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Abstract

We report a numerical observation that multiplicative random forcing (noise) significantly in-

creases the probability of formation of extreme events in the one-dimensional, focusing nonlinear

Schrödinger equation. Furthermore, this phenomenon is sensitive to the noise’s spatial correlation

length. Highly correlated multiplicative noise may increase the probability of extreme events even

when the average nonlinearity of the system is weak. On the contrary, noise with short spatial

correlations substantially increases the probability of extreme events only for sufficiently strong

average nonlinearity.
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1 Introduction

Occurrence of waves whose amplitude exceeds the average by several standard deviations has been

actively studied in such diverse areas as nonlinear optics and water waves; see, e.g., recent reviews

[1]–[4] and references therein. Below we will refer to such waves as rogue waves irrespective of

the physical context in which they occur. The nonlinear Schrödinger equation (NLS) has been

considered as a toy model that is capable of producing rogue waves, even though it significantly

oversimplifies the underlying physics both in optics (see, e.g., [5]) and in the oceanic wave theory

(see, e.g., [6]-[10] and references therein). Notably, the NLS model does predict a higher probability

of observing rogue waves than the linear model.

In this letter we report a numerical observation that noise terms included in the NLS fur-

ther increase the probability of rogue waves formation. Furthermore, certain types of noise do

so considerably more than others, with a spatially highly correlated multiplicative noise resulting

in the most prominent such an increase. We emphasize that since the NLS is only a toy model

of rogue waves, then our stochastic modification of that equation is also meant only to exhibit a

trend whereby a certain combination of nonlinearity, dispersion, and stochastic forcing results in a

significant increase of the probability of rogue waves.

It should be noted that the stochastic NLS has also been extensively studied in diverse appli-

cations. For example, in fiber optical communications, additive noise has most often been used to

model the effect of spontaneous emission from amplifiers, as the signal propagates in a transmission

line (see, e.g., [11]), while multiplicative noise could model the effect of a fluctuating pump in a

Raman amplifier (see, e.g., [12]). Most of those studies focused on how the noise affects a single

soliton, although (wavelength-dependent) noise and damping were also considered in studies of

wave turbulence (see, e.g., [13, 14] and references therein).

The model that we consider here is

iut + βuxx + γ|u|2u = −iαu− iεuxxxx + ξ + ηu, (1)

where β, γ are the dispersion and nonlinearity coefficients, α is a wavelength-independent damping

coefficient, and the term εuxxxx accounts for the energy loss at very high wavenumbers1. In the

context of water waves, such a term can mimic, e.g., the effect of wavebreaking. Its inclusion in

the model does not qualitatively affect its predictions but does allow us to avoid using a very wide

spectral domain and hence a very small time step in our numerical simulations. The additive and

multiplicative noises, ξ and η, are assumed to be complex-valued, independent of each other, and

having zero average and the following correlation functions:

⟨ξ∗(x1, t1)ξ(x2, t2)⟩ = 2D(|x1 − x2|)δ(t1 − t2), (2a)

⟨η∗(x1, t1)η(x2, t2)⟩ = 2C(|x1 − x2|)δ(t1 − t2), (2b)

⟨ξ(x1, t1)ξ(x2, t2)⟩ = ⟨η(x1, t1)η(x2, t2)⟩ = 0, (2c)

1In [13, 14], damping terms that accounted for even higher x-derivative of u, were considered.
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where ⟨. . .⟩ denotes averaging over an ensemble of noise realizations, the asterisk denotes a complex

conjugate, and D and C are real-valued. In time, the noises are treated in the Stratonovich sense

(see, e.g., Chap. 5 in [15]), whereby their correlation time is assumed to be much smaller than any

other time scale in the model, but still finite.

In space, the noises must have finite (essentially nonzero) correlation lengths because, as we

will show below, the spatial scale of the solution u is of the same order. A spatially corre-

lated noise can be related to a spatially uncorrelated noise w, whose Fourier transform satisfies

⟨ŵ∗(k1, t1)ŵ(k2, t2)⟩ = 2δ(k1 − k2)δ(t1 − t2) and ⟨ŵ(k1, t1)ŵ(k2, t2)⟩ = 0, via

{ξ(x, t), η(x, t)} =

∫
G{ξ, η}(k)ŵ{ξ, η}(k, t)e

−ikxdk; (3a)

here {. . .} denotes grouping of terms. Then

{D(x), C(x)} =

∫
|G{ξ, η}(k)|2e−ikxdk, (3b)

and the fact that D and C are real implies that |G{ξ, η}(k)|2 are symmetric. In what follows we will

use notations

D(0) ≡ D0, C(0) ≡ C0. (3c)

In (3a) and everywhere below, if the limits of integration are not indicated, they are assumed to

be infinite.

Let us note that within the framework of the NLS as a model for oceanic waves, a combination

of the multiplicative noise and damping terms, (−α+η)u, can be interpreted as a result of combined

action of the wavelength-independent damping and the forcing due to wind [16, 17, 18]. Here (−α)

is the net damping rate due to both wavelength-independent loss mechanisms and the constant

part of wind forcing, while η is attributed to the variable part of the forcing. In the oceanic waves

context, the interpretation of the additive noise, ξ, is less clear. However, we include it due to both

a formal reason explained in the next paragraph as well as for the generality of our toy model. It

will follow from our results that it is the multiplicative noise term that is responsible for the main

effect reported in this work.

One of our key assumptions is that we consider the evolution and, in particular, formation

of rogue waves in the statistically steady state of model (1). (Below we will omit the modifier

‘statistically’ for brevity.) This implies that there must be a balance, on average, between the

influx of energy to the system due to noise and the energy dissipation due to the α- and ε-terms.

In linear systems, such a balance is well known as a form of the fluctuation-dissipation theorem,

whereby the intensity of noise and the dissipation rate in a steady state must be related (see Eq. (6)

below). Note that this balance for a nonzero solution u in (1) can only be achieved for a nonzero

additive noise: if a multiplicative noise alone is present, then the solution will either blow up (due

to a purely linear mechanism) or decay to zero. Thus, if one neglects the ε-term for a moment, the

constants α, D0, and C0 must be related by (6) to guarantee the existence of a steady state. It

may seem, and perhaps is, unphysical that the damping rate α, which is an intrinsic property of

the wave model, and the noise intensities D0 and C0, which characterize the noises external to the

3



model, are related. A more physical damping mechanism, at least for oceanic waves, may be one

where energy is dissipated primarily in high wave numbers [13, 14]. The reason why we consider

the situation where almost all energy is lost due to the wavelength-independent damping is that

in this case, it is possible to control the time-average nonlinearity using some analytical estimates.

Such a control is required for a careful determination of sources that affect our main conclusion.

Let us note that since it is the noise that drives the model into the steady state, then the spatial

spectral bandwidth of the steady-state solution must, on average, be on the order of (or greater

than) that of the noise. This simply follows from the fact that terms in (1) must balance out. If the

noise contribution to (1) is considerably less than that of the nonlinear term, then the spectrum

of noise can be narrower than the spectrum of the average solution. However, it cannot be wider

(in the order of magnitude sense); indeed, a wide-band noise would excite high wavenumbers in

the steady-state solution, thereby widening its spectrum. In our simulations, we have observed the

spectral bandwidths of the solution and the noise to be within a factor of two from one another,

except for the moments where a rogue wave would form, at which point the solution’s bandwidth

would considerably exceed that of the noise. This is the physical reason why we consider only

correlated noises, as per (2), in this work. This situation should be contrasted to that in optical

communications: The noise bandwidth there considerably exceeds that of the useful signal, but the

signal is not in statistical equilibrium with the noise in a telecommunication system.

The main part of this work is organized as follows. In Section 2 we justify the choice of some

of the simulation parameters that guarantee that the numerical results are statistically significant

(and yet do not require prohibitively long simulation times). The numerical results are reported in

Section 3. In Section 4 we summarize our findings. The Appendices contain auxiliary derivations

of the mass (a.k.a. number of particles) evolution and a brief description of the numerical method.

2 Estimating required simulation time

The probability of a rogue wave occurrence depends on the magnitude of the nonlinear term in (1)

relative to other terms. Therefore, to convincingly show that that probability is affected by noise

as opposed to other factors, one must maintain a constant average |u|2. This implies maintaining

the ensemble average of the mass

N =

∫ L

0
|u|2dx, (4)

where L is the length of the considered spatial domain. The evolution equation

d⟨N⟩/dt = 2(D0L+ C0⟨N⟩ − α⟨N⟩) (5)

can be derived using the method outlined in Appendix A; here we have ignored the action of the

ε-term in (1) for reasons that were explained in the Introduction. Thus, in the statistically steady

state,

⟨N⟩st = D0L/(α− C0). (6)
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In order to have a specific value of ⟨N⟩ in a simulation, one must select values of D0, C0, and α

satisfying (6). In this work we have always set the parameters so as to maintain the average mass

of the solution near the value L:

⟨N⟩ ≈ L ⇒ 1

L

∫ L

0
⟨|u|2 ⟩ dx ≈ 1. (7)

The next issue one needs to address is: In an individual observation (simulation), how much

does N fluctuate around its average (6), and what is the time scale of those fluctuations? Answers

to these questions will allow us to estimate the simulation time (or the number of simulations

with different noise seeds) required to obtain statistics representative of the steady state. Both

answers can be obtained from an effective Langevin equation for N , whose approximate form is

derived in Appendix A for the case when the noise is purely additive. (When the multiplicative

noise is present, the corresponding calculations become more cumbersome and require additional

approximations. We do not carry them out because all we need are order-of-magnitude estimates

to guide our simulations.) An estimate for the standard deviation of N (for C0 = 0) is

σN = (D0L/α) ·O(
√

lcorr, ξ/L) = O
(
⟨N⟩st

√
lcorr, ξ/L

)
, (8a)

where lcorr, ξ is the correlation length of the noise (defined in Section 3), and the correlation time

of N is

τcorr, N = 1/(2α) . (8b)

The time that it takes the system to reach its steady state is of the same order of magnitude as

(8b). An example of evolution of N for a typical set of parameters used in this work is shown in

Fig. 1. It confirms the validity of estimates (8).
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Figure 1: Example of evolution of N(t) for lcorr, ξ/L = 1/36, α = 0.0029, β = 1, γ = 1; see Section

3. Double arrows show the estimates (8).

Since N(t) (which is our measure of nonlinearity of the system) fluctuates significantly, it is

important to use sufficiently long simulation times, or use a large number of ensemble simulation,

to average out the corresponding fluctuations in the probability density function (PDF), p(|u|),
of the wave height |u|. Such a time can be estimated as follows. In a time interval T there are
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approximately (T/τcorr, N ) independent “samples” of N , and hence the fluctuations from one such a

sample to another get decreased by a factor
√

T/τcorr, N when we average over T . Clearly, the count

for T should start after the steady state has been reached, i.e. after t = 1/α. Also, if one runs nsimul

ensemble simulations, then the above factor is trivially modified to become
√

nsimul T/τcorr, N .

The estimate in the previous paragraph along with Eqs. (8) shows that the relative size of

fluctuations of N , averaged over time T and nsimul simulations, scales as

σN/⟨N⟩st = O
(√

(lcorr, ξ/L)/(nsimul Tα)
)
. (9)

In all simulations involving noise, reported in the next Section, we set D0 to a constant value; then

(6) and (7) imply that α = O(D0). Then, we selected parameters so as to ensure√
(L/lcorr, ξ) (nsimul TD0) > 50, (10)

which according to (9) guarantees that variation of the mass of the solution, averaged over T and

all ensemble simulations, are on the order of a few percent. By doubling the length L in selected

cases, we verified that condition (10) leads to a similar accuracy of the results reported in the next

section. This was sufficient to observe with confidence the effect of increased probability of rogue

waves driven by noise, which is the focus of this study. For reference, obtaining the results for

entries of most cells reported in Tables 1 and 2 below took between one and two days, using a

personal computer running Matlab; the results in Table 2 for γ = 1 took about three times as long

because they required resolution of a wider spectrum.

3 Numerical results and discussion

We considered the following four cases, referring to parameters in (1)–(3).

Case 1 (benchmark): No noise; D(x) = C(x) ≡ 0.

Case 2: Additive noise only; C(x) ≡ 0.

Case 3: Dominant multiplicative noise; C0 = 2D0L/⟨N⟩st, and since we have always set N(t =

0) = L (see (7)), this amounted to C0 = 2D0.

Case 4: Dominant additive noise; C0 = 0.5D0L/⟨N⟩st, but only for a subset of parameters of

Case 3; see below.

In all Cases we used β = 1 and considered five values of γ = 0, 0.1, 0.2, 0.5, 1. This shows how

the results scale with the nonlinearity of the system, because we also set the initial conditions to

satisfy
1

L

∫ L

0
|u(x, 0)|2 = 1. (11)

In Case 1 this guaranteed that N(t)/L = 1 during the simulation2, while in the other Cases we

ensured condition (7) by selecting the damping constant (see below). In all cases, the maximum

simulated time was T = 3000, and we ran simulations with nsimul different seeds of noise. (In Case

1 the noise seeds determined the initial condition.) In Cases 2–4, we set D0 = 0.003 and adjusted

2Parameter ε was selected so that the relative change of N would be (much) less than 0.1%.
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α so as to satisfy (6) with ⟨N⟩st = 1; see (7) and (11). In Case 4 we adjusted ε empirically to

satisfy the same condition. We also set ε to a value where the high wavenumber damping would

be guaranteed to amount for no more than 10% of total dissipation. That value was estimated and

adjusted in each case based on the observed width of the solution’s Fourier spectrum.

The spectral shapes (3a) of noise in Cases 2–4 were chosen to be Gaussian:

G{ξ, η} =
{D0, C0}√√

π k{ξ, η}

exp

[
−1

2

(
k

k{ξ, η}

)2
]

(12a)

where k{ξ, η} determine the correlation lengths of ξ and η:

lcorr, {ξ, η} = 2π/k{ξ, η}. (12b)

In Case 2, for each value of γ we considered two representative values of the noise correlation

length, corresponding to kξ = 1 or 3. In Case 3, for each γ, we considered four combinations

of correlation lengths, corresponding to {kξ, kη} = {1, 1}, {3, 1}, {1, 3}, {3, 3}. In Case 4, we

considered only the combination {kξ, kη} = {1, 1}. The purpose of presenting this Case was to

demonstrate that even relatively small multiplicative noise may significantly change the solution’s

PDF. In Case 1, the initial condition had a spectral shape proportional to (12a), and for each γ we

also considered two values of its correlation length, lcorr, u0 = 2π and 2π/3.

To satisfy the statistical accuracy condition (10) with the above values of T and D0 in Cases

2–4, we used L = 72π, nsimul = 15 for min{lcorr, ξ, lcorr, η} = 2π and L = 36π, nsimul = 10 for

min{lcorr, ξ, lcorr, η} = 2π/3. While there is no counterpart of (10) for Case 1, there we also used

the same values of L and nsimul for the corresponding correlation lengths of the initial condition.

We record values of |u| at every grid point and every trec = 0.25 (trec ≫ τcorr, ξ ≈ 0.02) starting at

t = 100 and compute the corresponding PDF p(|u|).
In each cell of Tables 1 and 2 below, we report two numbers: cumulative probability that |u|

exceeds 4 average values |u|av =
∫∞
0 y p(y) dy and excess kurtosis;

P4 =

∫ ∞

4|u|av
p(y)dy, (13a)

κ =

∫∞
0 (y − |u|av)4p(y) dy(∫∞
0 (y − |u|av)2p(y) dy

)2 − 3. (13b)

As a reference, for the Rayleigh-distributed |u|, which occurs in the purely linear case with no

multiplicative noise, these quantities are:

P4 = 3.5 · 10−6, κ = 0.25. (13c)

Let us note that |u| ≈ 4|u|av corresponds to a high, but not extremely high, wave. Indeed, if

one assumes that the average crest of a wave is approximately twice the average value of |u|, then
|u| ≈ 4|u|av corresponds to a wave whose crest is only about twice as high as the average crest. We

chose that moderate value, as opposed to, say, |u| ≈ 6|u|av, because obtaining significant statistics

in the latter case would have taken unrealistically long simulation time when the PDF is close to
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Rayleigh. Nevertheless, plots of p(|u|), presented below, show that in the presence of multiplicative

noise, the probability of the wave’s height exceeding the average crest value by 3 or even 4 times, is

quite significant. As a reference, we found |u|rmav to be around 0.9 in cases where the PDF has a

“lighter” (i.e., Rayleighian-like) tail; it gradually shifted towards smaller values around 0.8 as the

tails become heavier.

In Table 1 we show results for Cases 1 and 2; the corresponding PDFs are shown in Figs. 2, 3.

These figures show that solutions whose spectra are dominated by low-wavenumber components (as

in panels (a)) are considerably more likely to produce rogue waves than those with a greater content

of high-wavenumber components. This is consistent with [19], where is was shown that PDFs of

spectral components with low wavenumbers (which are different from PDFs reported here) have

heavier tails than the Rayleigh distribution. Figure 2 also shows that even for small nonlinearities,

the statistics of |u| in the NLS may be non-Rayleighian, depending on the initial condition. A

similar result was observed numerically in [20] for different initial conditions than here.

Case 1 Case 2

γ lcorr, u0 = 2π lcorr, u0 = 2π/3 lcorr, ξ = 2π lcorr, ξ = 2π/3

0 1.5e-6 1.8e-6 2.7e-6 3.2e-6

0.16 0.20 0.29 0.24

0.1 2.7e-4 3.4e-6 6.3e-5 5.3e-6

1.3 0.28 2.3 0.36

0.2 6.1e-4 5.3e-6 6.3e-5 1.6e-5

2.0 0.33 2.3 0.45

0.5 1.8e-3 2.5e-5 1.7e-3 7.7e-5

3.1 0.59 3.4 0.81

1 2.3e-3 6.9e-5 2.4e-3 3.1e-4

3.5 0.94 3.7 1.5

Table 1: In each cell, the numbers listed are P4 (top) and κ (bottom); see (13). Consistent with

statistical accuracy of our simulations, we kept only two significant figures.

Interestingly, these figures also show that the statistics of the pure NLS (Fig. 2), without driving

terms, is similar to that of the NLS driven by additive Gaussian noise (Fig. 3). What matters more

for statistics is the solution’s spectral content rather than the presence of absence of additive random

forcing. This observation, however, is substantially altered when one includes multiplicative noise,

as we demonstrate below.

In Table 2 we show results for Cases 3 and 4; the PDFs for Case 3 only are shown in Fig. 4.

One can see that for higher nonlinearities (γ = 0.5, 1), the multiplicative noise always increases

the probability of rogue waves by several orders of magnitude. Even waves whose height exceeds

the average crest value (see above) by more than a factor of four, occur with a sufficiently high

probability of around 10−4.

The most dramatic difference among results shown in different panels of Fig. 4 is seen for
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Figure 2: Average PDFs for Case 1. (a): lcorr, u0 = 2π; (b): lcorr, u0 = 2π/3. In all figures, here and

below, the line styles for different values of γ are the same as in panel (a).
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Figure 3: Average PDFs for Case 2. (a): lcorr, ξ = 2π; (b): lcorr, ξ = 2π/3. Line styles mean the

same as in Fig. 2(a).

low nonlinearity, γ = 0.1. In those cases (see panels (a,c)), multiplicative noise with the larger

correlation length leads to a high probability of rogue wave formation, while the correlation length

of the additive noise plays a smaller role. Partially, this occurred because in Case 3 the contribution

of the multiplicative noise in Eq. (1) is greater than that of additive noise. However, in Case 4,

where the relative contributions of additive and multiplicative noises are reversed, one also observes

a considerably higher probability of rogue waves that in Table 2 (Case 2) and Fig. 3(a), where only

additive noise is present.

4 Conclusions

We have numerically shown that the presence of multiplicative noise with relatively large correlation

length increases the probability of rogue waves in the NLS by several orders of magnitude even for

low average nonlinearity. Let us point out that this fact cannot be fully explained based on the

theory of modulational instability. That theory does indeed predict that for low nonlinearity, it is

the low wave numbers, on the order of
√

(γ/β)|u|2, that “see” the largest growth (on a plane-wave
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lcorr, ξ = 2π lcorr, ξ = 2π/3

γ lcorr, η = 2π lcorr, η = 2π/3 lcorr, η = 2π lcorr, η = 2π/3 Case 4

0 8.5e-5 2.3e-5 8.2e-5 1.2e-5 9.0e-6

0.85 0.55 0.88 0.49 0.41

0.1 3.0e-3 2.9e-4 8.8e-4 2.3e-5 1.4e-3

13. 2.0 7.2 0.52 6.0

0.2 4.6e-3 7.7e-4 1.9e-3 1.0e-4 3.4e-3

19. 4.2 12. 0.83 12.

0.5 6.9e-3 2.8e-3 3.8e-3 1.2e-3 5.5e-3

24. 15. 21. 10. 15.

1 8.5e-3 4.9e-3 4.8e-3 2.7e-3 7.0e-3

24. 23. 22. 16. 15.

Table 2: Results for Case 3 (first four data columns) and Case 4 (last column); the numbers in

each cell mean the same as in Table 1. The parameters {lcorr, ξ, lcorr, η} for Case 4 are the same as

those in the first data column.
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Figure 4: Average PDFs for Case 3 for {lcorr, ξ, lcorr, η} as follows. (a): {2π, 2π}; (b): {2π, 2π/3};
(c): {2π/3, 2π}; (d): {2π/3, 2π/3}. Line styles mean the same as in Fig. 2(a).

background). However, their growth rate is proportional to γ|u|2, i.e. also low. (It is, of course,

unclear if the slowly growing perturbations would eventually reach about the same magnitude as
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fast growing ones in the nonlinear stage of their evolution.) More importantly, the perturbations’

spectral content is not the sole factor determining the evolution: compare the results in Figs. 3(a)

and 4(a), where the spectral content of the solution (dominated by low wavenumbers) appears to

be similar. It is specifically the multiplicative form of the random forcing that leads to significant

probability of rogue wave formation.

The previous observation suggests that further investigation of this phenomenon may include

a systematic study of its dependence on the wavelength of the noise, as well as on the relative

contributions of the additive and multiplicative forcings. Another direction could be a study of

similar phenomena in more realistic models of extreme event formation, which, in particular, would

include a more realistic form of high-wavenumber energy dissipation.
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Appendix A: Langevin equation for N

As explained in the main text, the calculations here are done for ε = 0 and η ≡ 0 in (1). Multiplying

that equation by u, subtracting the complex-conjugate expression, and integrating over interval

x ∈ [0, L] using periodic boundary conditions, one finds:

dN/dt = −2αN + ν, (A.1a)

ν = i

∫ L

0
(ξ∗u− ξu∗)dx. (A.1b)

Whenever the arguments (i.e., x and t) of u and ξ are not indicated, they are assumed to be the

same. We will handle (A.1a) as a stochastic differential equation for N by approximating ν as

ν = a(N, . . .) + b(N, . . .)χ, (A.2a)

where a and b are some functions of N and possibly other functionals of u, and χ is a white noise:

⟨χ(t1)χ(t2)⟩ = δ(t1 − t2). (A.2b)

These functions are found below from considering the average and autocorrelation of ν. A similar

approach has been used, e.g., in [21].

First, the average of ν over an ensemble of noise realizations is computed using a standard

technique (see, e.g., [22]), whereby one represents the solution of (1) as

u(t) = u(t−∆) +

∫ t

t−∆
ξ(t1)dt1 +O(∆). (A.3)

Here ∆ is a small time interval satisfying

τcorr,ξ ≪ ∆ ≪ τu, (A.4)
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where τcorr,ξ is the correlation time of noise ξ and τu is a typical time scale on which u evolves.

Then, using (2a), (2c), one has

⟨ξ∗u⟩ = D0, ⟨ξu⟩ = 0, (A.5)

and then from (A.1b) one obtains:

⟨ν⟩ = 2D0L. (A.6)

Calculation of ⟨ν(t1)ν(t2)⟩ is considerably more complicated, and hence we only indicate its main

steps. One needs to compute averages like ⟨ξ∗(x1, t1)u(t1, x1)ξ∗(x2, t2)u(x2, t2)⟩, which is done using

the Isserlis (a.k.a. Wick) theorem for averages of normally distributed variables g1, . . . , g4:

⟨g1g2g3g4⟩ = ⟨g1g2⟩⟨g3g4⟩+ ⟨g1g3⟩⟨g2g4⟩+ ⟨g1g4⟩⟨g2g3⟩ , (A.7)

Eqs. (A.5), and the fact that terms like

⟨ξ∗(x1, t1)u(x2, t2)⟩⟨ξ∗(x2, t2)u(x1, t1)⟩ = 0 (A.8)

due to τcorr, ξ ≪ τu. The result is:

⟨ν(t1)ν(t2)⟩ = (2D0L)
2 + ⟨W (t1)⟩δ(t1 − t2), (A.9a)

where

W (t) = 2

∫ L

0

∫ L

0
D(x1 − x2)(u

∗(x1, t)u(x2, t) + u(x1, t)u
∗(x2, t)) dx1dx2. (A.9b)

(Note that if D(x1 − x2) ∝ δ(x1 − x2), then W ∝ N , as in [21].) Thus, one needs an evolution

equation for W . However, for our estimation of the dynamics of N , we have used the stationary

average value ⟨W ⟩st. It is found similarly to the above, where one also needs an average ⟨(|u1|2 −
|u2|2)u1u∗2⟩; we have denoted u1,2 ≡ u(x1,2, t). It can be approximated by zero using (A.7), as is

standard in the application of the Wigner function formalism to random NLS-like models (see, e.g.,

[23]). As a result,

d⟨W ⟩/dt = −2α⟨W ⟩+ 8

∫ L

0

∫ L

0
(D(x1 − x2))

2 dx1dx2, (A.10)

whence

⟨W ⟩st = (4/α)

∫ L

0

∫ L

0
(D(x1 − x2))

2 dx1dx2 ≡ (8πL/α)

∫
|Gξ(k)|4dk, (A.11)

where we have also used (3b).

To satisfy (A.6) and (A.9a), it suffices to set a = 2D0L and b =
√

⟨W ⟩st in (A.2), so that (A.1a)

becomes:

dN/dt = −2αN + 2D0L+
√

⟨W ⟩st χ. (A.12)

This is an Ornstein–Uhlenbeck process with a nonzero mean. Its standard deviation and correlation

time are given by

σN =
√

⟨W ⟩st/(4α), (A.13)
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and Eq. (8b), respectively (see, e.g., Sec. 2.4 in [15]). The time required for the PDF of N to ap-

proach its stationary form can be found from the eigenvalue analysis of the Fokker–Planck equation

corresponding to Eq. (A.12). However, it can also be directly estimated from (A.12) itself to be

O(1/α), which is the same as (8b).

The order-of-magnitude estimate (8a) is found from (A.13), (A.11) as follows. As in Section 3,

we assume the Gaussian spectrum (12) for the noise. Then

σN = (D0L/α)

√
4
√
2π /(kξ L), (A.14)

which with lcorr, ξ = 2π/kξ yields (8a).

Appendix B: Numerical method for (1)

One of the key requirements for the numerical method is that it should correctly reproduce averages

(A.5), on which we base our consideration of a statistically constant ⟨N⟩. Since these averages are

founded in the Stratonovich interpretation of the noise, all we need is to model noise as having

small but finite correlation time. Fortunately, this does not require us to reduce the simulation time

step because it is forced to be small by a separate requirement of stability (rather than accuracy)

of the numerical method; see below.

Thus, we model the noise terms as an Ornstein–Uhlenbeck process. In continuous time, it is:

ξt(x, t) =

(
−ξ(x, t) +

∫
Gξ(k)ŵ(k, t)e

−ikxdk

)
/τcorr, ξ , (B.1)

and similarly for η; see (A.4) and (3a) for notations. One can show that it satisfies (2). In discrete

time tn = n∆t, we approximate (B.1) by the first-order Euler method:

ξn+1 = (1−∆t/τcorr, ξ)ξn +
√
∆t/τcorr, ξ

∫
Gξ(k)ŵn(k)e

−ikxdk, (B.2)

where ŵn are independent, complex-valued random variables with unit variance of their real and

imaginary parts, and the integral over k is, in fact, a discrete sum. We will comment on the

accuracy of this simple approximation later. While we used different spectral functions, Gξ(k) and

Gη(k), for the additive and multiplicative noises, we used the same correlation time, τcorr, ξ, for

both of them.

We have experimented with several ratios of ∆t/τcorr, ξ and found that as long as one has

∆t ≪ τcorr, ξ ≪ τu = O(1), (B.3)

the results are not sensitive to the exact value of ∆t/τcorr, ξ. Let us also stress that due to this

ratio being small, ξ and η can be treated as regular, i.e., continuous, functions of time, thus

obviating the need to employ any special methods for stochastic systems. In all simulations we

used τcorr, ξ = 0.018, so that ∆t/τcorr, ξ was either 1/45 (for γ = 1) or 1/20 (for γ < 1); see below.

To solve (1) with the already determined ξ and η, we used the first-order split-step method:

un+1 = F−1
[
e−(iβk2+εk4)∆tF

[
eiγ|un|2∆tun

] ]
e−i(α+iηn+1)∆t − iξn+1∆t , (B.4)

13



where F and F−1 are the Fourier transform and its inverse. In addition to the common two stages

— nonlinearity and dispersion, — this method also has a linear multiplicative (with α and η) and

additive (with ξ) stages. In principle, these two stages could be combined into one, which would

make the form of the last term in (B.3) more complicated. We have conducted tests with that other

form and did not observe any noticeable differences in solution u(x, t) (using the same seeds of noise

for both methods). We have also compared out simple method with the exact solution of (1) which

can be found when γ = 0 and η does not depend on x; in that case, also, the numerical and exact

solution were within O(∆t) of each other, as expected. Finally, we have also employed the implicit

trapezoidal method instead of (B.2) for solving (B.1), and, again, differences were imperceptible.

We now comment on the time step ∆t. By the stability condition of the split-step method (with

α = 0 and no noise terms), one needs to have [24, 25]:

∆t < π/k2max. (B.5)

In all simulations with γ < 1, we used kmax = 29/9 ≈ 57 and hence selected ∆t = 0.0009. For

γ = 1, we used a 50% wider spectrum (by reducing L); accordingly, we then used ∆t = 0.0004.
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