pedestal of unstable modes which

“rose” around the primary peaks due to modulational — i.e., non-numerical — insta-

bility about the primary peaks.

We will now comment on the calculation of the central peak for the case of ∆z =

0.0050, shown in Fig. 5b. Here the value of (4.7) with (NP + NM) = −1 is approxi-

mately 11.1. This is not negative, as we wanted this expression to be in the previous

calculations (see the line after (4.7)). However, for (NP −NM) = 0, the r.h.s. of (3.29)
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is 11.1 ∈ (4, 12), i.e. it is within the instability interval (4.5) with Ω = 0 (see (3.28)).

According to the discussion found around Eq. (4.3), the instability peak at Ω = 0

should contain several grid nodes, which is confirmed by Fig. 5b.

Finally, let us revisit the estimate for the order of magnitude of Ω, which determines

the frequency separation of the primary instability peaks. In (3.11) we stated, as an

empirical observation, that Ω = O(1). We will now use Eq. (4.8) to generalize it.

Note that for the largest integer value of (NP + NM) that still renders expression (4.7)

negative, the expression in the square brackets in (4.8) is no greater than 2π · 1/ε.
The corresponding (NP − NM)estimated, and hence (NP − NM), is then of the order

O
(√

T/ε
)
. Substitution of this into (3.28) yields

Ω = O
(
1/
√

εT
)
. (4.9)

Thus, as one makes the time window wider in the order-of-magnitude sense while keep-

ing the other parameters fixed, the separation between the primary unstable Fourier

modes should, on average, descrease. An implication of this for observing the numerical

instability is presented in Section 6.

5 Instability of higher-order split-step methods

It is well-known (see, e.g., [11]) that method (1.2) has first-order accuracy in ∆z. Its

single step can be symbolically written as

un+1 = e∆zL e∆zN un, (5.1)

where exp[∆zN ] and exp[∆zL] are the symbols denoting, respectively, evolutions

due to only the nonlinear and only the linear (i.e., dispersive) terms in Eq. (1.1). The

two second-order split-step methods (see, e.g., [1, 11]),

un+1 = e∆z/2L e∆zN e∆z/2Lun, un+1 = e∆z/2N e∆zL e∆z/2Nun, (5.2)

are equivalent to method (5.1) except for their first and last half-steps. Hence the

stability properties of methods (5.2) and (5.1) are the same. Below we will focus on

two fourth-order versions of the split-step method:

u
(I)
n+1 = ec1∆z L ed1∆zN ec2∆z L ed2∆zN ec2∆zL ed1∆zN ec1∆z L u(I)

n , (5.3a)

u
(II)
n+1 = ec1∆zN ed1∆zL ec2∆zN ed2∆z L ec2∆zN ed1∆z L ec1∆zN u(II)

n , (5.3b)

where [12, 11]

c1 =
1

2(2− 21/3)
, c2 = (1− 21/3)c1, d1 = 2c1, d2 = −21/3d1 . (5.4a)
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Note that

2c1 + 2c2 = 1, 2d1 + d2 = 1. (5.4b)

Starting with method (5.3a), we note that its stability properties are equivalent to

those of the method

u(i) = ec2∆z L ed1∆zN un, (5.5a)

u(ii) = ec2∆z L ed2∆zN u(i), (5.5b)

un+1 = e2c1∆zL ed1∆zN u(ii), (5.5c)

where we have omitted the superscipt ‘(I)’ for brevity. In analogy with Eq. (3.3), the

linearized form of Eq. (5.5a) can be written as:

F [ũ(i)] = eiβω2(c2∆z)F [
ũn + iγ(d1∆z)(u2

solũ
∗
n + 2|usol|2ũn)

]
. (5.6)

As in Appendix 2, one can show that the numerical instability can occur only near the

frequencies ±ωπ, ±ω2π, etc. Below we will focus on the vicinity of ω = ωπ, whence

βω2c2∆z = c2(βω2
π∆z) + β(ω2 − ω2

π)c2∆z = −c2π + O(ε), (5.7)

where we have used (1.6) with β < 0 and the argument found after (3.4). Substituting

(5.7) into (5.6) and its complex conjugate and proceeding as explained after (3.6), we

obtain: (
ũ(i)

ũ∗(i)

)
= Φ2 Ed1, c2

(
ũn

ũ∗n

)
, (5.8)

where

Φj =

(
eiφj 0

0 e−iφj

)
, φj = −cjπ, j = 1, 2; (5.9)

Ed, c =

(
e−iβ(c∆z)(ω2

π+∂2
t ) 0

0 eiβ(c∆z)(ω2
π+∂2

t )

) (
1 + iγ(d∆z) · 2|u2

sol| iγ(d∆z) · u2
sol

−iγ(d∆z) · (u∗sol)
2 1− iγ(d∆z) · 2|u2

sol|

)
.

(5.10)

Similarly,
(

ũ(ii)

ũ∗(ii)

)
= Φ2 Ed2, c2

(
ũ(i)

ũ∗(i)

)
,

(
ũn+1

ũ∗n+1

)
= Φ2

1 Ed1, 2c1

(
ũ(ii)

ũ∗(ii)

)
. (5.11)

Combining (5.8) and (5.11), one has:
(

ũn+1

ũ∗n+1

)
= Φ2

1 Ed1, 2c1Φ2 Ed2, c2Φ2 Ed1, c2

(
ũn

ũ∗n

)
. (5.12)

If matrices Φ1,2 commuted with Ed, c’s, then (5.12) would have become
(

ũn+1

ũ∗n+1

)
= Φ2

1 Φ2
2 Ed1, 2c1Ed2, c2Ed1, c2

(
ũn

ũ∗n

)
. (5.13)
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But (5.13) is equivalent to (3.4) and hence to (3.7) by the following arguments. First,

Φ2
1 Φ2

2 =

(
−1 0

0 −1

)
(5.14)

by virtue of (5.9) and the first equation in (5.4b). Second, the action of operator

Ed1, 2c1Ed2, c2Ed1, c2 is analogous to the action of the operator on the r.h.s. of (3.6)

(except that the former operator approximates the differential equation (A1.2) with a

higher accuracy). Then, if (5.13) were true, it would have reduced to (A1.2) and hence

to (3.7). This would have implied that the instability of the higher-order split-step

methods were identical to the instability of the lower-order method (1.2). However,

(5.13) is not true because matrices Φ and E do not commute. For this reason, the

instability of the higher-order methods (5.3) is different from that of method (1.2).

Below we will derive an equation that is, up to terms O(ε), equivalent to (5.12) and

which therefore becomes a counterpart of (3.7) for the higher-order method (5.3a).

Having derived that equation, (5.21) below, we will point out how the analysis of

Section 3 can be applied to it in a straightforward manner.

First, we note that

Ed, cΦj = Φj Ed, c + Cd, c; φj
, (5.15a)

Cd, c; φj
=

(
0 2γu2

sol · (d∆z) sin φj

2γ(u∗sol)
2 · (d∆z) sin φj 0

)
+ O(ε). (5.15b)

(Recall that |ω2 − ω2
π|∆z = O(ε) = O(

√
∆z).) Then (5.12) becomes:

(
ũn+1

ũ∗n+1

)
=

[
Φ2

1 Φ2
2 Ed1, 2c1Ed2, c2Ed1, c2 + Φ2

1 (Cd1, 2c1; 2φ2Ed2, c2 + Ed1, 2c1Φ2Cd2, c2; φ2) Ed1, c2

]
(

ũn

ũ∗n

)
.

(5.16)

Next, an easy calculation shows that

Ca, b; φ Ec, d = Ca, b; φ + O(∆z · ε), Ec, d Ca, b; φ = Ca, b; φ + O(∆z · ε). (5.17)

Using (5.17), (5.15b), and (5.14), we transform (5.16) into

(
ũn+1

ũ∗n+1

)
=

[
−Ed1, 2c1Ed2, c2Ed1, c2 +

(
0 f

f ∗ 0

)
+ O(∆z · ε)

] (
ũn

ũ∗n

)
, (5.18a)

f = 2γu2
sol∆z e2iφ1

(
d1 sin(2φ2) + d2e

iφ2 sin φ2

)
. (5.18b)

As explained after (5.14), it is the second term on the r.h.s. of (5.18a) that makes the

instability of method (5.3a) different from the instability of method (1.2).

Now, note that the off-diagonal entries of the first term on the r.h.s. of (5.18a) are:

(−Ed1, 2c1Ed2, c2Ed1, c2)off−diag = −
(

. . . g

g∗ . . .

)
+ O(∆z · ε), (5.19a)
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g = iγ∆zu2
sol . (5.19b)

(That is, g is the coefficient multiplying ũ∗n in (3.4).) This follows by the same argument

as used after Eq. (5.14). Combining (5.18) and (5.19) and discarding the O(∆z · ε)
terms, we obtain that

operator on

r.h.s. of (5.18a)
= −

[
(Ed1, 2c1Ed2, c2Ed1, c2)diag +

(
. . . g − f

(g − f)∗ . . .

)]
. (5.20)

Note that g and f differ only by a constant factor. Then it follows from (5.20) that

in the leading order, the entire second term on the r.h.s. of (5.16) affects only the

coefficient of the off-diagonal entries. This, in turn, means that (5.12) reduces, via

(5.16) and the arguments found after (3.4) and (3.6), to the following modification of

(3.7):

w̃z = −iβ(w̃tt + ω2
πw̃)− iKw̃ + iγU2 (σw̃∗ + 2w̃), (5.21)

where, as follows from (5.20), (5.19b), and (5.18b),

σ ≡ σ(I) = 1 + 2i e2iφ1
(
d1 sin(2φ2) + d2e

iφ2 sin φ2

)
. (5.22)

(Here we have restored the superscript ‘(I)’, thus indicating that (5.21) and (5.22)

describe the instability of the first of the fourth-order accurate split-step methods,

(5.3a).) An analysis of Eq. (5.21) follows precisely the lines of Section 3.2, with the

only difference being that the quantity |F [U2](2Ω)| in (3.25), (3.26), and (4.5) is now

multiplied by |σ(I)|. Numerical results validating this conclusion are presented at the

end of this section.

The instability analysis for the other higher-order method, (5.3b), is done similarly.

Namely, the counterpart of (5.12) is now

(
ũn+1

ũ∗n+1

)
= Ψ1 Ec2, d2Ψ2 Ec2, d1Ψ1 E2c1, d1

(
ũn

ũ∗n

)
, (5.23)

where

Ψj =

(
eiψj 0

0 e−iψj

)
, ψj = −djπ, j = 1, 2. (5.24)

Then, following the derivations found between Eqs. (5.15) and (5.20), one finds that

the corresponding modification of Eq. (3.7) has the form (5.21) with σ being replaced

by

σ ≡ σ(II) = 1 + 2ic2 eiψ1
(
sin(ψ1 + ψ2) + eiψ2 sin ψ1

)
. (5.25)

From (5.4), (5.9), and (5.24) one finds:

|σ(I)| ≈ 0.4847, |σ(II)| ≈ 1.5598, (5.26)
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Figure 7: Instability increment as a function of the step size ∆z, obtained for the same

parameters as in Fig. 3a, but for methods (5.3a) (thin line and circles) and (5.3b) (thick

line and circles). The locations of the unstable peaks are the same as in Fig. 3b (see

text).

A comparison of the theoretical results based on the analysis of Eqs. (5.21), (5.22),

and (5.25) with the results of numerical simulations is shown in Fig. 7. A few remarks

about it are in order.

First, the theoretical values of the instability increment are computed as explained

in Section 4.2; see also the end of the paragraph following Eq. (5.22). The parameters

of numerical simulations are the same as for Figs. 3 and 4, with one minor exception.

Namely, the simulations for the two most unstable cases, with ∆z = 0.0048 and 0.0050

for method (5.3b), were run up to only zmax = 1000, because running them up to

zmax = 2000 created a conspicuous distortion of the background soliton.

Second, (5.26) shows that |σ(I)| < 1 < |σ(II)|. This fact along with the analysis

of Section 3.2 implies that the instability for method (5.3b) should be, on average,

stronger and also observed more often than the instability for method (1.2). The

latter, in turn, should be stronger and observed more often than the instability for

method (5.3a). Both these conclusions are confirmed by Fig. 7. Let us also note that

the fact that the instabilities on the monochromatic-wave background are different for

methods (5.3a) and (5.3b) was demonstrated (by the von Neumann analysis) in [8],

although no connection to Eq. (5.21) was made there.

Third, it is clear from Section 4.2 that the location of unstable Fourier harmonics,

i.e., parameter Ω, is not affected by the coefficient of |F [U2](2Ω)|. Therefore, the

location of the unstable peaks for methods (5.3) is the same as that for method (1.2).

This is confirmed by our numerics. An exception is the instability at ∆z = 0.0040,

which is absent for methods (1.2) and (5.3a) but appears for method (5.3b). There,

we also confirmed that the theoretical and numerical values of the unstable peaks’

locations are in excellent agreement (as in Figs. 3b and 4b).
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Fourth and last, it should be noted that method (5.3a) is “less unstable” than

method (5.3b) near ω = ±ωπ, but not near all resonant frequencies ωmπ, m =

1, 2, 3, . . . .. In fact, a calculation based on (5.9) and (5.24) where π is replaced by

2π reveals that near ω = ±ω2π,

|σ(I)| ≈ 3.3074, |σ(II)| ≈ 1.4547, (5.27)

i.e. there, method (5.3a) is “more unstable” than both methods (5.3b) and (1.2).

6 Conclusions

We reported, and then analytically explained, a numerical instability in the split-step

Fourier method (1.2) applied to the nonlinear Schrödinger equation (1.1) with the

background solution being the soliton (1.8). Properties of this instability, such as the

dependence of its increment and unstable mode’s location on the step size, numerical

domain’s length T , and details of the background solution, are quite different from

those properties on the background of the monochromatic wave (1.4), previously ob-

tained by the von Neumann analysis in [6]. Namely, the dependence of the instability

on those parameters is seemingly very irregular, as we illustrated in Tables 1, 2 and

Figs. 3, 4. This is to be contrasted with monotonic dependences of the numerical insta-

bility observed for finite-difference schemes in both constant- and variable-coefficients

equations, as described in textbooks on numerical methods. Moreover, we demon-

strated (see the end of Section 2) that the principle of “frozen coefficients” is not valid

for the split-step Fourier method on the background of a localized nonlinear wave. In

particular, the instabilities on the background of a single soliton, on one hand, and

several well-separated identical solitons, on the other, can be drastically different.

The analysis presented in Section 3 (see also Appendix 2) revealed that unstable

modes can be found only near the resonant frequencies ±ωπ, ±ω2π, etc. (see (1.6)

and the sentence after that equation). Remarkably, far away from the soliton, these

unstable modes are not exactly periodic in the spatial variable t. Rather, their spatial

envelope is exponentially growing or decaying in t (see Eqs. (3.8), (3.10), (3.15), and

(3.22)). What makes these modes satisfy the periodic boundary conditions, which are

implicitly imposed by the use of Fourier transform in (1.2), is the change that they

undergo near the soliton. Thus, the finite size of the numerical domain T is critical

in our instability analysis, which is in stark contrast with the standard von Neumann

analysis.

In Section 5 we extended the analysis of Section 3 to higher-order split-step meth-

ods, such as (5.3).

As we noted above, the dependence of the instability increment on the parameters

of the soliton and the numerical scheme is irregular, and there is no means to pre-

dict it “quickly”, i.e., bypassing the procedure illustrated in Section 4.2. Again, this
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is in contrast with the instability analysis on a monochromatic-wave background [6]

(see [8] and Appendix 3). However, one can still obtain two general conclusions: (i)

what maximum value this increment can have and (ii) how the chances to observe

a numerical instability depend on the size T of the numerical domain. We provide

the corresponding details in the next two paragraphs for the lower-order method (1.2).

These details generalize straightforwardly for the higher-order split-step methods, con-

sidered in Section 5.

The maximum instability increment is obtained from Eqs. (3.22) and (3.25) by

setting 2F [U2](0) + i(β/γ)(JP + JM) = 0. This yields:

(
βΛR

)
max

=
1

T

(
γ
∣∣F [U2](2Ω)

∣∣)
max

=
γ

T
F [U2](0) ≡ γ

T

∫ T/2

−T/2

U2(t) dt . (6.1)

Interestingly, the last expression above is the same as an analogous expression in the

monochromatic-background case (see Eq. (A3.5) in Appendix 3), where U(t) ≡ A.

Now let us show that as the time window length T is substantially decreased, the

chances to observe numerical instability in any given simulation using (1.2) with (2.1),

also decrease5. This conclusion follows from a combination of arguments that led

to formulae (4.3) and (4.9). Indeed, recall from a discussion after Eq. (4.8) that an

instability would arise only if near the non-integer number (NP − NM)estimated, there

is an integer number (NP − NM) that would make the r.h.s. of (3.29) fit within the

interval (4.5). A sufficient condition that would guarantee that such an (NP − NM)

can be found is obtained similarly to (4.3):

4πΩestimated < 2
∣∣(γ/β)F [U2](2Ωestimated)

∣∣, (6.2)

where Ωestimated ≡ π(NP−NM)estimated/T . As follows from the discussion around (4.9),

Ωestimated = O(1/
√

εT ). Thus, as T decreases, the chances that condition (6.2) may be

satisfied, also decrease. Hence the smaller T is, the “less often” a numerical instability

of scheme (1.2) on the background of a soliton would be observed. On the other hand,

the smaller T is, the stronger the numerical instability, if it is observed, is on average;

this follows from (6.1). Both these conclusions agree with our observations in Section

2: Compare Table 1, obtained for T = 32π, with Fig. 3, obtained for T = 128π.

Finally, let us point out that the analysis of this paper can be straightforwardly

generalized to any scalar equation of the form

ut = L[u] +N [u], (6.3)

where the linear, L, and nonlinear, N , “parts” of the evolution are solved exactly

in the split-step method. However, certain other generalizations, e.g., (i) for vector

5Note the word ‘substantially’. As illustrated by Table 2 in Section 2, changing T by only a small
fraction of its value affects the occurrence of the instability in a non-monotonic and seemingly irregular
way.
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equations where the Fourier transform of L[u] is not proportional to the identity matrix,

or (ii) for the case when L[u] is solved by a finite-difference method with non-periodic

boundary conditions, require further investigation.
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Appendix 1: Derivation of Eq. (3.7)

We verified that one can derive (3.7) from (3.6) by using a Taylor series expansion of

exp[iβ(ω2−ω2
π)∆z] and (ṽn+1− ṽn) in powers of ε. However, an alternative derivation

presented below is much less tedious and, importantly, more intuitive.

Let us first note that the last equation in (1.2) is equivalent to the nonlinear

Schrödinger equation (1.1) plus a term proportional to

∆zβγ · [∂tt, |u(t, z)|2]u(t, z) + O(∆z2), (A1.1)

where [. . . , . . .] denotes a commutator. This follows from the Baker–Campbell–Hausdorff

formula; see, e.g., Sec. 2.4.1 in [1]. Next, Eq. (3.3) is a linearized version of the

last equation in (1.2). Therefore, it must be equivalent to the linearized nonlinear

Schrödinger equation plus terms of order O(β∆z∂tt) = O(βω2∆z) = O(ε2), provided

that we assume that ω ∼ ∂t = O(1), or, equivalently, that the central frequency in

expanding exp[iβω2∆z] in a Taylor series is 0.

In writing (3.4) and then (3.6), we stated that the central frequency is ωπ (or −ωπ)

rather than 0. Correspondingly, Eq. (3.6) must be equivalent to a modified linearized

nonlinear Schrödinger equation written for a small deviation ṽ, plus terms of order

O
(
β(ω2 − ω2

π)∆z
)

= O(ε) (see the text after (3.4)). Here the modification consists

in replacing the operator ∂tt, whose Fourier symbol is −ω2 ≡ −(ω2 − 02), with the

operator ∂tt +ω2
π, whose Fourier symbol is −(ω2−ω2

π). Thus, (3.6) in the time domain

is

ṽz = −iβ(ṽtt + ω2
πṽ) + iγ(u2

solṽ
∗ + 2|usol|2ṽ) + O(ε) . (A1.2)

Substituting into this equation usol from (1.8), changing the variable ṽ = w̃ exp[iKz],

and neglecting the O(ε) term, one obtains Eq. (3.7).

Appendix 2: Location of instability peaks

Here we will present an explaination of why the frequencies of unstable modes must

be near ±ωπ, ±ω2π, etc.
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Suppose we seek the instability near a pair of frequencies ±ω0; i.e., we assume that

|ω − ω0| = O(1) or |ω − (−ω0)| = O(1) . (A2.1)

Then, proceeding as explained in the text after Eq. (3.3), we obtain an equation similar

to (3.4), where the “(−1)” and ωπ on the r.h.s. are replaced with exp[iφ0] and ω0,

respectively, where

φ0 = βω2
0∆z . (A2.2)

Then (3.5) and (3.6) get replaced with

ṽn = e−iφ0n ũn , (A2.3)

F [ṽn+1] = eiβ(ω2−ω2
0)∆z F [

ṽn + iγ∆z(u2
solṽ

∗
n · e−2iφ0n + 2|usol|2ṽn)

]
, (A2.4)

where the term making the key difference between (3.6) and (A2.4) is underlined. Let

us now note that if the phase rotation per step, −2φ0, in that term would equal −2πN ,

where N is any integer, then that term would equal 1, and the subsequent analysis

would proceed as in Section 3.2 without any changes. Therefore, we can say that the

nontrivial phase rotation in (A2.4) is −(2φ0 − 2πN0), where N0 is the nearest integer

to φ0/π. For simplicity, but without loss of generality, let us assume that N0 = 1; the

case of N0 6= 1 is completely analogous. Then, Eq. (A2.4) becomes

F [ṽn+1] = eiβ(ω2−ω2
0)∆z F

[
ṽn + iγ∆z

(
u2

solṽ
∗
n e−2iβ(ω2

0−ω2
π)n∆z + 2|usol|2ṽn

)]
, (A2.5)

where in rewriting the exponential term we have used (A2.2) and (1.6).

To go from the discrete equation (A2.5) to a counterpart of the continuous equation

(3.7), we make two observations. First, n∆z = z in the second exponential term in

(A2.5). Second, and perhaps counter-intuitively: Despite the presence of this possibly

fast-oscillating exponential, Eq. (A2.5) still describes a small change for (ṽn+1 − ṽn).

This is due to the presence of the small terms iγ∆z and β(ω2−ω2
0)∆z (see (A2.1)) on

the r.h.s. of that equation. Therefore, the continuous variable ṽ(t, z) interpolating the

discrete variable in (A2.5) satisfies a counterpart of (A1.2):

ṽz = −iβ(ṽtt + ω2
0 ṽ) + iγ

(
u2

solṽ
∗ e−2iβ(ω2

0−ω2
π)z + 2|usol|2ṽ

)
+ O(ε) . (A2.6)

In analogy with the argument presented in Appendix 1, we make a change of variables

ṽ = w̃ exp
[
i(K − β(ω2

0 − ω2
π))z

]
, (A2.7)

which transforms (A2.6) into the following counterpart of (3.7):

w̃z = −iβ(w̃tt + ω2
0w̃)− i

(
K − β(ω2

0 − ω2
π)

)
w̃ + iγU2(w̃∗ + 2w̃) . (A2.8)

Then, a substitution analogous to (3.8) with ωπ being replaced by ω0 into Eq. (A2.8)

yields a system of equations that is similar to (3.9), with the only changes being the

replacements:

ωπ by ω0 and K by (K − β(ω2
0 − ω2

π)) . (A2.9)
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We now need to consider two cases: (i) β(ω2
0 − ω2

π) = O(1) and (ii) |β(ω2
0 −

ω2
π)| À 1. We will show that in the first case, the results of analysis of Eqs. (3.9) with

replacements (A2.9) reduce to those obtained in Section 3.2, and in the second case,

no instability can arise.

In case (i), ω0−ωπ = O(ε), i.e. this case differs from that considered in Section 3.2

only by a slight shift of the central frequency. Intuitively, such a shift could not change

the location of the unstable peaks which we found to be away from ωπ by an amount

of approximately Ω = O(1). Formally, this can be justified by a tedious calculation

that reveals that Eqs. (3.28), (3.29) with replacements (A2.9) yield the same Ω as the

original Eqs. (3.28), (3.29). Then, Eqs. (3.10), (3.15) with replacements (A2.9) yield

the same t-dependence of the solution of (3.8) as the original Eqs. (3.10), (3.15). Thus,

in case (i), the parameters of the instability reduce to those found in Section 3.2.

In case (ii), one cannot proceed as in case (i) by merely using replacements (A2.9)

in Eqs. (3.9). The reason is that
∣∣K − β(ω2

0 − ω2
π)

∣∣ À 1, whereas in case (i) one had(
K − β(ω2

0 − ω2
π)

)
= O(1). Indeed, in case (ii), a substitution (3.10) with Ω = O(1)

(which is our starting assumption — see (A2.1)) would not yield pslow and mslow that

would be slow functions of t; see the first term on the r.h.s. of (3.14). The only way

the large term
(
K − β(ω2

0 − ω2
π)

)
could be eliminated from the couterpart of (3.9) is

by using different z-dependences in the exponentials in (3.10):

p = pslow(τ, z) exp
[−iΩt + 2i(β/ε)Ωz + βΛz − i

(
K − β(ω2

0 − ω2
π)

)
z
]
, (A2.10a)

m = mslow(τ, z) exp
[
iΩt + 2i(β/ε)Ωz + βΛz + i

(
K − β(ω2

0 − ω2
π)

)
z
]

. (A2.10b)

(Note that the last terms in the exponents in (A2.10) essentially undo transformation

(A2.7).) In (A2.10), pslow and mslow are slow functions of t, but not of z. Substituting

(A2.10) into the counterpart of (3.9) one would obtain, instead of the z-independent

system (3.14), a z-dependent system of the form:

(pslow)z = b11(pslow)τ + b12pslow + b13 mslow e2i
(

K−β(ω2
0−ω2

π)
)

z, (A2.11a)

(mslow)z = b21(mslow)τ + b22mslow + b23 pslow e−2i
(

K−β(ω2
0−ω2

π)
)

z, (A2.11b)

where all the coefficients bij are of order O(1) and independent of z. The presence of

rapidly oscillating exponential terms in (A2.11) makes the effect of the coupling terms

negligible, and then system (A2.11) gets essentially decoupled into two independent

equations for pslow and mslow, which does not exhibit any instability. Thus, in case (ii)

numerical instability does not occur.

32



Appendix 3: Instability on the background of a

monochromatic wave

Here we will use the method presented in Section 3.2 to find the location and growth

rate of the numerically unstable Fourier modes of method (1.2) on the background

of a monochromatic wave (1.4) with Ωcw = 0. Let us note that these results can be

obtained from formulae (65), (37), and (64) of [6] by expanding them in a power series

of the step size ∆z (denoted there by τ). In such a way, the growth rate of the most

unstable mode was obtained in [8].

The starting point of our derivation is system (3.9), which holds both for the soliton

and monochromatic-wave backgrounds. In the latter case, U(t) ≡ A and K = γA2,

where without loss of generality we assume that A is real. Thus, now this system,

unlike (3.9) on the soliton background, has all constant coefficients, and hence we can

look for its solution in the form

{p, m} = {P, M} eiWεt+λz , W = O(1). (A3.1)

Note that unlike in (3.10), here the p- and m-components of the small deviation w̃

have the same t-dependence. Also, we have used the notation W , not Ω, in (A3.1),

because, unlike Ω, the variable W does not have the dimension of frequency. Rather,

εW ≡ W/ωπ has the same dimension as Ω.

Substitution of (A3.1) into (3.9) with the aforementioned values of U and K yields:

(2iβW − iγA2 + λ) P − iγA2 M = 0, (A3.2a)

−iγA2 P + (2iβW − iγA2 − λ) M = 0, (A3.2b)

where we have neglected terms O(ε2). Then the instability growth rate is

λ =
√

(γA2)2 − (2βW − γA2)2 . (A3.3)

The location of the unstable mode(s) follows from the definition of the mode’s fre-

quency, ω = ωπ− εW ≡ ωπ− (W/ωπ), and the condition that the expression under the

radical in (A3.3) is positive:

0 < βW < γA2 . (A3.4)

The maximum value of the growth rate occurs at the midpoint of this interval and is

λmax = γA2. (A3.5)

Note that the periodicity condition for p and m does not play here a critical role

in determining the instability increment, in stark contrast to the case of the soliton

background considered in Section 3.2. Namely, as follows from (3.8) and (A3.1), here

this condition simply requires that the frequency ω = ωπ − εW fall onto the frequency
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grid: ωπ − εW = 2π`/T , where ` is an integer. Thus, if the width of the instability

band is less than the frequency grid spacing:

γA2/(|β|ωπ) < 2π/T, (A3.6)

it is possible that 2π`/T may fall outside the instability band. In this case, the insta-

bility will not occur even if ∆z exceeds the threshold (1.7). This was originally pointed

out by Weideman and Herbst [6] and studied in detail by Yang in [8].

Generalization of the above derivations for the higher-order split-step methods,

considered in Section 5, is straightforward.
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List of Figure captions

1. Schematics of the numerical instability increment of method (1.2) over the

background of a monocromatic wave (1.4) as a function of frequency ω. Only the part

for ω > 0 is shown, since the graph is symmetric about ω = 0. The width of the

instability peak near ωkπ, where k = 1, 2, . . ., equals |γA2/(βωkπ)| (see Appendix 3).

Note that the case corresponding to β < 0 is shown; in the case of β > 0, the peaks

will occur on the opposite sides of ωπ and ω2π.

2. The spectrum of the solution of (1.1) and (2.1) at z = 500 with ∆z = 0.0040,

computed by method (1.2). Other parameters are listed in the text after Eq. (2.1).

3. Instability increment and unstable peaks’ half-separation at z = 2000, as a

function of the step size ∆z. The initial condition is (2.1). The numerical domain has

length T = 128π and contains 212 grid points. Note that for ∆z = 0.0040, where no

instability is found, we defined the corresponding ωright − ωleft = 0.

4. Same as in Fig. 3, but for a different interval of ∆z values.

5. “Less typical” instability spectra. Both panels are for initial condition (2.1), the

propagation distance z = 2000, and the numerical domain with T = 128π and 212 grid

points. (a) ∆z = 0.0049; similar spectra are found for ∆z = 0.0044, 0.0045, 0.00474;

(b) ∆z = 0.0050.

6. A schematics showing that in order to satisfy periodic boundary conditions,

a mode that changes its amplitude due to scattering on the soliton must be spatially

growing or decaying rather than purely oscillatory.

7. Instability increment as a function of the step size ∆z, obtained for the same

parameters as in Fig. 3a, but for methods (5.3a) (thin line and circles) and (5.3b) (thick

line and circles). The locations of the unstable peaks are the same as in Fig. 3b (see

text).
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Table 1

∆z ω
(+)
left − ωπ ωπ ω

(+)
right − ωπ Re(λ)

0.0040 -0.72 28.03 0.66 0.019

0.0048 -0.39 25.58 0.35 0.031

0.0054 -0.62 24.12 0.57 0.022

0.0055 -0.52 23.90 0.48 0.024

0.0058 -0.46 23.27 0.42 0.022

Table 1: Parameters of the unstable frequencies’ peaks when T = 32π, number

of grid points is 210, and ∆z is varied as 0.0040, 0.0041, 0.0042, . . . , 0.0060. The

notations ω
(+)
right, left are introduced in Fig. 2.
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Table 2

T ω
(+)
left − ωπ ω

(+)
right − ωπ Re(λ)

397 -0.44 0.40 0.0062

398 -0.10 0.08 0.0096

399 -1.09 1.02 0.0024

400 -0.33 0.29 0.0076

128π -0.39 0.36 0.0076

Table 2: Parameters of the unstable frequencies’ peaks when ∆z = 0.0043 (ωπ =

27.03), number of grid points is 212, and T is varied.
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