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Abstract

We obtain analytical conditions for the occurrence of numerical instability of a
split-step method (SSM) when the simulated solution of the nonlinear Schrödinger
equation is close to a plane wave with nonzero carrier frequency. We also numer-
ically study such an instability when the solution is a sequence of pulses rather
than a plane wave. The plane-wave-based analysis gives reasonable predictions
for the frequencies of the numerically unstable Fourier modes, but overestimates
the instability growth rate. The latter is found to be strongly influenced by the
randomness of the signal’s profile: the more randomly it varies during the prop-
agation, the weaker is the numerical instability. Using an example of a realistic
transmission system, we demonstrate that our single-channel results can be used
to predict occurrences of numerical instability in multi-channel simulations. We
also give an estimate for the integration step size for which numerical instabil-
ity, while present, will not affect simulation results for such systems. Using that
estimate may lead to a significant saving of computational time.
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1 Introduction

The split-step method (SSM) is widely used in numerical simulations of evolution equa-

tions in various areas of physics. In this paper, we focus on a generalized nonlinear

Schrödinger equation:

iuz − (β2/2)utt − i(β3/6)uttt + γu|u|2 = 0 . (1)

In fiber optics, u, z, and t are, respectively, the complex envelope of the electric field,

the propagation distance along the fiber, and the time in the reference frame moving

with the signal. The coefficients β2,3 are the second- and third-order group-velocity

dispersions, and γ is the nonlinear coefficient of the fiber ([1], Sec. 2.3).

The SSM solves Eq. (1) by steps which alternatively account for dispersion and

nonlinearity:

for n from 1 to nmax do:

ū(t) = un(t) exp
[
iγ|un(t)|2∆z

]
(nonlinear step)

un+1(t) =

{
solution of iuz = (β2/2)utt + i(β3/6)uttt

at z = ∆z with initial condition ū(t)
(dispersive step)

(2)

where two different implementations of the dispersive step will be discussed below. In

(2), ∆z is the step of numerical integration and un(t) ≡ u(t, n∆z).

Scheme (2) yields a numerical solution of (1) whose accuracy is O(∆z). Higher-order

schemes, yielding more accurate solutions (e.g., with accuracy O(∆z 2), O(∆z 4), etc.),

are well-known [2, 3], but here we will restrict our attention to the lowest-order scheme

(2). In fact, all the results obtained below for scheme (2) also hold for the second-order

accurate scheme ([2]; [1], Sec. 2.4); for higher-order schemes, they can be obtained in a

similar manner. Let us also note that there has been a substantial body of research on

controlling the accuracy of the SSM by judiciously choosing the step size ∆z; see, e.g.,

[4, 5] and references therein. However, below we will consider only the case of constant

∆z.

In this paper we study the numerical instability (NI) of the SSM when the simulated

solution of (1) is approximated by a moving plane wave:

upw = A exp[iΩ0t− iK0z], K0 = −(
β2Ω

2
0/2− β3Ω

3
0/6

)
, (3)

with Ω0 6= 0. This solution is a simplest model of a signal propagating with a group

velocity dK0/dΩ0 = −(β2Ω0 − β3Ω
2
0/2) relative to some, arbitrarily chosen, reference

frame. Given this arbitrariness, one could set Ω0 = 0 if the signal were the only one
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propagating. However, one typically deals with propagation of many channels, and so

Ω0 in this study will denote a carrier frequency of a particular channel.

The plane wave (3) simplifies a realistic signal in that it has a constant amplitude

and hence, strictly speaking, carries no information. A realistic signal channel consists

of a sequence of pulses. Earlier studies, pertaining to a single soliton [6, 7], indicate

that a NI of a multi-pulse solution will be different from a NI of the plane wave (3).

Nonetheless, we will demonstrate below that some of the characteristics of the NI around

a plane wave carry over to the NI around a more realistic, multi-pulse signal. We will

also exhibit differences between these two types of NI.

Let us emphasize that the issue of numerical stability of the SSM (or of any numerical

method) is not, in general, related to the issue of controlling the size of the error at one

simulation step (the local error), which has been considered in earlier studies [2]–[5].

(Although for a sufficiently small local error, the SSM is expected to be stable, below we

will exhibit a situation where this is not so. That is, in that special case, the numerical

error will exponentially grow with the propagation distance — albeit, perhaps, slowly

— for any ∆z, no matter how small.) Both smallness of the local error and stability are

required for the numerical method to produce accurate results; this is the well-known

Lax theorem which is often stated in abbreviated form as: ‘approximation plus stability

imply convergence’. In this paper we do not consider the size of the local error of the SSM,

but instead focus on the conditions of the method’s stability. In fiber optics literature,

NI of the SSM is sometimes referred to as “spurious four-wave mixing” (FWM) [8].

We will now discuss two implementations of scheme (2), which differ by their treat-

ment of the dispersive step. In most applications, it is computed by the Fourier spectral

method:

un+1(t) = F−1 [ exp[iP (ω)] F [ū(t)] ] , (4)

where

P (ω) = (β2ω
2/2− β3ω

3/6)∆z. (5)

Here F and F−1 are the discrete Fourier transform and its inverse, and ω is the discrete

frequency:

−ωmax ≤ ω ≤ ωmax, ωmax = π/∆t, (6)

where ∆t is the mesh size of the computational domain. We will refer to the SSM (2)

where the dispersive step is implemented by the spectral method (4) and (5), as the

s-SSM.

On the other hand, when β3 = 0, the dispersive step in (2) can also be efficiently
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computed by a finite-difference method:

i
um

n+1 − ūm

∆z
=

β

2

(
um+1

n+1 − 2um
n+1 + um−1

n+1

∆t 2
+

ūm+1 − 2ūm + ūm−1

∆t 2

)
, (7)

where um
n ≡ u(tm, n∆z), ū is the “intermediate” solution defined in (2), −T/2 ≤

tm < T/2, and T is the length of the computational domain. We will refer to the SSM

(2) where the dispersive step is implemented by the finite-difference method (7), as the

fd-SSM. Recently, this and similar methods have found an application in the electronic

post-processing of optical signals [9]. That post-processing must be done in real time,

and hence the speed of its implementation becomes a key factor. References [10, 11]

showed that finite-difference implementations, more sophisticated than (7) (see, e.g.,

Eqs. (13) and (22) in [10]), may yield a speed-up over the spectral implementation (5)

while retaining high accuracy. Also, let us note that the so-called discrete nonlinear

Schrödinger equation, where in (1) β3 = 0 and the second derivative is replaced by its

finite-difference approximation, similarly to (7), is of considerable interest in its own

right [12].

We assume that the simulations use periodic boundary conditions:

u(−T/2, z) = u(T/2, z). (8)

Then (7) can be written as Eq. (4) where now

P (ω) = 2arctan
[
β2r sin2(ω∆t/2)

]
, r = ∆z/∆t 2. (9)

Expressions (5) and (9) are compared in Fig. 1. It is the difference of these expressions at

high values of ω that leads to the NI of the s- and fd-SSMs being qualitatively different,

as will be shown below.

NI of both implementations, s- and fd-, of the SSM for Eq. (1) with β3 = 0 was

first studied in [13], when the simulated solution was close to the standing plane wave,

Eq. (3) with Ω0 = 0. It was shown that the s-SSM is conditionally stable for both signs

of β2, while the fd-SSM is conditionally stable for β2 > 0 and unconditionally stable for

β2 < 0. Similar results about the s-SSM have later been obtained in a number of other

studies; see, e.g., [14, 15]. Numerical stability of the plane wave solution of the SSM and

related methods has also received renewed attention very recently [16, 17].

In Section 2 we will set up the von Neumann stability analysis that applies to both

implementations of the SSM, and in Sections 3 and 4 will obtain specific conclusions for

the s- and fd-SSMs, respectively. In Section 5 we will carry out numerical simulations

with two goals in mind. First, we will simulate propagation of a strongly nonlinear
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Figure 1: Comparison of expressions (5) and (9).

single channel carrying a multi-pulse signal and exhibit both similarities and differences

between the NI of a plane wave and a multi-pulse signal. Second, we will give an example

of NI in a realistic (i.e., weakly nonlinear) fiber-optical telecommunication system and

demonstrate that the analysis of this paper has predictive power for such a system as

well. In Section 6 we will summarize our results and also outline steps that remain to

be done to fully understand NI of the SSM in realistic multi-channel systems.

2 Von Neumann analysis of the SSM on a plane-

wave background

As with studying NI of any scheme, we assume that the numerical solution un of the

SSM (2) is close to uB = A exp[iΩ0t+ iP (Ω0)n], which is the numerical approximation

of the exact (i.e., in the absence of any round-off error) background solution (3). Here

P (ω) is defined either by (5) or (9). Thus,

un = uB + ũn, |ũn| ¿ |uB|, (10)

where ũn is the small numerical error. Substituting (10) into (2) and (4) and linearizing,

one obtains:

F [ũn+1] = eiP (ω)F
[
eiγ|uB |2∆z

(
ũn + iγ∆z(u2

Bũ∗n + |uB|2ũn)
) ]

. (11)

In what follows we will assume that

Ω0 > 0 (12)
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and also that the change of the solution at the nonlinear step of (2) is small:

ε ≡ γA2∆z ¿ 1. (13)

This condition holds in all practically relevant simulations of (1).

Following [13, 6], we seek ũn in the form:

ũn = eiΩ0t+iP (Ω0)n
(
pn eiω1t + q∗n e−iω̂1t

)
. (14)

Here, unlike in the previous studies [13, 14, 15, 6], ω̂1 must account for aliasing as

follows. The frequency of the p-term in (14) is Ω0 + ω1 = ω, where we assume that

ω ∈ [−ωmax, ωmax), and hence ω1 ∈ [−ωmax − Ω0, ωmax − Ω0). To make the frequency of

the q-term fall within the computational spectrum, we define

Ω0 − ω̂1 =

{
2Ω0 − ω if 2Ω0 − ω ≤ ωmax;

2Ω0 − ω − 2ωmax if 2Ω0 − ω > ωmax.
(15)

Substituting (14) into (11) and neglecting terms of order ε2, one obtains a linear recursion

relation for the components of the error:
(

pn+1

qn+1

)
=

(
ei∆+(1 + iε) ei∆+ iε

−ei∆− iε ei∆−(1− iε)

) (
pn

qn

)
, (16)

where

∆+ = P (Ω0 + ω1)− P (Ω0), ∆− = P (Ω0 − ω̂1)− P (Ω0). (17)

The eigenvalues of this linear system are:

λ = exp

[
i
∆+ −∆−

2

] 
cos(δ + ε)

cos ε
±

√(
cos(δ + ε)

cos ε

)2

− 1


 , (18)

where

δ ≡ ∆+ + ∆−
2

=
1

2
(P (Ω0 + ω1)− 2P (Ω0) + P (Ω0 − ω̂1) ) . (19)

In deriving (18), we have neglected terms O(ε3) and hence relpaced arctan ε with ε. NI

occurs where |λ| > 1, which yields

Nπ − 2ε < δ < Nπ, N ∈ Z. (20a)

In the next section we will restrict our attention to the case when P (ω), defined by (5),

does not change its sign within the computational spectrum due to β3 6= 0. Then it

follows from (5) and (9) that the sign of δ coincides with sgn (β2). Therefore, in (20a),

N = |N | sgn (β2). (20b)
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The above derivation has followed the standard lines of [13, 15], except for a minor

technical point that those earlier studies did not explicitly use the condition (13). The

novelty of (19), (20) compared to the earlier studies is the dependence of δ on Ω0. In

the next two sections we will show what consequences this has to the s- and fd-SSMs.

Before moving on, let us note that (20a) is the condition of phase-matched FWM

among frequencies Ω0 + ω1, Ω0 − ω̂1, and Ω0:

P (Ω0 + ω1) + P (Ω0 − ω̂1)− 2P (Ω0) ≈ 2πN. (21)

It is for this reason that NI is sometimes referred to “spurious FWM” [8]. In the

continuous limit, where ∆z → 0, (5) and (9) yield P (ω) → 0, and therefore (21) can

only occur for N = 0. In that case, the instability is a real physical phenomenon known

as modulational instability, which exists only for (β2−β3Ω0) < 0 (see, e.g., [1], Sec. 5.1).

Numerical, as opposed to real, instability occurs due to ∆z 6= 0, in which case one

can have N 6= 0 in (21). The above shows that NI is just a form of modulational

instability, or, in other words, a particular case of phase-matched FWM. In Section 5

we will distinguish between NI and non-phase-matched FWM and refer to the latter as

just FWM.

3 Instability of the s-SSM

For the sake of clarity, we will first consider the case β3 = 0 and later on will return to

the more general case β3 6= 0.

Substituting (5) and (15) into (19), one finds:

δ =





β2∆z(ω − Ω0)
2/2 ≡ δmain if ω ∈ (−ωmax + 2Ω0, ωmax);

δali, min + β2∆z(ω − Ω0 + ωmax)
2/2 ≡ δali if ω ∈ [−ωmax,−ωmax + 2Ω0],

(22)

where

δali, min = sgn (β2)π
∆z

∆zthr

(1− a2), a =
Ω0

ωmax − Ω0

, (23)

∆zthr = 2π/
(|β2|(ωmax − Ω0)

2
)
. (24)

We will refer to the first and second frequency intervals in (22) as the “main” and

“aliased” intervals, respectively; see Fig. 2(a). The aliased interval contains aliased

frequencies, while the main one does not. Sample plots of δ(ω) are shown in Fig. 2(b)
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for β2 > 0; for β2 < 0, they are flipped about the horizontal axis. For a reason discussed

later in this section, here we will only consider

Ω0 < 0.5ωmax. (25)
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Figure 2: (a) Growth rate of unstable modes for ∆z = 1.25∆zthr and Ω0 = ωmax/3:

β2/2 = 1 (solid red), β2/2 = −1 (dashed black); modulationally unstable modes are

shown by dotted black line. (b) δ(ω) for ∆z = 1.25∆zthr, β2/2 = 1, β3 = 0, and two val-

ues of Ω0; other notations are explained in the text. (c) Similar to (b) with Ω0 = ωmax/3,

but for β3 = ±0.4β2/ωmax. Note that δ(ω) is discontinuous. [NOTES FOR

PRODUCTION EDITORS: 1) PLEASE PLACE ALL THREE FIGURES IN

ONE ROW (THEY WILL OCCUPY THE WIDTH OF TWO COLUMNS).

2) COLOR ONLINE ONLY.]

The bands of numerically unstable modes are found from (20) and (22). Their centers

are given by:

ωNπ, main = Ω0 ±
√
|N |π − sgn (β2)ε

|β2|∆z/2
, (26a)

ωNπ, ali = −ωmax + Ω0 ±
√
|N |π − sgn (β2)(δali, min + ε)

|β2|∆z/2
, (26b)

which exist when the computational step ∆z satisfies:

∆z >
|N |∆zthr

1 + sgn (β2)γA2∆zthr/π
, (27a)

|N |∆zthr

1 + sgn (β2)γA2∆zthr/π
< ∆z <

|N |∆zthr

1− a2 + sgn (β2)γA2∆zthr/π
, (27b)
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respectively. Here ∆zthr and a have been defined in (24) and (23). An example of the

growth rate of these unstable modes, computed as (|λ| − 1)/∆z when |λ| > 1, where λ

is given by (18), is shown in Fig. 2(a). At the maxima, all these peaks equal γA2, as in

the Ω0 = 0 case [15]. Examples of expressions (26) are shown in Fig. 3(a) for β2 > 0;

for β2 < 0, they are very close, as the example shown in Fig. 2(a) illustrates.
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Figure 3: (a) Centers of the instability bands, given by (26), for Ω0/ωmax = 0.2 (blue,

circle), 0.3 (red, square), and 0.4 (black). Note that ∆zthr depend on Ω0. Thin and

thick lines are for N = 1 and N = 2, respectively. Solid and dashed lines are for the

instability peaks in the main and aliased intervals, respectively. (b) Ratios of the widths

of the same instability bands as in (a). (c) Centers of the instability bands, given by

(35), for Ω0/ωmax = 0.3 and β3ωmax/β2 = −0.4 (red) and 0.4 (blue). Line thicknesses

and styles denote the same as in (a). The pointing arrows emphasize that the curves

are discontinuous at ω = −ωmax + 2Ω0. [NOTES FOR PRODUCTION

EDITORS: 1) PLEASE PLACE ALL THREE FIGURES IN ONE ROW

(THEY WILL OCCUPY THE WIDTH OF TWO COLUMNS). 2) COLOR

ONLINE ONLY.]

If one neglects the ε-term, which is a good approximation in most applications, then

Eqs. (26) become:

ωNπ, main ≈ Ω0

[
1± 1

a

√
|N |∆zthr/∆z

]
, (28a)

ωNπ, ali ≈ −(ωmax − Ω0)
[
1±

√
|N |∆zthr/∆z − (1− a2)

]
, (28b)

where we have used (23) and (24). These equations will turn out to be more conve-

nient to use than (26) in Section 5, where we will study dependence of NI on the ratio

∆z/∆zthr. Moreover, Eqs. (28) make it apparent that had we included losses and am-

plification in our model (1), they would not have affected the locations of the NI bands.
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Rather, they would have affected their widths (see below) and the instability growth

rate.

The widths WNπ of the NI bands centered at frequencies (26) can be computed from

the condition δ(ωNπ ±WNπ/2) = (Nπ − ε)± ε (see (20)):

WNπ,main ≈ 2ε/
(|β2|∆z (ωNπ, main − Ω0)

)
, N 6= 0; (29a)

WNπ,ali ≈ 2ε/
(|β2|∆z (ωNπ, ali − (−ωmax + Ω0))

)
. (29b)

The ratio of these widths is shown in Fig. 3(b). In absolute terms, in most cases these

widths are rather small so that they accommodate only few nodes of the spectral grid.

The case N = 0, explicitly excluded in (29a), corresponds not to a NI, but to the

well-known modulational instability, as we noted after (21).

Let us now note that a numerical instability corresponding to N = 0 in (20) will

always, i.e., for any step ∆z, occur when condition (25) is violated, i.e. when Ω0 >

0.5ωmax. This follows from expressions (22) and (23) with a > 1. In terms of the

situation depicted in Fig. 2(b), this occurs because the curve δali(ω) always crosses zero

when Ω0 > 0.5ωmax; hence the instability condition (20) with N = 0 will hold in this

case. If one denotes Ω0 = 0.5ωmax(1 + µ), where 0 < µ < 1, then using the same

approximation as for (28), one finds spectral locations of this NI:

ω±Ω0>0.5ωmax
= −0.5ωmax(1− µ± 2

√
µ). (30)

Note that they do not depend on either ∆z or β2, but depend only on Ω0 and ωmax.

It is for the reason of avoiding this unconditional NI that we have only considered

Ω0 < 0.5ωmax except in the last examples in Sections 5A and 5B. On the other hand,

if one allows Ω0 > 0.5ωmax, then one can also have additional occurrences of NI for

∆z < ∆zthr when δali, min = 2πL, with L being a nonzero integer. For example, it follows

from (23) that for ∆z = 0.8∆zthr, a new instance of NI will occur at −(ωmax − Ω0) for

Ω0 = 0.6ωmax. Indeed, π × 0.8× [1− (0.6/(1− 0.6))2] = −2π.

To see how the account for third-order dispersion, β3, modifies these results, we

first note that in most fiber-optical simulations, this term is only a correction to the

second-order dispersion term. For example, it is reasonable to assume that the change

of the group-velocity dispersion introduced by the β3-term does not exceed 50% of the

group-velocity dispersion at the central frequency, ω = 0, of the simulation domain.

This requirement yields:

β3ωmax < 0.5β2, (31)

which we will assume in what follows. Most importantly, this requirement means that

the group-velocity dispersion will not change its sign anywhere in the computational

10



domain. Violation of this requirement does not affect the expression in (32) below but

makes subsequent formulae more complicated.

The counterpart of Eqs. (22) is:

δ =





(β2 − β3Ω0) ∆z(ω − Ω0)
2/2 if ω ∈ (−ωmax + 2Ω0, ωmax);

δali, min + (β2 + β3(ωmax − Ω0)) ∆z(ω − Ω0 + ωmax)
2/2 if ω ∈ [−ωmax,−ωmax + 2Ω0],

(32)

where now

δali, min = sgn (β2)π
∆z

∆zthr

(
1− a2 +

β3ωmax

3β2

(1− a + a2)

)
, (33)

and ∆zthr is still given by (24). Typical plots of (32) are shown in Fig. 2(c). Note that

δ is discontinuous at ω = −ωmax + 2Ω0, with the magnitude of the jump being:

δjump = β3∆z ω3
max/6. (34)

The counterparts of (26) and (27) are, respectively, (35) and (36) below:

ωNπ, main = Ω0 ±
√
|N |π − sgn (β2)ε

|β2 − β3Ω0|∆z/2
, (35a)

ωNπ, ali = −ωmax + Ω0 ±
√
|N |π − sgn (β2)(δali, min + ε)

|β2 + β3(ωmax − Ω0)|∆z/2
; (35b)

∆z >
|N |∆zthr

1− β3Ω0/β2 + sgn (β2)γA2∆zthr/π
, (36a)

|N |∆zthr

1− (β3/β2)(Ω0 − ωmax(1 + a)2/3) + sgn (β2)γA2∆zthr/π
<

∆z <
|N |∆zthr

1− a2 + (β3/β2)ωmax(1− a + a2)/3 + sgn (β2)γA2∆zthr/π
, (36b)

where δali, min is given by (33). The centers of the NI bands, given by (35), are shown

in Fig. 3(c). Counterpart equations of (29) are not explicitly shown here; qualitatively,

they are similar to those shown in Fig. 3(b).

4 Instability of the fd-SSM

Recall that in this section, we work with the case β3 = 0. We will begin by finding an

upper bound, ωthr, for Ω0, such that for Ω0 > ωthr, the fd-SSM will not be expected

to provide even a qualitatively correct solution. The existence of such a bound is clear
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from Fig. 1, because for ω > ωthr, the phase P (ω), as computed by the finite-difference

method (7), changes its concavity. For ω > ωthr, it no longer captures even the sign of

the group-velocity dispersion. Thus, we will restrict our consideration only to Ω0 < ωthr

(recall (12)).

The condition P ′′(ωthr) = 0, which defines ωthr, yields the following equation:

x3 − x + 2 = 4x/(β2r)
2, x = cos(ωthr∆t). (37)

To obtain its solution in a useful form, one requires an assumption on the size of (β2r),

which we will now discuss. It is known from [13] that for β2 > 0 and Ω0 = 0, the fd-SSM

is stable when ∆z is below a threshold value that is on the order of ∆t/
√
|β2|γA2 (its

exact expression will be given later). (For β2 < 0, the fd-SSM is unconditionally stable

on the background of a plane wave with Ω0 = 0; for the stability on the background of

a soliton, one also requires ∆z < O(∆t/
√
|β2|γA2) [7].) Moreover, the fd-SSM may be

a viable alternative to the s-SSM only if it is time-efficient, which requires that ∆z scale

in proportion to ∆t rather than to ∆t2. All these considerations suggest that a practical

range for ∆z is O(∆t/
√
|β2|γA2). Then |β2|r = ∆z/∆t2 is large:

|β2|r = O(1/(γA2∆z)) ≡ 1/ε À 1. (38)

Under condition (38), a physically relevant solution of (37), x ≈ 1 − 2/(
√

3β2r), is

found by a standard asymptotic method (see, e.g., [18]), which yields:

ωthr ≈ 2/(31/4
√
|β2|∆z). (39)

One can also verify that for |β2|r > 4, P ′′(ω) is within 10% of its nominal value of β2∆z

for |ω| ≤ 0.5ωthr. Therefore, in what follows we will restrict our consideration to the

case

Ω0 ≤ 0.5ωthr. (40)

Then (40), (39), and (38) imply that Ω0 ¿ ωmax (= O(∆t−1)). At the end of this section

we will illustrate what happens if the condition Ω0 < ωthr is violated.

Now, from the expression for P (ω) (see (9) and Fig. 1) it follows that the instability

condition for the fd-SSM can be satisfied only for N = ±1 or N = 0, and this can

only occur either for |ω| ≈ ωmax or for ω ≈ Ω0, respectively. (This can be confirmed by

plotting the entire graph of δ(ω), which looks qualitatively similar to the graph of P (ω)

and hence is not shown here.) Later on we will demonstrate that in the the latter case,

a NI cannot occur as long as condition (40) is satisfied. Therefore, for now we focus on

the former case, i.e. when |ω| ≈ ωmax.

12



In this case, the argument of arctangent in (9) is a large number (see (38)), which

allows one to use Taylor expansion of that function. In that manner, it is possible

to obtain asymptotic expressions for δmain and δali. However, for finding an instability

threshold, it sufficies to obtain the expressions for max |δmain| and max |δali|, which occur

at ωmax and −ωmax + Ω0, respectively. It turns out that up to terms O((β2r)
−2), these

expressions coincide and are given by:

max |δ| = π − 2/(|β2|r)− 2arctan
(
(Ω0/ωthr)

2/
√

3
)
. (41)

Here we have used sin2(Ω0∆t/2) ≈ (Ω0∆t/2)2, based on (40) and (39). Also, the sign

of δ coincides with that of β2. Using this information and condition (20), one concludes

that NI can occur only when β2 > 0 for N = 1, provided that

2/(β2r) + 2arctan
(
(Ω0/ωthr)

2/
√

3
)

< 2ε. (42)

This condition can be satisfied only for a sufficiently small Ω0/ωthr, whereby one can

replace the arctangent in (42) by its argument. Then the stability condition of the

fd-SSM becomes:

∆z < ∆t/
√

β2γA2 − (β2Ω0/2)2 (43a)

for

Ω2
0 < 4γA2/β2. (43b)

For Ω0 = 0, (43a) reduces to the stability condition obtained in [13]. When Ω0 exceeds

the bound given by (43b), the fd-SSM on the background of a moving plane wave is

unconditionally stable. Note again that (42) and (43) pertain to the case β2 > 0. For

β2 < 0, no NI can occur for any Ω0, which follows from (20) and (41).

Let us now discuss how the instability condition (20) can be satisfied for N = 0.

As mentioned earlier, this requires ω ≈ Ω0, in which case one can Taylor-expand the

expression for P (ω) around ω = Ω0. Substituting the result into (20) with N = 0, one

finds:

−2ε < P ′′(Ω0)(ω − Ω0)
2/2 < 0. (44)

As long as P ′′(Ω0) is close to its nominal value of β2∆z, which is guaranteed by condition

(40), condition (44) yields the familiar condition for the occurrence of modulational

instability, already mentioned in Section 3:

0 < (ω − Ω0)
2 < 2γA2/(−β2), (45)

which, of course, is only possible for β2 < 0. This is a real physical instability, and not a

numerical one. However, when Ω0 exceeds ωthr, then P ′′(Ω0) and β2 will have opposite
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signs. Then, if one simulates a plane wave (3) with Ω0 > ωthr using the fd-SSM, one

will obtain physically meaningless results. In particular, one will not have modulational

instability for β2 < 0, but will have it for β2 > 0.

The results of this section suggest that in simulating signals with nonzero frequency

by the fd-SSM, the restrictions on the step size ∆z must be imposed based not on

stability, but on the bounds (39), (40), which have come from numerical accuracy con-

siderations. Indeed, let us suppose that z, t, and u in (1) are normalized so that |β2| = 1,

γ = 1, A = 1, and let us take ∆t = 0.02 in (7). This discretization then has temporal

accuracy of O(∆t2) ∼ 10−4–10−3, which is quite sufficient for most fiber-optical simula-

tions. The stability condition (43a) implies that ∆z may be chosen to be about ∆t or

even greater, depending on Ω0. So, let us take ∆z = ∆t = 0.02. Then (39) and (40) dic-

tate that Ω0 not exceed a value of about 5, which is less than 4% of ωmax = π/∆t ∼ 150.

The only way to increase the allowed Ω0 is to increase ωthr, which can only be achieved

with smaller ∆z, where no NI will be observed.

5 Numerical simulations for the s-SSM

Simulations by s- and fd-SSMs of the plane wave (3) perturbed by a small noise confirm

all of the above results. However, these results may become of interest to applications

only if they shed some light on the instability of the SSM for a signal which, unlike

the solution (3) with constant amplitude and phase, carries information. In this section

we consider two types of such signals. First, in Section 5A, we will consider a single

channel carrying a sequence of pulses with either regularly or randomly arranged phases.

The power of these pulses is sufficiently high, so that the characteristic nonlinear and

dispersive lengths are of the same order of magnitude. Such a channel is much more

nonlinear than those occurring in fiber-optical telecommunications. In fact, the nonlin-

earity is strong enough to make NI develop from noise. Our purpose of considering such

a strongly nonlinear system is to find out how the results of the above plane-wave-based

analysis change with the signal format.

Second, in Section 5B, we will consider examples of NI occurring in a realistic, multi-

channel telecommunication system. Since such a system is weakly nonlinear, NI gener-

ated by a single channel and seeded by noise is too weak to produce any noticeable effect.

However, if NI is seeded by another channel or FWM tone, its effect becomes observable.

While a careful consideration of NI in multi-channel systems requires a separate study,

one can still use results of the analysis in this paper to predict when NI may become

detrimental, and hence should be avoided, in realistic telecommunication systems.
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For the reason explained at the end of Section 4, we will discuss only the s-SSM.

A. Strongly nonlinear single-channel system

We will consider sequences of pulses with discrete phases. Phase-encoded return-to-

zero signals have this form, although they have a much smaller power than considered

here. The parameters in (1) in our simulations were: β2 = 1 or −1, and γ = 1; the

computational domain was T = 200, and the number of grid points was 4096. (So many

points were needed not for numerical accuracy, but to guarantee that the computational

spectrum amply accommodates the signal’s spectrum; see a typical example in Fig. 4(b).)

As for the input signal, we have considered a sequence of sech-shaped pulses:

u(t, 0) = eiΩ0t

Npulse∑
j=1

sech
[
t + (Npulse + 1− 2j)Tbit/2

] × ei ϕj + ξ(t), (46)

where Npulse is the number of pulses, Tbit = T/Npulse is the interpulse separation, and we

will comment on the phases ϕj in the next paragraph. Also, ξ(t) is a Gaussian random

process with zero mean and the standard deviation of 10−3. As we announced in the

preamble, this noise will seed NI. When β2 = −1 and β3 = 0, each pulse in (46) is a

soliton. We ran all the simulations up to zmax = 40. For Npulse > 28, pulses are less

than four full widths apart, which causes significant interpulse interaction; therefore, we

used Npulse ≤ 28.

For the phases ϕj in (46), we have considered two models. In the first model, ϕj =

j π/2. When β2 = −1, this choice minimizes the interaction between adjacent solitons,

so that the signal profile (46) is almost unchanged at z = zmax. For β2 = 1, the pulses

are not solitons and hence undergo dispersive broadening and interact with each other,

but the profile u(t, z) still remains regular (although changing with z). In the second

model, ϕj = 2πχj/M , where χj is a random integer between 0 and M − 1. This choice

presents a very simple model for a signal format where the information is encoded in

M phase levels. We have considered the cases M = 2 and M = 8. When β2 = −1,

interaction of some of the neighboring solitons in this model leads to their (quasi)periodic

coalescnece and splitting during the propagation. Thus, the signal power profile acquires

some randomness (more so for M = 8 than for M = 2), although most of the solitons still

retain their individuality at z = zmax. On the other hand, when β2 = 1, the spreading

non-solitonic pulses create a power profile which at each z appears as random. This

distinction between the degree of randomness in the profiles for β2 = −1 and β2 = 1 will

be referenced below.
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Our main results in regards to the NI of signal (46) can be summarized as follows.

First, we have verified that the frequencies of the NI bands are predicted by expressions

(26a) in the main frequency interval (see Figs. 2 and 3) within 2% of ωmax. Locations

of the bands vary with the phase model, Npulse, and ∆z; this is in qualitative agreement

with the results of [6] for the NI of a single soliton. Also, different realizations of the

seed noise ξ(t) may result in substantially different amplitude of the unstable modes

at zmax. In the aliased interval, the accuracy of the prediction by (26b) is less, and it

decreases as one approaches the tip of a “sideways parabola” in Fig. 3(a) and 3(c). An

example is shown in Fig. 4(a) for: Ω0 = ωmax/3, β2 = 1, β3 = 0, and the first phase

model with Npulse = 27. For the opposite sign of β2 and for a different signal phase

model, the results are qualitatively similar. In regards to the results shown in Fig. 4(a),

we note that for some ∆z, we did not observe any NI. This possibility was pointed out

in [13] and occurs simply because the width of the NI band may be smaller than the

grid spacing ∆ω. Just slightly (by 0.1%) changing ∆z brought the instability back [6],

and then it was reported in the figure.
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Figure 4: (a) Frequencies of the unstable modes in the aliased frequency interval (see

Fig. 2): solid line — computed from (26b); circles — obtained numerically as explained

in the text. Several circles for the same value of ∆z indicate that for this ∆z, multiple

isolated unstable modes are observed, as illustrated in the next panel. (b) Spectrum

of the numerically computed solution for ∆z = 1.25∆zthr, showing multiple unstable

modes in the aliased frequency interval. The vertical dashed line separates the aliased

and main frequency intervals. [NOTES FOR PRODUCTION EDITORS:
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Our second main result concerns the growth rate of NI. First of all, it is considerably
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lower than the value γA2 predicted in Section 3. Second, it strongly depends on the

temporal profile of the signal. Specifically, the more regular the signal’s profile, the

stronger the NI. For example, for the first phase model, the unstable modes grow at

zmax = 40 to be, on average, about an order of magnitude greater for β2 = −1 (well

separated, almost non-interacting solitons) than for β2 = 1 (strongly overlapping pulses,

though still preserving a regular pattern). Similarly, for β2 = −1, the instability is

stronger for the first phase model, where pulses maintain a regular pattern, than for

the second one, where pulse phases are random. In particular, the increased phase

randomness for M = 8 results in the NI being weaker for that case than for M = 2.

Finally, for β2 = 1 and the second (i.e., random) phase model with either M = 2

or M = 8, where the signal’s profile appears as random at z > 0, we did not see

any substantial growth of numerically unstable modes at z = 40 for any ∆z up to

∆z = 3∆zthr.

These results about the NI of a spatially-varying solution being considerably weaker

than that of a plane wave, are in qualitative agreement with similar results on the

background of a single soliton [6]. However, a detailed study of the dependence of the

instability growth rate on the signal profile is an open problem.

Finally, we have verified the prediction made in Section 3 that for Ω0 > 0.5ωmax, the

s-SSM is unconditionally (i.e., for any step size ∆z) unstable. For the first phase model,

spectral location of the NI bands as functions of Ω0/ωmax (not ∆z/∆zthr; see (30) and

a note after it) and the spectrum of the numerical solution look qualitatively similar to

those shown in Fig. 4. For β2 = 1 and the second phase model, this instability is also

too weak to be observed at z = 40, but it is observed at longer propagation distances.

B. Weakly nonlinear multi-channel system

As we announced in the preamble to this section, in weakly nonlinear systems, which

occur in fiber-optical communications, a NI seeded by noise would be too weak to affect

simulation results. However, if the spectral locations of NI bands created by channel

X coincide with those of channels Y and Z and/or of FWM tones, then the NI may

indeed affect the simulated signal’s quality. The following two facts imply that such

coincidences may generically occur in simulations of multi-channel systems with uniform

channel spacing.

Fact 1: If for some ∆z, a NI band created by channel X in the main frequency

interval “hits” channel Y, then, reciprocally, a main-interval NI band of channel Y hits

channel X. This is schematically illustrated in Fig. 5(a) and is easily derived from (28a)
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and (24); the corresponding ∆z(X,Y ) is given by:

∆z(X,Y ) = ∆zthr, 0 (ωmax/(Ω0,X − Ω0,Y ))2, (47)

where

∆zthr, 0 = 2π/(|β2|ω2
max) (48)

is the threshold for Ω0 = 0 and Ω0,{X,Y } are the frequencies of channels X, Y. Here

and below we have set |N | defined in (20) equal to one; for |N | 6= 1 a generalization

is straightforward. Note that since the right-hand side of (47) is determined by the

frequency separation |Ω0,X − Ω0,Y |, then the same “connection” that occurs between

channels X and Y at ∆z = ∆z(X,Y ) will also occur between any pair of channels X′ and

Y′ as long as |Ω0,X′ − Ω0,Y ′| = |Ω0,X − Ω0,Y |.
Fact 2: If one of the main-interval NI bands created by channel X hits channel Y,

then the other such band hits a FWM tone of these channels; see Fig. 5(a). This follows

from (28a).

We carry out simulations for a 10-Gb/s terrestrial dispersion-managed-soliton-based

system described in [21, 22]; a full description of simulation parameters is given in

[23]. We restrict our attention to the case of path-average dispersion equal to 0.36

ps/nm/km, 50%-duty cycle pulses, and seven 50-GHz spaced channels, located at 150,

100, . . . , -150 GHz, with the frequency of channel 1 being 150 GHz. Postcompensation

for all channels is set to 0 ps/nm/km, which is at or near optimum. The computational

spectrum extends from -320 to 320 GHz. The dispersion in this system alternates sign

between the span (Dspan ≈ 5.8 ps/nm/km) and the dispersion-compensating module

(DCM; DDCM ≈ −132 ps/nm/km). Unless the ratio ∆zspan/∆zDCM is chosen to equal

|DDCM/Dspan| (see (24)), NI in the span and DCM will occur at different frequencies.

(Note that path-average dispersion plays no role in setting a NI; it is only the local

dispersion that does.) For simplicity, we set ∆zDCM below the instability threshold, so

that NI may occur only in the span. Thus, in what follows ∆z ≡ ∆zspan.

To illustrate how NI can affect this system, we chose to vary ∆z near a value ∆z(1,4)

(see (47)), where NI created by channel 1 hits channel 4 (at 0 GHz). According to Fact

2 above, the NI will simultaneously hit the FWM tone at 300 GHz. According to Fact

1, similar “interaction” will also exist within pairs (2,5), (3,6), and (4,7) of the channels.

Note that the effect of NI is expected to be the strongest for channel 4, because both its

NI bands hit channels (1 and 7), whereas one of the NI bands of any other channel will

hit a FWM tone, which has a lower power than a channel.

In addition to this NI, there may also occur NI involving modes from the aliased

frequency interval. However, in general, there is no guarantee that if one aliased NI
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band hits a channel then the other band will hit another channel or a FWM tone, and

the situation must be examined on a case-by-case basis by analyzing plots like the one

in Fig. 3(a). For the case at hand, (28b) predicts that for ∆z ≈ 1.09∆z(1,4), the inner

band of aliased NI hits channel 5 (at -50 GHz). The outer band is then at -290 GHz,

which is close to the FWM tone at -300 GHz. Thus, an aliased NI can develop at this

or nearby value of ∆z.

To verify the above predictions, we varied ∆z in the interval [0.90∆z(1,4) . . . 1.26∆z(1,4)]

and recorded the eye closure (EC) of the channels. For each ∆z, we ran simulations for

ten different interchannel bit delays. The EC values we report below are the aver-

age ones over these ten simulations. In Fig. 6 we plot the results as max(EC1, EC7),

max(EC2, EC6), max(EC3, EC5), EC4, where the subscript denotes the channel’s num-

ber. The channels are paired up according to their symmetry relative to ω = 0; the max-

imum EC is a relevant metric of system performance. As a benchmark, we also measured

ECs for ∆z < ∆zthr, 0, and they are practically the same as those for ∆z = 0.9∆z(1,4).
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We will now discuss the main points conveyed by Fig. 6.

Near ∆z = ∆z(1,4), NI causes a substantial increase of EC of all channels. This

is consistent with Fact 1, whereby all channel pairs with |Ω0,X − Ω0,Y | = 2π|150 − 0|
GHz are affected. Channels 1, 4, 7 are affected the most, as we have explained three

paragraphs above. The other substantial increase of EC occurs near ∆z = 1.18∆z(1,4),

with the affected channel pairs being (1,5) and (3,7). We believe that if the reason behind

this spike of EC is the single-channel-generated NI studied in this work, then it must be

the NI with |N | = 2 in Eqs. (20) and (26a). Indeed, using (46), one has 1.18∆z(1,4) =

2.1∆z(1,5) ≈ 2∆z(1,5). Other supporting evidence for this conclusion came from our

extensive experimentation with removing (i.e., filtering out) various combinations of

channels and/or FWM tones as well as by increasing the width of the spectral domain

so as to avoid aliased NI. Although this has led us to believe that the origin of the

spike at ∆z = 1.18∆z(1,4) is as stated above, we point out two issues about it which at

the moment remain not understood. First, it is unclear why the spike did not occur at

1.12∆z(1,4), which value equals 2∆z(1,5) almost exactly rather than within 5%. Second,

we verified that if one keeps only channels 1, 3, 5, 7, the spike in EC is almost the same

as with all the channels being present. However, removing any one channel from that

group (e.g., keeping only 1, 3, and 5) eliminates the spike completely. This is strange,

because channels 1 and 5 should still interact via NI, whereas channels 3 and 7 seem

to have no effect on that interaction. These open issues may only be resolved after

one analyzes the possibility that this spike is due to a NI generated by more than one

channel, which we did not study here.

We also note that near ∆z = 1.09∆z(1,4), where, according to (28b), one can expect

an aliased NI band created by channel 1 to hit channel 5 and the FWM tone near -

300 GHz, we see no significant change in EC values. The reason for that is unclear.

Nevertheless, one can conclude from this and previous observations (see the data in

Fig. 6 for channels 2, 3, 5, 6 at ∆z = ∆z(1,4)) that when a NI hits a channel and a

FWM tone, that affects the simulated signal’s quality much less than when it hits two

channels.

Reasoning along the same lines, one may expect that when a NI hits two FWM

tones, it is even weaker than when it hits a FWM tone and a channel. To verify that,

we considered situations where the main-interval NI bands of channel 4 (at 0 GHz) hit

FWM tones at ±200, ±250, or ±300 GHz. The corresponding values of ∆z are found

from (47) to be: 2.56∆zthr, 0 ≡ ∆z(1,5), 1.64∆zthr, 0 ≡ ∆z(1,6), and 1.14∆zthr, 0 ≡ ∆z(1,7).

We have observed almost no variation (no more than 0.01 dB) in any channel’s EC when

∆z was varied near the latter two values. When it was varied within 10% of the first
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value, the EC of channel 4 was almost not affected, while the ECs of all other channels

fluctuated by up to 0.2 dB. This is consistent with the observation made in the previous

paragraph about the effect of a NI that hits a channel and a FWM tone; note that in

this case, e.g., the NI created by channel 2 hits channel 6 and the FWM tone at 300

GHz, etc.

Thus, if a NI hits two FWM tones, it does not affect the quality of the simulated

signal, and when it hits a channel and a FWM tone, it affects the signal quality by only

a small fraction of a dB. Therefore, in simulation of realistic transmission systems, ∆z

may be taken so large that the NI of the most numerically unstable (i.e., central) channel

hits frequencies between an edge channel and the first FWM tone, and this should not

considerably affect simulation results. Quantitatively, this yields:

∆z ≈ ∆zthr, 0

(
ωmax/(Ω0, edge + 0.5∆chΩ)

)2
, (49a)

where Ω0, edge is the frequency of the edge channel and ∆chΩ is the interchannel spacing.

Alternatively, one can use

∆z ≤ ∆zthr, 0

(
ωmax/(Ω0, edge + 1.5∆chΩ)

)2
, (49b)

which guarantees that NI will occur sufficiently beyond the first FWM tone and hence

will not affect the signal.

To conclude this section, we will investigate whether the unconditional (i.e., indepen-

dent of ∆z) NI (UNI) which occurs when Ω0 > 0.5ωmax could be strong enough to affect

simulations of realistic transmission systems. Before proceeding, we state the following.
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Fact 3: If the inner (i.e. closer to ω = 0) UNI band created by channel X hits

channel Y, then the other band hits the aliased FWM tone of these channels. This is

illustrated in Fig. 5(b) and follows from (30) and the expression for the frequency of

the aliased FWM tone: ω = 2Ω0,X − Ω0,Y − 2ωmax. Thus, such a UNI will involve two

channels and one (aliased) FWM tone.

First, we performed a proof-of-principle simulation where we shifted all seven chan-

nels towards positive ω by the same amount while keeping ∆chΩ fixed. We indeed

observed that when the UNI of channel 1 hit either channel 7 or 6 (according to formula

(30)), the EC of channel 1 increased by more than 1 dB and by 0.3 dB, respectively.

Somewhat surprisingly, EC7 and EC6 were not noticeably affected.

However, a setup described in the previous paragraph does not typically occur in

simulations. A more practical situation is where the spectrum is symmetric with respect

to ω = 0, but ∆chΩ may be chosen so that Ω0, edge > 0.5ωmax. In Fig. 7 we report the

corresponding results where we have varied ∆chΩ/(2π) between 50 and 56 GHz. The

condition Ω0, edge = 0.5ωmax occurs for ∆chΩ/(2π) = 53.7 GHz, whereas the UNI of

channel 1 hits channel 6 (according to formula (30)) for ∆chΩ/(2π) = 54.5 GHz; the

same applies to the channel pair (7,2). (The location of the UNI bands changes very

rapidly with ∆chΩ due to the square-root dependence in (30).) Let us emphasize that

the strong increase of the EC of the edge channels seen in Fig. 7 is caused not by the

UNI but rather by the perfectly phase-matched aliased FWM between channels 1 and

7. A sign of the UNI is only a modest increase of the EC of channels 2 and 6. Let us

also note that another modest increase in EC observed near ∆chΩ/(2π) = 58 GHz may

be attributed both to the UNI of channel 1 (7) hitting channel 5 (3) and to the aliased

FWM tones of channels 1 and 7 hitting channels 2 and 6. Thus, we conclude that while

the UNI does indeed affect the simulated signal quality, such an effect may be masked

by a possibly stronger effect of aliased FWM.

6 Conclusions

We have studied the occurrence of NI in the popular split-step method (SSM), which

is commonly used to simulate the nonlinear Schrödinger equation. We considered both

the spectral and a finite-difference version of the SSM. Analysis was done for a single

plane wave (3) with a nonzero frequency Ω0. Simulations were carried out not only for

this solution, but — for the s-SSM — also for a single channel propagating multiple

pulses with different phase modulation profiles, as well as for a realistic multi-channel

communication system. Below we compare results of the analysis and simulations for
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fluctuation outside the vertical limits of the figure is approximately 6 dB. [NOTE

FOR PRODUCTION EDITORS: COLOR ONLINE ONLY.]

the s-SSM and at the end state conclusions for the fd-SSM.

First, analytical formulae for the step size’s threshold, (27a) or (36a), and spectral

locations of the NI bands in the main frequency interval, (26a) or (35a), turn out to

be accurate for a realistic, multi-pulse, signal. Note that having Ω0 6= 0 raises the NI

threshold compared to the case Ω0 = 0. The NI threshold and bands’ locations are

only slightly affected by the nonlinearity, and hence the presence of loss and gain, in the

system; see the sentence after (28). On the other hand, in the aliased frequency intervals,

NI of a multi-pulse signal may occur at locations different from those predicted by the

plane-wave-based analysis; a typical situation is shown in Fig. 4. This difference is small

near the wide part of the parabola, but increases towards its tip.

Second, growth rate of NI is considerably smaller for a multi-pulse signal than for

a plane wave. This, perhaps, has been known before, but not widely quoted; the only

reference known to us where a related result for a single soliton was stated is our own

work [6]. Moreover, NI is much stronger on the background of a signal that preserves (or

regularly changes) its shape during the propagation rather than a signal that changes

shape (pseudo) randomly. Practically important examples of the latter kind of signal

are highly dispersed pulses, which are used in modern transmission systems, especially
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after the advent of electronic dispersion compensation. A theoretical explanation of the

dependence of the NI growth rate on the shape of the signal remains an open problem.

Third, a NI created by a channel in a realistic multi-channel transmission systems is

too weak to affect the signal unless at least one NI band hits another channel and the

other band hits either a channel or a FWM tone. This situation may generically occur

with NI bands in the main frequency interval, as defined in Section 3. The NI in the

aliased interval may only hit a channel and a FWM tone, and such an occurrence can

be analyzed on a case-by-case basis using a plot as in Fig. 3(a). We have also shown

that while a NI hitting two channels dramatically (by more than 1 dB) affects the eye

closure of an on-off-keyed signal, its effect is much weaker (0.3 dB or less) if it hits a

channel and a FWM tone. Based on our numerical experiments, we have concluded that

NI will not cause a noticeable effect to the simulated signal as long as the integration

step is chosen according to (49). Note that this value is considerably greater than the

threshold ∆zthr, 0, which would apply to the NI developing from noise (as opposed to a

channel). Consequently, using ∆z given by (49a) instead of ∆z < ∆zthr, 0 reduces the

simulation time by a factor between 3 and 4 without affecting the simulation results.

Let us also note that in simulations of transmission systems employing pseudo-

randomly varying signals mentioned two paragraphs above, NI may be even weaker

than we reported in Section 5B, where the pulses were dispersion-managed solitons and

hence had a regularly varying profile. Whether this observation may allow one to relax

condition (49) when simulating pseudo-randomly varying signals, is an open problem.

Fourth, we have shown, for the first time to our knowledge, that the s-SSM can be

stable only when Ω0 < 0.5ωmax. If this condition is violated, a NI will develop for any

step size ∆z. Two remarks are in order here. On one hand, from the formal point

of view, the mechanism of this unconditional NI is different from that behind aliased

FWM which leads to exactly the same condition, Ω0 < 0.5ωmax [19]. Indeed, in [19], the

coefficient ‘0.5’ occurred specifically for the cubic nonlinearity in (1); for a different type

of nonlinearity (e.g., quadratic [20] or quintic), it would have been different. In contrast,

our condition (25) was obtained based solely on the form of the dispersion term and

the nonlinearity being of the form F (|u|)u, with an arbitrary function F . This can be

easily verified by replacing the nonlinear term in (1) by, say, |u|4u and repeating the

calculations of Section 2. Then, upon neglecting terms O(γ|u|4∆z) ¿ 1, one will again

arrive at (25) and (30). We provide additional mathematical details in Appendix A. On

the other hand, from a practical standpoint, for realistic multi-channel communication

systems, this unconditional NI may be masked by an aliased FWM between channels,

and hence distinguishing between these two numerical artifacts may become an issue
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of academic interest only. We believe that condition (25) may be violated without a

noticeable effect on the simulated signal quality, as long as one verifies that neither

aliased FWM nor UNI hits channels on the opposite side of the spectrum; condition

(49) on the integration step should, of course, still be satisfied.

Even though we have demonstrated by example that our single-channel results could

be used to predict occurrences of NI in multi-channel simulations, we emphasize that

complete analytical understanding of NI in simulations of multi-channel systems requires

at least two more steps. First, for a single chanel, one needs to determine how the signal

profile affects the NI growth rate and possibly its spectral locations. Second, one needs to

study a NI generated by two, and also perhaps three, channels. (Note that in Section 5B

we considered a different situation, where NI generated by a single channel hit another

one.) Each of these steps requires a separate detailed study.

Finally, for the fd-SSM (2), (7), we have shown (see the end of Section 4) that in a

realistic simulation of a signal with a nonzero Ω0, a limitation on the step size ∆z, (40), is

imposed by the condition not of numerical stability, but of accurate representation of the

evolution of the signal’s Fourier harmonics by (7). For more accurate finite-difference

approximations of the dispersive step in (2), considered, e.g., in [11], condition (40)

will no longer apply, as long as the corresponding P (ω) accurately approximates (5)

over most of the simulated spectrum (see Fig. 1(a,b) in [11]). However, in this case,

a stability condition will be similar to that for the s-SSM, because such a condition is

determined only by P (ω); see (19) and (20).

Appendix A: Difference between NI and aliased wave

interaction

We demonstrate this difference using the quintic nonlinearity, |u|4u, as an example. It

leads to interaction among six Fourier harmonics (“waves”) whose frequencies satisfy:

ω1 + ω2 + ω3 − ω4 − ω5 = ω6. (A1)

Since the interaction among four waves enabled by cubic nonlinearity is called FWM, we

will refer to the six-wave interaction as six-wave mixing, SWM. In accordance with our

note at the end of Section 2, we imply that SWM requires only condition (A1) but does

not rely on perfect phase matching among these waves (i.e., it may or may not occur).

In order to observe aliased SWM, one must have ω6 > ωmax. This may be possible if

the signal has both positive and negative frequencies, e.g., Ω1 = ωmax/3 and Ω2 = −Ω1:

Ω1 + Ω1 + Ω1 − Ω2 − Ω2 = (5/3)ωmax ≡ Ω2. (A2)
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However, it is impossible to have aliased SWM if the signal has only one frequency,

which is the situation we analyzed in this work.

Note that if the second frequency component of u is supplied by noise, then the

efficiency of SWM is greatly reduced. Indeed, let u1 be the signal at Ω1 and u2 be the

noise at Ω2. Then the wave they create via interaction (A2) is proportional to

u3
1u
∗ 2
2 , (A3)

i.e., its amplitude scales quadratically with the noise amplitude. In contrast, the NI

process in this case will involve the interactions

Ω1 + Ω1 + Ω1 − Ω1 − Ω2 and Ω2 + Ω1 + Ω1 − Ω1 − Ω1, (A4)

whose corresponding terms,

u2
1|u1|2u∗2 and |u1|4u2, (A5)

scale linearly with the noise amplitude. For a typical noise being 30 dB below the signal,

this yields a difference by a factor of 103 between (A5) and (A3). Also, from the formal

lines of the stability analysis, the latter involves linearization of the equation of motion,

where terms (A5) are retained but (A3) are neglected.
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