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Abstract—Many dynamical systems, including power systems,
recover from perturbations more slowly as they approach critical
transitions—a phenomenon known as critical slowing down. If
the system is stochastically forced, autocorrelation and variance
in time-series data from the system often increase before the tran-
sition, potentially providing an early warning of coming danger.
In some cases, these statistical patterns are sufficiently strong,
and occur sufficiently far from the transition, that they can be
used to predict the distance between the current operating state
and the critical point. In other cases CSD comes too late to be a
good indicator. In order to better understand the extent to which
CSD can be used as an indicator of proximity to bifurcation in
power systems, this paper derives autocorrelation functions for
three small power system models, using the stochastic differential
algebraic equations (SDAE) associated with each. The analytical
results, along with numerical results from a larger system, show
that, although CSD does occur in power systems, its signs some-
times appear only when the system is very close to transition. On
the other hand, the variance in voltage magnitudes consistently
shows up as a good early warning of voltage collapse.

Index Terms—Autocorrelation function, bifurcation, critical
slowing down, phasor measurement units, power system stability,
stochastic differential equations.

I. INTRODUCTION

T HERE is increasing evidence that time-series data taken
from stochastically forced dynamical systems show sta-

tistical patterns that can be useful in predicting the proximity
of a system to critical transitions [1], [2]. Collectively this phe-
nomenon is known as Critical Slowing Down, and is most easily
observed by testing for autocorrelation and variance in time-se-
ries data. Increases in autocorrelation and variance have been
shown to give early warning of critical transitions in climate
models [3], ecosystems [4], the human brain [5] and electric
power systems [6]–[8].
Scheffer et al. [1] provide some explanation for why in-

creasing variance and autocorrelation can indicate proximity
to a critical transition. They illustrate that increasing autocor-
relation results from the system returning to equilibrium more
slowly after perturbations, and that increased variance results
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from state variables spending more time further away from
equilibrium. Reference [9] uses the mathematical theory of the
stochastic fast-slow dynamical systems and the Fokker-Planck
equation to explain the use of autocorrelation and variance as
indicators of CSD.
While CSD is a general property of critical transitions [10],

its signs do not always appear early enough to be useful as an
early warning, and do not universally appear in all variables
[10], [11]. References [10] and [11] both show, using ecolog-
ical models, that the signs of CSD appear only in a few of the
variables, or even not at all.
Several types of critical transitions in deterministic power

system models have been explained using bifurcation theory.
Reference [12] explains voltage collapse as a saddle-node bi-
furcation. Reference [13] describes voltage instability caused
by the violation of equipment limits using limit-induced bifur-
cation theory. Some types of oscillatory instability can be ex-
plained as a Hopf bifurcation [14], [15]. Reference [16] de-
scribes an optimization method that can find saddle-node or
limit-induced bifurcation points. Reference [17] shows that both
Hopf and saddle-node bifurcations can be identified in a multi-
machine power system, and that their locations can be affected
by a power system stabilizer.
Substantial research has focused on estimating the proximity

of a power system to a particular critical transition. References
[13], [18]–[20] describe methods to measure the distance
between an operating state and voltage collapse with respect
to slow-moving state variables, such as load. Although these
methods provide valuable information about system stability,
they are based on the assumption that the current network
model is accurate. However, all power system models include
error, both in state variable estimates and network parameters,
particularly for areas of the network that are outside of an
operator’s immediate control.
An alternate approach to estimating proximity to bifurcation

is to study the response of a system to stochastic forcing, such
as fluctuations in load, or variable production from renewable
energy sources. To this end, a growing number of papers study
power system stability using stochastic models [21]–[26]. Ref-
erence [21] models power systems using Stochastic Differential
Equations (SDEs) in order to develop a measure of voltage se-
curity. In [24], numerical methods are used to assess transient
stability in power systems, given fluctuating loads and random
faults. Reference [25] uses the Fokker-Planck equation to calcu-
late the probability density function (PDF) for state variables in
a single machine infinite bus system (SMIB), and uses the time
evolution of this PDF to show how random load fluctuations
affect system stability. In [26], an analytical method to com-
pute bounds on the distribution of system states or bounds on
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probabilities of different events of interest in stochastic power
systems is presented. Reference [27] proposes a systematic ap-
proach to model power systems as continuous stochastic differ-
ential-algebraic equations.
The results above clearly show that power system stability

is affected by stochastic forcing. However, they provide little
information about the extent to which CSD can be used as an
early warning of critical transitions given fluctuating measure-
ment data. Given the increasing availability of high-sample-rate
synchronized phasormeasurement unit (PMU) data, and the fact
that insufficient situational awareness has been identified as a
critical contributor to recent large power system failures (e.g.,
[28], [29]) there is a need to better understand how statistical
phenomena, such as CSD, might be used to design good indica-
tors of stress in power systems.
Results from the literature on CSD suggest that autocorre-

lation and variance in time-series data increase before critical
transitions. Empirical evidence for increasing autocorrelation
and variance is provided for an SMIB and a 9-bus test case in
[6]. Reference [30] shows that voltage variance at the end of a
distribution feeder increases as it approaches voltage collapse.
However, the results do not provide insight into autocorrelation.
To our knowledge, only [7], [8] derive approximate analytical
autocorrelation functions (from which either autocorrelation or
variance can be found) for state variables in a power system
model, which is applied to the New England 39 bus test case.
However, the autocorrelation function in [7], [8] is limited to
the operating regime very close to the threshold of system in-
stability. Furthermore, there is, to our knowledge, no existing
research regarding which variables show the signs of CSD most
clearly in power system, and thus which variables are better in-
dicators of proximity to critical transitions. In [31], the authors
derived the general autocorrelation function for the stochastic
SMIB system. This paper extends the SMIB results in [31], and
studies two additional power system models using the same an-
alytical approach. Also, this paper includes new numerical sim-
ulation results for two multi-machine systems, which illustrate
insights gained from the analytical work.
Motivated by the need to better understand CSD in power sys-

tems, the goal of this paper is to describe and explain changes
in the autocorrelation and variance of state variables in several
power systemmodels, as they approach bifurcation. To this end,
we derive autocorrelation functions of state variables for three
small models. We use the results to show that CSD does occur in
power systems, explain why it occurs, and describe conditions
under which autocorrelation and variance signal proximity to
critical transitions. The remainder of this paper is organized as
follows. Section II describes the general mathematical model
and the method used to derive autocorrelation functions in this
paper. Analytical solutions and illustrative numerical results for
three small power systems are presented in Sections III, IV and
V. In Section VI, the results of numerical simulations on two
multi-machine power system models including the New Eng-
land 39 bus test case are presented. Finally, Section VII sum-
marizes the results and contributions of this paper.

II. SOLUTION METHOD FOR AUTOCORRELATION FUNCTIONS

In this section, we present the general form of the Stochastic
Differential Algebraic Equations (SDAEs) used to model the
three systems studied in this paper. Then, the solution of the

SDAEs and the expressions for autocorrelations and variances
of both algebraic and differential variables of the systems are
presented. Finally, the method used for simulating the SDAEs
numerically is described.

A. The Model

All three models studied analytically in this paper include a
single second-order synchronous generator. These systems can
be described by the following SDAEs:

(1)

(2)

where is angle of the synchronous generator’s rotor relative
to a synchronously rotating reference axis, is the vector of
algebraic variables, is the damping coefficient, form a
set of nonlinear algebraic equations of the systems, and is a
Gaussian random variable. has the following properties:

(3)

(4)

where are two arbitrary times, is the intensity of noise,
and represents the unit impulse (delta) function (which
should not be confused with the rotor angle ).
Equation (4) implies that we model the noise as having zero

correlation time. In practical power systems, such noise origi-
nates from stochastic changes from loads and generators, as well
as electromagnetic interferences, which occur over many time
scales. To our knowledge, no empirical studies have quantified
the spectral density, or correlation time, of fluctuations in power
systems. In this paper, we assume that the spectral density of
noise sources is flat over a certain frequency range, while ac-
knowledging that this model is likely to have limitations. The
higher end of the frequency range of interest is set by the sam-
pling rate of the PMU, which is commonly 30 Hz. (Note that
this is higher than the highest frequency of the system oscilla-
tions, which in our examples is in the range 1–10 Hz.) The lower
end of the frequency range is set by the length of our simulated
time window, which is 2 minutes, corresponding to a frequency
of about 0.01 Hz. If one were to measure for CSD in a practical
power system onewould want to look at the statistical properties
of data with a similar window length. Following the methods in
[3], the window of data would be initially low-pass filtered to
remove slow trends. This would ensure that the resulting data
stream has zero mean, as does in (3). The detrended dataset
would retain the important oscillations that might indicate insta-
bility (typically well above 0.01 Hz), but discard slower trends.
Thus, the noise model described by (3) and (4) is based on the
assumption that the spectral density of noise sources is nearly
constant over the frequency range of 0.01 Hz to 30 Hz. For this
model to be accurate, the correlation time of the noise needs to
be somewhat smaller than 1/30 s. Our numerical simulations,
which use a time step size of 0.01 s, inject noise at each time
step, thus implicitly assuming that the correlation time of the
noise is 0.01 s (see the discussion after (20) and Section II-D).
It should be noted that other studies [27], [32] have used noise
models in which the noise spectral density falls off at frequen-
cies above approximately 1 Hz, rather than our value of 30 Hz.
It is likely that, as assumed in [27], [32], there is some frequency
dependence in the spectral density of empirical measurements
from power systems. However, the exact structure of the noise
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is yet to be verified empirically. Future work is needed to deter-
mine the impact of frequency dependence (or, equivalently, the
noise’s finite correlation time) on the results presented in this
paper.
In order to solve (1) and (2) analytically, we linearized

and around the stable equilibrium point. Then (1) and (2)
were combined into a single damped harmonic oscillator equa-
tion with stochastic forcing:

(5)

where is the undamped angular frequency of the oscillator,
is a constant, and is the deviation of the rotor

angle from its equilibrium value. Both and change with
the system’s equilibrium operating state. Equation (5) can be
written as a multivariate Ornstein-Uhlenbeck process [33]:

(6)

where is the vector of differential variables,
is the deviation of the generator speed from its equilibrium

value, and and are constant matrices:

(7)

(8)

Given (7), the eigenvalues of are . At ,
one of the eigenvalues of matrix becomes zero, and the system
experiences a saddle-node bifurcation.
Equation (5) can be interpreted in two different ways: using

either Itô SDE and Stratonovich SDEs. Here, we use the
Stratonovich interpretation [34], where noise has finite, albeit
very small, correlation time [33]. The reason why we chose the
Stratonovich interpretation is that it allows the use of ordinary
calculus, which is not possible with the Itô interpretation.
If (which holds until very close to the bifurcation in

two of our systems), the solution of (6) is [35]:

(9)

(10)

where and .
In the system in Section IV, for all system parameters,

so the condition does not hold. Therefore, the solution
of (5) in that system is different from (9), (10):

(11)

B. Autocorrelation and Variance of Differential Variables

Given that the eigenvalues of have negative real part (be-
cause ), one can calculate the stationary variances and
autocorrelations of and using (3), (4), (9) and (10). The
variances of the differential variables are as follows:

(12)

(13)

If , their normalized autocorrelation functions are:

(14)

(15)

where and as above.
If , the variance of can be calculated from (13)

and the autocorrelation of is as follows:

(16)

C. Autocorrelation and Variance of Algebraic Variables

In order to compute the autocorrelation functions of the alge-
braic variables, we calculated the algebraic variables as linear
functions of the differential variable and the noise , by lin-
earizing in (2):

(17)

where is an algebraic variable, and are constants.
Then, the autocorrelation of for is:

(18)

In deriving (18), we used the fact that since
the system is causal. Equation (18) shows that, in order to cal-
culate the autocorrelation of , it is necessary to calculate

, which can be found from (9):

(19)

This shows that .
In order to use (18) to compute the variance of , we need

to carefully consider our model of noise in numerical computa-
tions. According to (4), the variance of is infinite, because the
delta function is infinite at , which would mean that the
variance of could be infinite. However, the noise in numer-
ical simulations must have a finite variance. To determine it, we
rewrite (6) as follows:

(20)

where is the Wiener process. It is well-known
that the variance of is [33]. In numerical simula-
tions, , where is the integration time step. Thus,
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. Hence,
. Then from (17):

(21)

Combining (12) and (21) results in the following:

(22)

Combining (12), (14), (18), (19) and (22), we calculated the
normalized autocorrelation function of :

(23)

where
.

D. Numerical Simulation

We numerically solved (1) and (2) using a trapezoidal or-
dinary differential equation solver, as follows. First, (1) was
written as:

(24)

where was defined after (6). Then, (1) and (2)
were discretized:

(25)

(26)

where is a fixed integration time step, are the
solutions at times and ,

, and similarly for

. The nonlinear algebraic system (25), (26) was
solved by Newton’s method for and , with values

and being known from the previous step and
being a random variable generated at . Note that
and are uncorrelated, and, according to the discussion
after (20), the variance of was . The integration
time step was chosen to be 0.01 s, which is about ten times
smaller than , where is the time lag for calculation of the
autocorrelation.
In order to determine numerical mean values in this paper,

each set of SDEs was simulated 100 times. In each case the
resulting averages were compared with analytical means.

III. SINGLE MACHINE INFINITE BUS SYSTEM

Analysis of small power system models can be helpful for
understanding the concepts of power system stability. The
single machine infinite bus system has long been used to
understand the behavior of a generator connected to a larger

Fig. 1. Stochastic single machine infinite bus system used in Section III. The
notation represents .

system through a long transmission line. It has also been used to
explore the small signal stability of synchronous machines [36]
and to evaluate control techniques to improve transient stability
and voltage regulation [37]. Recently, there has been increased
interest in stochastic behavior of power systems, in part due
to the integration of renewable energy sources. A few of these
papers use stochastic SMIB models. For example, references
[25], [38] studied stability in a stochastic SMIB system.
In this section, we use the autocorrelation functions derived

in Section II to calculate the variance and autocorrelation of
the state variables of a stochastic SMIB system. Analysis of
these functions provides analytical evidence for, and insight
into, CSD in a small power system.

A. Stochastic SMIB System Model

Fig. 1 shows the stochastic SMIB system. Equation (27),
which combines the mechanical swing equation and the elec-
trical power produced by the generator, fully describes the
dynamics of this system:

(27)

where is a white Gaussian random variable
added to the voltage magnitude of the infinite bus to account
for the noise in the system, and are the combined inertia
constant and damping coefficient of the generator and turbine,
and is the transient emf. The reactance is the sum of the
generator transient reactance and the line reactance ,
and is the input mechanical power. The values of parameters
used in this section are given below:

Note that , where is the inertia constant in sec-
onds, and is the rated speed of the machine. The generator
and the system base voltage levels are 13.8 kV and 115 kV, and
both the generator and system per unit base are set to 100 MVA.
The generator transient reactance ,
on the system pu base. The third term on the left-hand side of
(27) is the generator’s electrical power .
In order to test the system at various load levels, we solved the

system for different equilibria, with the generator’s mechanical
and electrical power equal at each equilibrium:

(28)

where is the equilibrium value of the generator’s rotor angle.
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B. Autocorrelation and Variance

In this section, we calculate the autocorrelation and variance
of the algebraic and differential variables of this system using
the method in Section II. Equations (1) and (2) describe this
system for which the following equalities hold:

(29)

(30)

where are the deviations of,
respectively, the generator terminal busbar’s voltage magnitude
and angle from their equilibrium values. Equations (29) and (30)
show that increases, while decreases, with .
In order to calculate the algebraic equations, which form

in (2), we wrote Kirchhoff’s current law at the
generator’s terminal:

(31)

Separating the real and imaginary parts in (31) gives:

(32)

(33)

where . Equations (32) and (33) combine to
make in (2).
Linearizing (32) and (33) yields the coefficients in (17),

which are necessary for calculating the autocorrelation and
variance of the algebraic variables ( , ):

(34)

(35)

(36)

(37)

Fig. 2 shows the decrease of , which is the imaginary part
of the eigenvalues of in (7), with . Note that the bifurcation
occurs at . This figure illustrates how it can be difficult
to accurately foresee a bifurcation by computing the eigenvalues
of a system (as in, e.g., [18]), if there is noise in the measure-
ments feeding the calculation. The value of
does not decrease by a factor of two (compared to its value
at ) until (only 3.4% away
from the bifurcation). It decreases by another factor of two at

(0.2% away from the bifurcation). Also, note
that the real part of the eigenvalues equals until very close
to the bifurcation (0.1% away from the bifurcation), so it does
not provide a useful indication of proximity to the bifurcation
either, Thus, one can confidently predict from the imminent
occurrence of the bifurcation only very near it, whichmay be too
late to avert it. On the other hand, we will demonstrate below
that for this system, autocorrelation functions can provide sub-
stantially more advanced warning of the bifurcation.
Using autocorrelation as an early warning sign of a bifurca-

tion requires one to carefully select a time lag, , such
that changes in autocorrelation are observable. To understand
the impact of different time lags, we computed the autocorre-
lation function of (see Fig. 3). From (14), the autocorrela-
tion of crosses zero at . We note that
choosing close to, but below, allows one to observe a

Fig. 2. The decrease of with in the SMIB system. Near the bifurcation,
is very sensitive to changes in . In this figure, and most that follow, b is

the value of the bifurcation parameter ( in this system) at the bifurcation.

Fig. 3. Autocorrelation function of . is close to 1/4 of the
smallest period of the function for all values of .

monotonic increase of autocorrelation as increases. Indeed,
for , autocorrelation may not increase monotonically,
or the autocorrelation for some values of may be negative.
For example, in Fig. 3 for , the autocorrelation de-
creases first and then increases with . On the other hand, for
considerably smaller than , the increase of the autocor-

relation may not be large enough to be measurable. In Fig. 3,
the curves converge as . Given that the smallest period
of oscillation in this system is 0.41 s, we chose

for the autocorrelation calculations in this section.
Using (12)–(15), we calculated the variance and autocorre-

lation of , at different operating points. In Fig. 4, these
analytical results are compared with the numerical ones. To ini-
tialize the numerical simulations, we assumed that
and solved for in (32), (33) to obtain (for ).
We chose the integration step size , which is much
shorter than the the smallest period of oscillation
and the time lag . The numerical results are shown for the
range of bifurcation parameter values for which the numerical
solutions were stable.
In order to determine if variance and autocorrelation measur-

ably increase as load approaches the bifurcation, we compared
a base load level (the normal operating condition of the system)
with a load level that is high, and closer to the bifurcation, but
still some distance from the bifurcation (far enough that an op-
erator would have time to take precautionary control actions).
Since our aim is to study early warning signs of the bifurca-
tion, we use the differences between these two states as an indi-
cation of whether particular variables provide observable early
warning. While different load values for these two points could
be chosen for different systems, in this paper we assume that
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Fig. 4. Panels a,b show the variances of versus mechanical power
values. Panels c,d show the autocorrelations of versus mechan-

ical power values. The autocorrelation values are normalized by dividing
by the variances of the variables.

the base level is 20% of the load at the bifurcation point, and
the high load level is at 80%Therefore, we computed the ratio
of each statistic when load is at 80% of the bifurcation value to
the value when load is at 20% of . This ratio, in Fig. 4,
is defined as follows:

(38)

where is the plot’s variable. In subsequent figures, is
defined similarly.
Fig. 4 shows that the variance of both and increases

substantially with , and thus appears to be a good warning
sign of the bifurcation. However, the two variances grow with
different rates. (This becomes clear when comparing the ratios

for and .) The difference becomes even more no-
ticeable near the bifurcation where the variance of increases
much faster than the variance of . This is caused by the term
in the denominator of the expression for the variance of

in (12). In Fig. 4, the autocorrelation of and increases
with . Similar to the variance, the autocorrelation is a good
early warning sign of the bifurcation. Comparing Fig. 4 with
Fig. 2 (where an equivalent would be 1.28) shows that
the autocorrelations and variances of and provide a sub-
stantially stronger early warning sign, relative to using eigen-
values to estimate the distance to bifurcation in this system.
The results for the algebraic variables are mainly similar.

Fig. 5 show the variance and autocorrelation of as
a function of load. In Fig. 5, the variance of decreases with

until the system gets close to the bifurcation, while the vari-
ance of increases with even if the system is far from
the bifurcation. The autocorrelations of both and in
Fig. 5 increase with . However, the ratio in (38) is
much larger for than for . This is caused by the auto-
correlation of being very close to zero for small values of
.

C. Discussion

These results can be better understood by observing the tra-
jectory of the eigenvalues of the SMIB system (Fig. 6). Near
the bifurcation, the eigenvalues are very sensitive to changes
in the bifurcation parameter. As a result, the system is in the
overdamped regime for much less than 0.1% distance
in terms of to the critical transition. This implies that, at
least for this system, the autocorrelation function in [7], [8], is

Fig. 5. Panels a,b show the variances of and versus mechanical
power levels. The two terms comprising the variances in (21) are also
shown. Panels c,d show the autocorrelations of and versus .

Fig. 6. Eigenvalues of the first system as the bifurcation parameter (mechanical
power) is increased. The arrows show the direction of the eigenvalues’ move-
ment in the complex plane as is increased. The values of and are
given for several eigenvalues.

valid only when the system is within 0.1% of the saddle-node
bifurcation. By considering a range of system parameters, we
observed that the region where one eigenvalue determines the
system dynamics is within 1.5% of the bifurcation point at most.
The width of this region scales approximately with , and

. Because themethod in [7], [8] can provide a good estimate
of the autocorrelations and variances of state variables only for
a very short range of the bifurcation parameter, it may not be
particularly useful as an early warning sign of bifurcation.
From Figs. 4, 5, we can observe that, except for the variance

of , the variances and autocorrelations of all state variables
increase when the system is more loaded. This demonstrates
that CSD occurs in this system as it approaches bifurcation, as
suggested both by general results [9], and prior work for power
systems [6], [7]. As an example, we calculated the variances of

and as a function of the system parameters using (12),
(13) and (29):

(39)

(40)

It can be observed from these expressions that as the system
approaches the bifurcation , the variable terms

also increase. As a result, variance of
both increase under all conditions.

In addition to validating these prior results, several new ob-
servations can be made. For example, the signs of CSD are more



GHANAVATI et al.: UNDERSTANDING EARLY INDICATORS OF CRITICAL TRANSITIONS IN POWER SYSTEMS 2753

clearly observable in some variables than in others. While all of
the variables show some increase in autocorrelation and vari-
ance, they are less clearly observable in . The variance of

decreases with slightly until the vicinity of the bifurca-
tion. In comparison, the variance of always increases with
. Fig. 5 shows the two terms of the expressions for the vari-

ances of and in (21). The second term of the variance
of is very small compared to the first term, and the first term
is always dominant and growing. On the other hand, the second
term of the variance of is more significant for small .
This term decreases with , which can be observed from the
expression for in (35). Accordingly, decrease of with

causes the the variance of to decrease with until the
vicinity of the bifurcation. In conclusion, the variance of is
a better indicator of proximity to the bifurcation. Because the
variables and are highly correlated with , their vari-
ances are also good indicators of proximity to the bifurcation.
The rate at which autocorrelation increases with differs

significantly in Figs. 4 and 5. In Fig. 4, the ratio in (38) is
times larger for than for . The normalized autocorrelation
functions of and are as follows:

(41)

(42)

The difference between the two functions is in the phase of the
sine function which causes the values of the two autocorrela-
tions to be different. is so much larger for than for
because of the time lag ( ) used to compute autocorrelation.

is close to the zero crossing of the autocorrelation
function of , causing the large . This difference illus-
trates the importance of choosing an appropriate time lag.
It is important to note that although the growth ratio of the

autocorrelation for is not large compared to , it can be
increased by subtracting a bias value from the autocorrelation
values for and . For ex-
ample, if the value of 0.075 is subtracted from the autocorre-
lation values, the ratio increases from 4.1 to 13.0.
The results also show the nonlinearity of in (30), causes

the changes in autocorrelation and variance of the system vari-
ables In [33], it is shown that the stationary time correlation ma-
trix of (6) can be calculated using the following equation:

(43)

where is the covariance matrix of the state variables. Thus, the
normalized autocorrelation matrix depends only on and the
time lag. One of the elements of the state matrix in (7)
changes with because of the nonlinear relationship between
the electrical power and the rotor angle in . Thus, in this
system, CSD is caused by the nonlinearity of .

IV. SINGLE MACHINE SINGLE LOAD SYSTEM

The first system illustrates how CSD can occur in a generator
connected to a large power grid, through a long line. In this
section we use a generator to represent the bulk grid, and look
for signs of CSD caused by a stochastically varying load. Some
form of the single machine single load (SMSL) model used in

Fig. 7. Single machine single load system.

this section has been used extensively to study voltage collapse
(e.g., [13], [39]).

A. Stochastic SMSL System Model

The second system (shown in Fig. 7) consists of one gen-
erator, one load and a transmission line between them. The
random variable defined in (3) and (4), is added to the load
to model its fluctuations. The load consists of both active and
reactive components. In order to stress the system, the baseline
load is increased, while keeping the noise intensity
and the load’s power factor constant.
A set of differential-algebraic equations comprising the

swing equation and power flow equations describe this system.
The swing equation and the generator’s electrical power equa-
tion are given below:

(44)

(45)

where are voltage magnitude and angle of the load busbar,
, and are as follows:

(46)

(47)

The power flow equations at the load bus are as follows:

(48)

(49)

where , , and are constant
values. The parameters of this system are similar to the SMIB
system, with the following additional parameters: ,

, lead, where is the line’s resistance
and is the load’s power factor.
In this system, , are the algebraic variables, and ,
are the differential variables. The algebraic (48) and (49) de-
fine and , which then drive through (44) and (45). By
linearizing (45) and the power flow equations around the equi-
librium, we simplified (44) to the following:

(50)

where is a function of the system state at the equilibrium
point. The derivation of (50) and the expression for are pre-
sented in Appendix A. Comparing (5) with (50) yields:

(51)

The expression for the autocorrelation of is given in (16).
Note that the normalized autocorrelation of does not change
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Fig. 8. Variances of and for different load levels. Both vari-
ances increase with as the system approaches the bifurcation.

Fig. 9. A sample trajectory of the rotor angle of (a) the SMIB system (b) the
SMSL system.

with the bifurcation parameter , as it did for the SMIB
system. In Appendix A, it is shown that and
are proportional to (see (59) and (60)). As a result, they are
memoryless; the variables have zero autocorrelation.
Fig. 8 shows the analytical and numerical solutions of the

variances of and . The results also show that
the variance of increases modestly with as the system
approaches the bifurcation. Unlike the SMIB system, the vari-
ance of is a good early warning sign of the bifurcation. It
is also much more sensitive to the increase of compared to

and .

B. Discussion

As was the case with the SMIB system, when the power
flowing on the transmission line in this system reaches its
transfer limit, the algebraic equations become singular. How-
ever, unlike the previous system, the differential equations of
this system do not become singular at the bifurcation point of
the algebraic equations. Fig. 9 shows the sample trajectories
of the two systems’ rotor angles. Both signals are Gaussian
stochastic processes. The rotor angle in the SMIB system is an
Ornstein-Uhlenbeck process while the rotor angle in the SMSL
system varies like the position of the brownian particle [40].
The existence of the infinite bus in the former system causes
this difference.
One difference between the SMSL system and the SMIB

system is the absence of the term comprising in (50)
compared with (5). This causes the linearized state matrix to
be independent of the bifurcation parameter. From (43), one
can show that the normalized autocorrelation of depends
only on and the time lag. Since is state-independent in this

Fig. 10. The load bus voltage as a function of load power. The load bus voltage
magnitude becomes increasingly sensitive to power fluctuations as the system
approaches the bifurcation. This increased sensitivity raises the voltage magni-
tude’s variance.

Fig. 11. Three-bus system.

system, the autocorrelation of will be constant for a specific
.
The increase of the variances of both differential and alge-

braic variables is due to the non-linearity of the algebraic equa-
tions. Fig. 10 shows that as the load power increases, the pertur-
bation of the load power causes a larger deviation in the load
busbar voltage magnitude. Consequently, variance of this al-
gebraic variable increases with . Likewise, this nonlinearity
causes the coefficient in (50) to increase as the load power
is increased, increasing the variance of .
While voltage variance increases with load, this system does

not technically showCSD before the bifurcation, since increases
in both variance and autocorrelation are essential to conclude
that CSD has occurred [9]. Also, the eigenvalues of the state
matrix of this system do not vary with load. This confirms that
CSD does not occur in this system, since the poles of the dy-
namical system do not move toward the right-half plane as the
bifurcation parameter increases [1], [9].

V. THREE-BUS SYSTEM

Real power systems have properties that are common to both
the SMIB in Section III and the SMSL in Section IV. In order
to explore CSD for a system that has both an infinite bus, and
the potential for voltage collapse case, this section looks at the
three-bus system in Fig. 11.

A. Model and Results

The three-bus system consists of a generator connected
to a load bus through a transmission line, which is con-
nected to an infinite bus through another transmission line.
In the SMIB system, the bifurcation occurred in the differ-
ential equations. Increasing the load in the three-bus system
causes a saddle-node bifurcation in the algebraic equations

(in terms of (1), (2)), as in the
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Fig. 12. Three variables and derived by linearizing the
Three-bus system model. The left panel shows the variables versus for Case
B. The right panel shows a close-up view of the variables near the bifurcation.
Note that as , while approaches a finite value of
0.6. , as .

SMSL system. However, unlike in the SMSL system, the bi-
furcation in these algebraic equations also causes a bifurcation
in the differential (5).
We studied this system for two different cases. Our goal in

studying these two cases was to show that the CSD signs for
some variables can vary differently with changing the system
parameters. In case A, the parameters of this system are similar
to those in the SMIB system except for the following:

In Case B, the following parameters were used:

The algebraic equations of the three-bus system are as fol-
lows:

(52)

(53)

(54)

where , are voltage magnitude and angle
of the load busbar. Equation (52) is equivalent to
in (1), and (53), (54), which are the simplified active and re-
active power flow equations at the load busbar, are equivalent
to in (2). We assumed that , which is
reflected in (52).
The following equalities relate this system to the general

model in (5):

(55)

where and are functions of the system state at the equilib-
rium point. The derivation and expressions for are pre-
sented in Appendix B. Fig. 12 shows versus . When
the load increases, approaches 0, and a bifurcation in the dif-
ferential equation (5) and (55) occurs.

Fig. 13. Panels a,b show the variances of versus load power .
Panels c,d show the autocorrelations of versus . The ratios

are for case A, case B respectively. CaseA(N), CaseA(A)
denote numerical and analytical solutions for case A.

Fig. 14. Panels a,b show the variances of versus . Panels c,d show
the autocorrelations of versus .

Using (55), the expressions in Section II-B, and (76), (77) in
Appendix B, we calculated the variances and autocorrelations
of and . We chose the autocorrelation time lag

of the variables to be equal to 0.14 s taking a similar ap-
proach as in Section III-B. Although the chosen may not be
optimal for all of the variables, it represents a reasonable com-
promise between simplicity (choosing just one ) and useful-
ness as early warning signs. Figs. 13, 14 compare the analytical
solutions with the numerical solutions of the variances and au-
tocorrelations of , , and .
Fig. 13 shows that although the growth rates of the autocor-

relations of are not large, the autocorrelations increase
monotonically in both cases. As mentioned in Section III-C, it is
possible to have larger indicators (growth ratios) by subtracting
a bias value from the autocorrelations. On the other hand, the
variances of in Fig. 13, do not monotonically increase
for case B. We will explain this behavior in the next subsection.
As a result, they are not reliable indicators of proximity to the
bifurcation.
Fig. 14 shows that although both variances of and

increase with , increase of the variance of is more signif-
icant. Also, the variance of does not increase monotonically
with for case B. As a result, the variance of seems to be
a better indicator of the system stability.
In Fig. 14, the autocorrelation of until very near the bi-

furcation is small compared to those in Fig. 13. This is caused
by being very small in (76), so is tied to the differ-
ential variables weakly. As a result, behaves in part like
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—the white random variable, and hence its autocorrelation is
not a good indicatorof proximity to the bifurcation. In addition,
nonmonotonicity of theautocorrelations of for case B
in Fig. 14 shows that they are not good early warning signs of
bifurcation.

B. Discussion

After studying this system with a range of different parame-
ters, we found that autocorrelations of the differential variables
and variance of the voltage magnitude are consistently good in-
dicators of proximity to the bifurcation.
On the other hand, as shown in Fig. 13, variance in the dif-

ferential variables is not a reliable indicator. Namely, variances
change non-monotonically (i.e., they do not always increase)
and, importantly, may exhibit very abrupt changes. Fig. 12 pro-
vides some clues as to the reason for this latter phenomenon.
In this figure, the absolute value of decreases with and
becomes zero very close to the bifurcation point, at .
Therefore, the variances of and , which are proportional
to , decrease and vanish at . Past this point,
increases, while continues to decrease and vanishes at .
Therefore, the variances of and , which are proportional
to , increase to infinity in the very narrow interval

; see Fig. 12. This explains the sharp features in
Figs. 13(a), 13(b); a similar explanation can be given to such a
feature in Figs. 14(c), 14(d). Therefore, neither the variances of

or the autocorrelations of are good indicators
of proximity to bifurcation.
The results for this system clearly show that not all of the

variables in a power system will show CSD signs long before
the bifurcation. Although autocorrelations and variances of all
variables increase before the bifurcation, some of them increase
only very near the bifurcation or the increase is not monotonic.
Hence, these variables are not useful indicators of proximity to
the bifurcation. In the three-bus system, autocorrelation in the
differential equations was a better indicator of proximity than
autocorrelation in or , which are not directly associated
with the differential equations. Also, was the only variable
whose variance shows a gradual and monotonic increase with
the bifurcation parameter.

VI. CSD IN MULTI-MACHINE SYSTEMS

In order to compare these analytical results to results from
more practical power system, this section presents numerical
results for two multi-machine systems.
The first system was similar to the Three-bus system (case

B in Section V). The only difference was that instead of infinite
bus, a generator similar to the other generator was used. The nu-
merical simulation results were similar to the Three-bus system,
except for the autocorrelation of . Fig. 15 shows that the au-
tocorrelation of increases for one of the machines, while it
decreases for the other one. This shows that the autocorrelation
of is not a reliable indicator of the proximity to the bifurca-
tion in this system.
The second system we studied was the New England 39-bus

system, using the system data from [41] We simulated this
system for different load levels using the power system analysis
toolbox (PSAT) [42]. In order to change the system loading,
each load was multiplied by the same factor. At each load

Fig. 15. Autocorrelation of for two machines in the Three-bus system with
two generators. is the same generator as in the Three-bus system and is
the new generator.

Fig. 16. The variances and autocorrelations of five bus voltage magnitudes and
five generator rotor angles of the 39-bus system. Load level is the ratio of the
values of the system’s loads to their nominal values.

level, we added white noise to each load. As one would expect,
increasing the loads moves the system towards voltage col-
lapse. For solving the stochastic DAEs, we used the fixed-step
trapezoidal solver of PSAT with the step size of 0.01 s. The
noise intensity was kept constant for all load levels.
The simulation results show that the variances and autocorre-

lations of bus voltage magnitudes increase with load. However,
similar to the Three-bus system, the autocorrelations of voltage
magnitudes are very small, indicating that in practice, these vari-
ables would not be good indicators of proximity. The variances
and autocorrelations of generator rotor angles and speeds and
bus voltage angles did not consistently show an increasing pat-
tern. Fig. 16 shows the variances and autocorrelations of the
voltage magnitudes of five buses and the rotor angles of five
generators of the system. The buses and generators were arbi-
trarily chosen. As in previous results, the autocorrelation time
lag was chosen to be 0.1 s.
The results in this section suggest that autocorrelations of dif-

ferential variables show nonmonotonic behavior in some cases,
which limits their application as early waning signs of bifurca-
tion.
Exciters, governors and frequency-dependent loads were not

included in the results shown here. However, tests with exciters
and governors indicated that that adding these elements to the
simulations did not substantially change the conclusions. Con-
sidering the frequency-dependence of loads raised the rate at
which the autocorrelation of voltage magnitudes increased. On
the other hand, it decreased the rate of increase of the variance
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TABLE I
THE LARGEST INDICES (FOR VARIANCE) AND THE RELATIVE ACTIVITY

IN THE DOMINANT MODE FOR BUS VOLTAGE MAGNITUDES

of voltage magnitudes. Nevertheless, the rate of increase of vari-
ance remained still significant. In this case, variance and auto-
correlation of voltage magnitudes provide useful early warning
of the bifurcation. In contrast, variances and autocorrelations of
other variables do not provide a consistent early warning.
Comparing the measure for variances and autocorrela-

tions of voltage magnitudes shows that some variables at some
buses have larger growth ratios than others. As suggested in [7],
[8], this may be associated with the contribution of the variables
to the leading mode near the threshold of collapse. However,
except for cases that are very close to ( 1% away) the bifur-
cation, eigenvalue analysis shows that there are several simul-
taneously dominant modes. The results indicate that the mode
whose damping decreases the fastest is most strongly connected
to the variance of bus voltages. Table I shows that, in general, the
buses with the largest increases in variances have larger activity
in the dominant mode. On the other hand, autocorrelations do
not show a similar pattern. While the exact reasons for this are
not yet clear, Fig. 3 and the analytical results indicate that the
autocorrelation functions of variables can take many different
shapes, which affects the growth ratio of their autocorrelations.
Table I shows the buses with the highest indices for

bus voltage variance, as well as the relative activity of these
bus voltage magnitudes in the dominant mode. In order tocal-
culate the relative activity of the bus voltages in the dominant
mode, we first calculated the right modal matrix of the state ma-
trix. Then, using a matrix which relates the differential and al-
gebraic variables, we calculated the matrix that relates the al-
gebraic variables and the system modes. The entries of each
column of this matrix gives the relative activity of the algebraic
variables in one of the modes. It should be noted that the entries
shown in Table I are a small subset of the entries of the column
corresponding to the dominant mode, which is why their values
are so small.
In many ways, this test case is a multi-machine version of the

SMSL system. As with the SMSL and Three-bus systems, vari-
ances of bus voltage magnitudes are good early warning signs.
However, unlike in the SMSL system, autocorrelation in voltage
magnitudes increases, albeit only slightly in some cases, with
system load. Unlike in the SMSL system, voltage magnitudes
in the 39-bus case have non-zero autocorrelation for .
This results from the fact that voltage magnitudes are coupled
to the differential variables in this system.
Results from this system, as with the SMSL system, suggest

that variance in voltage magnitudes is a useful early warning
sign of voltage collapse. It is less clear from these results if
changes in autocorrelation will be sufficiently large to provide
a reliable early warning of criticality.
One important point about the numerical results presented in

this paper is that these results are averages over many simula-
tions with randomly chosen sequences of . This averaging is

Fig. 17. Variances of three bus voltages versus load level. For three load levels,
variances for 100 realizations are shown. For other load levels, only mean of the
variances are shown.

different from the quantities observed by power system opera-
tors. One should take this into account when using CSD signs
for monitoring system stability. For example, Fig. 17 shows the
variances of the voltage magnitudes of three buses in the 39-bus
system. For each bus, mean variances (for 100 realizations) are
shown for all load levels. For three load levels (low, medium
and high load level), the actual measured variance from each of
the 100 realizations (one minute windows) is also shown. The
increases in voltage magnitude variance are significant in that
there is no overlap between the variances at these three load
levels even for a single realization. Therefore, we conclude that,
at least given the assumptions underlying these simulations, it is
possible to accurately estimate the distance to bifurcation based
on the variance of a one-minute stream of voltage magnitude
data.

VII. CONCLUSION

In this paper, we analytically and numerically solve the sto-
chastic differential algebraic equations for three small power
system models in order to understand critical slowing down
in power systems. The results from the single machine infinite
bus system and the Three-bus system models show that crit-
ical slowing down does occur in power systems, and illustrate
that autocorrelation and variance in some cases can be good in-
dicators of proximity to criticality in power systems. The re-
sults also show that the way in which the bifurcation param-
eter changes the system state matrix importantly influences
the observed changes in autocorrelation and variance. For ex-
ample, the constant state matrix in the single machine single
load system (see (7), (51)) caused the autocorrelation of the dif-
ferential variable to be constant. On the other hand, in the SMIB
and Three-bus systems, the state matrix changed with the the
bifurcation parameter; that is, the coefficient in (7) changed
with the bifurcation parameter (for SMIB, see (28), (29)) or
(Three-bus, see (55)). As a result, the variance and autocorre-

lation of the differential variables changed with the bifurcation
parameter, and in some cases indicate proximity to bifurcation.
Although the signs of critical slowing down do consistently

appear as the systems approach bifurcation, only in a few of
the variables did the increases in autocorrelation appear suffi-
ciently early to give a useful early warning of potential collapse.
On the other hand, variance in load bus voltages consistently
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showed substantial increases with load, indicating that variance
in bus voltages can be a good indicator of voltage collapse in
multi-machine power system models. This was verified for the
New England 39-bus system. Determining intuitive analytical
or physical explanations for why some variables show the signs
of CSD better than others requires additional investigation, and
is a subject for future research.
Together these results suggest that it is possible to obtain

useful information about system stability from high-sample rate
time-series data, such as that produced by synchronized phasor
measurement units. Future research will focus on developing an
effective power system stability indicator based on these results.

APPENDIX A

The derivation of (50) is presented in this section. By lin-
earizing (45) around the equilibrium and replacing the obtained
equation for in (44), we obtained the following:

(56)

where and are:

(57)

(58)

where . By lin-
earizing (48) and (49) around the equilibrium and solving for

and , we obtained the following:

(59)

(60)

where and are:

(61)

where are given below:

(62)

(63)

(64)

(65)

Using (59) and (60), we rewrote (56) as (50) where is:

(66)

APPENDIX B

The derivation of is presented in this section. By using
(1) and linearizing (52)–(54) around the equilibrium, we have
the following:

(67)

(68)

(69)

where through are as follows:

(70)

(71)

(72)

(73)

(74)

(75)

where . Using (68) and (69), we solved for
and :

(76)

(77)

where through are as follows:

(78)

Equations (67), (76)–(78) lead to the following expressions:

(79)

(80)
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