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Abstract

We consider numerical instability that can be observed in simulations of soli-

tons of the nonlinear Schrödinger equation (NLS) by a split-step method where

the linear part of the evolution is solved by a finite-difference discretization. The

von Neumann analysis predicts that this method is unconditionally stable on the

background of a constant-amplitude plane wave. However, simulations show that

the method can become unstable on the background of a soliton. We present an

analysis explaining this instability. Both this analysis and the features and thresh-

old of the instability are substantially different from those of the Fourier split-step

method, which computes the linear part of the NLS by a spectral discretization.

For example, the modes responsible for the numerical instability are not similar

to plane waves, as for the Fourier split-step method or, more generally, in the von

Neumann analysis. Instead, they are localized at the sides of the soliton. This also

makes them different from “physical” (as opposed to numerical) unstable modes

of nonlinear waves, which (the modes) are localized around the “core” of a soli-

tary wave. Moreover, the instability threshold for the finite-difference split-step

method is considerably relaxed compared to that for the Fourier split-step.
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1 Introduction

The split-step method (SSM), also known as the operator-splitting method, is widely

used in numerical simulations of evolutionary equations that arise in diverse areas of

science: nonlinear waves, including nonlinear optics and Bose–Einstein condensation

[1]–[3], atomic physics [4], and advection–reaction–diffusion equations [5]. In this paper

we focus on the SSM applied to the nonlinear Schrödinger equation (NLS):

iut − βuxx + γu|u|2 = 0. (1.1)

Although the real-valued constants β and γ in (1.1) can be scaled out of the equation,

we will keep them in order to distinguish the contributions of the dispersive (uxx) and

nonlinear (u|u|2) terms. Without loss of generality we will consider γ > 0 in (1.1); then

the sign of β determines whether the NLS is of the focusing or defocusing type. Bright

solitons exist for the focusing NLS (β < 0).

The idea of the SSM is that (1.1) can be easily solved analytically when either the

dispersive or the nonlinear term is set to zero. This alows one to seek an approximate nu-

merical solution of (1.1) as a sequence of steps which alternatively account for dispersion

and nonlinearity:

for n from 1 to nmax do:

ū(x) = un(x) exp
(
iγ|un(x)|2∆t

)
(nonlinear step)

un+1(x) =

{
solution of iut = βuxx at t = ∆t

with initial condition u(x, 0) = ū(x)
(dispersive step)

(1.2)

where the implementation of the dispersive step will be discussed below. In (1.2), ∆t

is the time step of the numerical integration and un(x) ≡ u(x, n∆t). Scheme (1.2) can

yield a numerical solution of (1.1) whose accuracy is O(∆t). Higher-order schemes,

yielding more accurate solutions (e.g., with accuracy O(∆t 2), O(∆t 4), etc.), are known

[6, 7, 4], but here we will restrict our attention to the lowest-order scheme (1.2); see also

the paragraph after Eq. (3.16) below.

The implementation of the dispersive step in (1.2) depends on the numerical method

by which the spatial derivative is computed. In most applications, it is computed by the

Fourier spectral method:

un+1(x) = F−1
[
exp(iβk2∆t) F [ū(x)]

]
. (1.3)

Here F and F−1 are the discrete Fourier transform and its inverse, k is the discrete

wavenumber:

−π/∆x ≤ k ≤ π/∆x, (1.4)

and ∆x is the mesh size in x. However, the spatial derivative in (1.2) can also be

computed by a finite-difference (as opposed to spectral) method [8]–[15]. For example,
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using the central-difference discretization of uxx and the Crank–Nicolson method, the

dispersion step yields:

i
umn+1 − ūm

∆t
=

β

2

(
um+1
n+1 − 2umn+1 + um−1

n+1

∆x 2
+
ūm+1 − 2ūm + ūm−1

∆x 2

)
, (1.5)

where umn ≡ u(xm, n∆t), xm is a point in the discretized spatial domain of length L:

−L/2 < xm < L/2, and ū is defined in (1.2). Recently, solving the dispersive step of

(1.2) by a finite-difference method has found an application in electronic post-processing

of optical signals in fiber telecommunications [16].

We will refer to the SSM with spectral (1.3) and finite-difference (1.5) implementa-

tions of the dispersive step in (1.2) as s-SSM and fd-SSM, respectively. Our focus in this

paper will on the fd-SSM.

In what follows we assume periodic boundary conditions:

u(−L/2, t) = u(L/2, t), ux(−L/2, t) = ux(L/2, t). (1.6)

In Sec. 5 we will justify this choice and will also comment on other types of boundary

conditions.

Weideman and Herbst [8] used the von Neumann analysis to show that both versions,

s- and fd-, of the SSM can become unstable when the background solution of the NLS

is a plane wave:

upw = (A/
√
γ) eiωpwt, A = const, ωpw = |A|2. (1.7)

Specifically, they linearized the SSM equations on the background of (1.7):

un = upw + ũn, |ũn| ≪ |un| (1.8)

and sought the numerical error in the form

ũn = Ã eλtn−ikx, Ã = const. (1.9)

The SSM is said to be unstable when for a certain wavenumber k one has: (i) Re(λ) > 0

in (1.9), but (ii) the corresponding Fourier mode in the original equation (1.1) is linearly

stable. Weideman and Herbst found that the s- and fd-SSMs on the background (1.7)

become unstable when the step size ∆t exceeds:

∆tthr, s ≈ ∆x 2/(π|β|), for s-SSM (1.2) & (1.3) (1.10)

and

∆tthr,fd = ∆x/
√

2|β|γ |A|2 only for β > 0, for fd-SSM (1.2) & (1.5) (1.11)
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Figure 1: Growth rate of numerical instability of the s-SSM (a) and fd-SSM (b) on the

plane-wave background. The dotted horizontal line indicates how the maximum growth

rate depends on the wave’s amplitude. In (a), kmπ, m = 1, 2, . . . are the wavenumbers

where the mth resonance condition holds (see [19]): |β|k2mπ∆t = mπ.

respectively. Note that for β < 0, the fd-SSM simulating a solution close to the plane

wave (1.7) is unconditionally stable. Typical dependences of the instability growth rate,

Re(λ) > 0, on the wavenumber is shown in Fig. 1. Let us emphasize that the SSM is

unstable for ∆t > ∆tthr even though both its constituent steps, (1.2) and either (1.3) or

(1.5), are numerically stable for any ∆t.

Solutions of the NLS (and of other evolution equations) that are of practical interest

are considerably more complicated than a constant-amplitude solution (1.7). To analyze

stability of a numerical method that is being used to simulate a spatially varying solution,

one often employs the so-called “principle of frozen coefficients” [17] (see also, e.g., [18]).

According to that principle, one assumes some constant value for the solution u and

then linearizes the equations of the numerical method to determine the evolution of the

numerical error (see (1.8) and (1.9)). However, as we show below, this principle applied

to the SSM fails to predict, even qualitatively, important features of the numerical

instability (NI).

In this regard we stress — and will subsequently illustrate — that a NI of a particular

method applied to a nonlinear equation depends, in general, not only on the method

and the equation, but also on the solution which is being simulated. This is similar to

the situation with linear stability analysis of particular solutions of a nonlinear equation:

some of those solutions may be stable while others may be not. For example, the plane

wave (1.7) of the NLS with β < 0 is unstable (see, e.g., [2], Sec. 5.1), while the soliton,

given by Eq. (1.12) below, is stable with respect to small perturbations of their respective

initial profiles.

As a step towards understanding NI on the background of a spatially varying solution,
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we analyzed [19] the instability of the s-SSM on the background of a soliton of the NLS:

usol(x, t) = Usol(x) e
iωsolt; (1.12a)

Usol(x) = A
√

2/γ sech (Ax/
√
−β); ωsol = A2. (1.12b)

We demonstrated that the instability growth rate in this case is very sensitive to the time

step ∆t and the length L of the spatial domain; also, its dependence on the wavenum-

ber is quite different from that shown in Fig. 1(a). Moreover, the instability on the

background of, say, two well-separated (and hence non-interacting) solitons can be com-

pletely different from that on the background of one of these solitons. To our knowledge,

such features of the NI had not been reported for other numerical methods. In partic-

ular, they could not be predicted based on the principle of frozen coefficients. In [19]

we showed that all those features could be explained by analyzing a modified linearized

NLS satisfied by the numerical error of the s-SSM with large wavenumber k:

iṽt − ωsolṽ − β(ṽxx + k2πṽ) + γ|Usol|2(2ṽ + ṽ∗) = 0, (1.13)

where ṽ(x, t) is proportional to the continuous counterpart of ũn(x) ≡ ũ(x, n∆t) defined

similarly to (1.8), and kπ is defined in the caption to Fig. 1. Note that (1.13) is similar,

but not equivalent, to the NLS linearized about the soliton:

iũt − ωsolũ− βũxx + γ|Usol|2(2ũ+ ũ∗) = 0. (1.14)

The extra k2π-term in (1.13) indicates that the potentially unstable numerical error of

the s-SSM has a wavenumber close to kπ.

In this paper we theoretically analyze the NI of the fd- (as opposed to s-) SSM on the

soliton background. We will show that, on one hand, the NI of the fd-SSM has a number

of distinctly different features both from the NI of the s-SSM and from the textbook

examples of NI of linear equations. On the other hand, properties of numerically unstable

modes of the fd-SSM are also qualitatively different from properties of physical unstable

modes in most known discrete and continuous nonlinear wave equations.

It is an understanding of how these modes “are born” and of their properties that is

the main purpose of this study. In such an investigation, it was important to discern and

take into consideration only essential features of this problem, at the expense of making

the consideration less general. Thus, we have studied a sufficiently simple equation (the

pure cubic NLS in one dimension) and its simplest solution — the soliton (1.12) —

whose profile |u(x, t)| is not constant in space. As we have noted earlier, properties of

NI of a numerical method depend not only on the simulated nonlinear equation, but

also on the background solution. Therefore, the NI mechanism that we will reveal here

does not have to universally apply to simulations of other solutions of the NLS and/or

similar equations. In fact, in subsequent parts of this study, we will analyze NI of a
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moving (as opposed to standing) soliton of the NLS (in Part II) and of standing and

oscillating solitons of the NLS with a bounded potential (in Part III). The NI of a

moving soliton will be shown (perhaps surprisingly) to be completely different from that

of the standing soliton, while the NI in Part III will exhibit some differences from the

NI considered here. Yet, despite our results being solution-specific, we believe that an

important contribution of the present work is in showing a methodology of how to analyze

NI of various finite-difference numerical methods (not only the fd-SSM), which can be

applied to more complicated equations (e.g., the NLS in two or three dimensions).

Our analysis is based on an equation for the large-k numerical error which, as (1.13),

is a modified form of the linearized NLS. However, both that equation and its analysis

are substantially different from those for the s-SSM [19]. In particular, the modes that

render the s- and fd-SSMs unstable are qualitatively different. Namely, for the s-SSM,

the numerically unstable modes contain just a few Fourier harmonics and hence are not

spatially localized; they resemble plane waves. On the contrary, the modes making the

fd-SSM unstable are localized and are supported by the sides (i.e., “tails”) of the soliton.

To our knowledge, such “tail-supported” localized modes, as opposed to those supported

by the soliton’s core, have not been reported before in any other system.

The discussion in the previous paragraph is meant to emphasize that we adopt the

nonlinear waves community’s approach to studying the NI of the SSM. Namely, the

numerically unstable modes that we find are just counterparts of unstable modes of soli-

tary waves, except that they occur not due to real physical reasons but due to numerical

discretization. By finding those modes, we are also able to estimate a threshold for their

instability, as well as their growth rate. Knowing the threshold allows one to take the

time step small enough to avoid NI. In addition, knowing the NI growth rate may also

be useful because, as we will show in Parts II and III, the NI may be so weak that it does

not affect the simulated solution for a long time. In those cases, numerical simulations

will produce valid results even if the integration time step exceeds the NI threshold.

Using this observation would reduce the computational time.

Our approach should be contrasted with that of the numerical analysis community,

where one would focus on obtaining estimates that would guarantee stability for some

very broad class (say, localized) solutions of the NLS. Such an approach for a problem

similar to the one considered here was used, e.g., in [13]. Its main result will be compared

with ours in Sec. 5.

The main part of this manuscript is organized as follows. In Sec. 2 we present

simulation results showing the development of NI of the fd-SSM applied to the soliton

(1.12). In Sec. 3 we derive an equation (a counterpart of (1.13)) governing the evolution

of the numerical error, and in Sec. 4 obtain its localized solutions that grow exponentially

in time. Conclusions of our work are summarized in Sec. 5. In Appendices A and B we
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discuss technical issues of solving an eigenvalue problem, Eq. (4.2) below. In Appendix

C we discuss how the NI sets in.

2 Numerical experiments

We simulated Eq. (1.1) with β = −1, γ = 2, and the periodic boundary conditions (1.6)

via the fd-SSM algorithm (1.2) & (1.5). The domain length was set as L = 40 in all

simulations reported below. The initial condition was the soliton (1.12) with A = 1:

u0(x) = sech (x) + ξ(x); (2.1)

the noise component ξ(x) with zero mean and the standard deviation 10−10 was added

in order to reveal the unstable Fourier components sooner than if they had developed

from a round-off error.

Below we report results for two values of the spatial mesh size ∆x = L/N , where N

is the number of grid points. We used N = 29 and N = 210, which yielded ∆x ≈ 0.078

and ∆x ≈ 0.039, respectively. We verified that, for a fixed ∆x, the growth rate of

the NI and parameters of unstable modes, to be described below, are insensitive to the

domain’s length L (unlike they are for the s-SSM [19]) as long as L is sufficiently large.

Also, at least for the selected values of ∆x in the range ∆x ∈ (0.009, 0.078) that we have

considered, these quantities depend on ∆x monotonically (again, unlike for the s-SSM).

First, let us remind the reader that the analysis of [8] on a constant-amplitude

background (1.7) for β < 0 predicted that the fd-SSM should be stable for any ∆t.1 For

the soliton initial condition (2.1), which exists also for β < 0, and for the parameters

stated above, our simulations show that the numerical method becomes unstable for

∆t > ∆x. Clearly, this result could not have been predicted by the method of frozen

coefficients.

For future use we introduce a notation:

C = (∆t/∆x)2 . (2.2)

In Fig. 2(a) we show the Fourier spectrum of the numerical solution of (1.1), (2.1)

obtained by the fd-SSM with C = 0.95 (i.e., slightly below the instability threshold) at

t = 100, 000. It shows no trace of NI: the amplitudes of Fourier harmonics beyond the

soliton’s spectrum remains at the noise floor level. Figure 2(b) shows the spectrum of

the numerical solution obtained with C = 1.05 (i.e., slightly above the NI threshold) at

t = 800. The numerically unstable modes are seen near the edges of the spectral axis.

1Note that the stability of instability of the numerical method is in no way related to that of the actual

solution. In fact, the plane wave (1.7) is modulationally unstable for β < 0, while it is modulationally

stable for β > 0.
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At t = 1000, these modes are still small enough so as not to cause visible damage to the

soliton: see the solid curve in Fig. 2(c). However, at a later time, the soliton begins to

drift: see the dashed line in Fig. 2(c), that shows the numerical solution at t = 1100.

Such a drift may persist over a long time: e.g., for C = 1.05, the soliton still keeps on

moving at t ∼ 4000. However, eventually it gets overcome by noise and loses its identity.
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Figure 2: (a), (b): Fourier spectra of the stable (a) and unstable (b) numerical solutions

of (1.1) with initial condition (2.1). (c): Effect of numerically unstable modes on the

soliton. Details are presented in the text.

We observed the same scenario for several different values of ∆x, L, and C (for

C > 1). The direction of the soliton’s drift appears to be determined by the initial

noise; this direction is not affected by the placement of the initial soliton closer to

either boundary of the spatial domain. The time when the drift’s onset becomes visible

decreases, and the drift’s velocity increases, as C increases.

The soliton’s drift is a nonlinear stage of the development of the numerical instability

and will be explained in Sec. 4.2. In the linear stage, the numerically unstable modes

are still small enough so that they do not visibly affect the soliton or one another. To

describe this stage, we computed a numeric approximation to the instability growth rate

Re(λ) defined in (1.9):

Re (λ)|computed =

ln

(
max |F [u](k)| for

k ∼ kmax at time= t

)
− ln

(
noise floor

at time= 0

)
t

, (2.3)

where kmax = π/∆x (see (1.4)). The so computed values of the instability growth rate

are shown in Fig. 3 along with the results of a semi-analytical calculation presented in

Sec. 4.1. It is worth pointing out that, especially near the NI threshold, the NI growth

rate increases as ∆x becomes smaller (for a given C).

The above numerical results motivate the following three questions: (i) explain the

observed instability threshold ∆t (see the sentence before (2.2)); (ii) identify the modes

responsible for the NI; and (iii) calculate the instability growth rate (see Fig. 3). In Sec. 4

we will give an approximate analytical answer to question (i). Answers to questions (ii)
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Figure 3: Growth rate of the NI for ∆x ≈ 0.078 (solid line — analysis of Sec. 4, stars

— computed by (2.3)) and for ∆x ≈ 0.039 (dashed line — analysis of Sec. 4, circles —

computed by (2.3)).

and (iii) will be obtained only semi-analytically, i.e., via numerical solution of a certain

eigenvalue problem.

3 Derivation of equation for numerical error

Here we will derive a modified linearized NLS— Eq. (3.15) below— for a small numerical

error with a high wavenumber, when the fd-SSM simulates an initial condition close to

the soliton, (2.1). This modified equation will be a counterpart of (1.13), which was

obtained for the s-SSM in [19]. The key difference between (1.13) and (3.15) occurs

due to the following. In view of periodic boundary conditions (1.6), the finite-difference

implementation (1.5) of the dispersive step in (1.2) can be written as

un+1(x) = F−1
[
eiP (k)F [ū(x)]

]
, (3.1)

eiP (k) ≡ 1 + 2iβr sin2(k∆x/2)

1− 2iβr sin2(k∆x/2)
= exp

[
2i arctan

(
2βr sin2(k∆x/2)

)]
, r =

∆t

∆x 2
,

(3.2)

where F , F−1 were defined after (1.3). For |k∆x| ≪ 1, the exponent in (3.2) equals that

in (1.3). However, for |k∆x| > 1, they differ substantially: see Fig. 4. It is this difference

that leads to the instabilities of the s- and fd-SSMs being qualitatively different.

Using Eqs. (1.2) and (3.1), one can write, similarly to Eq. (3.1) in [19], a linear

equation satisfied by a small numerical error ũn of the fd-SSM with an arbitrary k:

F [ũn+1] = eiP (k)F
[
eiγ|ub|2∆t

(
ũn + iγ∆t(u2bũ

∗
n + |ub|2ũn)

) ]
. (3.3)

Here ũn is defined similarly to (1.8), with ub being either upw or usol, depending on the

background solution. The exponential growth of ũn can occur only if there is sufficiently
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Figure 4: Normalized phase: |β|k2∆t for the s-SSM (dashed) and as given by (3.2) for

the fd-SSM (solid). In both cases, r = 5. The horizontal line indicates the condition of

the first resonance: |P (k)| = π.

strong coupling between ũn and ũ∗n in (3.3). This coupling is the strongest when the

temporal rate of change of the relative phase between those two terms is minimized. In

[19] we showed that this rate can be small only for those k where the exponent P (k) is

close to a multiple of π. Using (3.2) (see also Fig. 4), we see that this can occur only for

sufficiently high k where sin2(k∆x/2) = O(1) rather than O(∆x 2). Then, expanding in

powers of (1/r), one has:

−P (k) = π − 1

|β|r sin2(k∆x/2)
+O

(
1

r3

)
= π − 1

|β|r
− (k − kmax)

2∆x 2

4|β|r
+O

(
1

r3
+

(
(k − kmax)∆x

)4
r

)
, (3.4)

where kmax = π/∆x; also recall that β < 0. We have also used that

r = ∆t/∆x 2 = C/∆t≫ 1, (3.5)

given that the NI was observed in Sec. 2 for C = O(1).

We will now discuss which terms in (3.4) should be retained. First of all, in order to

neglect the entire O-term, one needs to require that

(k − kmax)
2∆x 2 ≪ O(1), (3.6a)

where we have also used (3.5) to neglect the O(1/r3)-term. Next, if we keep the third

term on the right-hand side (r.h.s.) of (3.4), it should be greater (in the order of

magnitude sense) than the discarded O-term, whence

(k − kmax)
2∆x 2 ≫ O(1/r2) = O(∆x2). (3.6b)
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It is not particularly important where in the range defined by (3.6a) and (3.6b) the value

of (k − kmax)
2∆x 2 should be. For example, if we take it in the middle of that range:

|k − kmax| = O(1/
√
∆x). (3.6c)

then the three terms on the r.h.s. of (3.4) have orders of magnitude O(1), O(∆x), and

O(∆x2). What is important is that we have chosen to keep the third term in (3.4) and

hence required (3.6b). We stress that this choice has followed not from our derivation

but rather from our numerical results, as illustrated by Fig. 2(b). Indeed, one sees from

that figure that the width of the bands of unstable modes, i.e. |k−kmax|, is significantly
greater than the spectral width of the soliton, which is of order one. Let us note that in

Part II of this study we will encounter a situation where, in contrast to the above, the

third term on the r.h.s. of (3.4) will not need to be kept. As here, this conclusion will

be based on numerics. At present we do not know how to predict the spectral width

of unstable bands from analytic considerations taking into account only the form of the

background solution.

Substituting the first three terms on the r.h.s. of (3.4) into (3.3), using (3.5), and

introducing a new variable

ṽn =
(
e−iπ

)n
ũn = (−1)nũn, (3.7)

one obtains:

F [ṽn+1] = exp

(
− i∆t
Cβ

{
1 +

(k − kmax)
2∆x 2

4

})
×

F
[
eiγ|ub|2∆t

{
ṽn + iγ∆t(u2bṽ

∗
n + |ub|2ṽn)

} ]
. (3.8)

Note that (3.8) describes a small change of ṽn occurring over the step ∆t, because for

∆t→ 0, the r.h.s. of that equation reduces to F [ṽn]. Therefore we can approximate the

difference equation (3.8) by a differential equation, as we will now explain.

First, recall from (3.6a) that the wavenumbers of ṽn are on the order of kmax; hence

we seek2

ṽn(x) = eikmaxx w̃n(x). (3.9)

The effective wavenumber of w̃n is then (k − kmax), and according to (3.6a) w̃n varies

slowly over the scale O(∆x). Introducing the scaled variables by

χ = x/ϵ, ksc = (k − kmax)ϵ, ϵ = ∆x/2, (3.10)

2Strictly speaking, since the spectrum of the numerical error is symmetric relative to k = 0, as seen

from Fig. 2(b), one should have assumed ṽn(x) = exp[ikmaxx] w̃
+
n (x) + exp[−ikmaxx] w̃

−
n (x) instead of

(3.9). However, both approaches can be shown to lead to the same conclusions and hence here we will

use the simpler one based on (3.9).
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one rewrites (3.8) as:

Fsc[w̃n+1] = exp

(
−i∆t
Cβ

{1 + k2sc}
)

Fsc

[
eiγ|ub|2∆t

{
w̃n + iγ∆t(u2bw̃

∗
n + |ub|2w̃n)

} ]
,

(3.11)

where now Fsc is the Fourier transform with respect to the scaled variables (3.10). In

handling the ṽ∗n term in (3.8), we have used the fact that on the spatial grid xm = m∆x,

one has:

ṽ∗n(xm) = e−ikmaxxmw̃∗
n(xm) = e−iπmw̃∗

n(xm) = eiπmw̃∗
n(xm) = eikmaxxmw̃∗

n(xm).

Second, note that the s-SSM (1.2), (1.3) can be written as

F [un+1] = eiβk
2∆t F

[
eiγ|u|

2∆t u
]
. (3.12)

When |β|k2∆t ≪ 1 and γ|u|2∆t ≪ 1, this is equivalent to the NLS (1.1) plus a term

proportional to

∆t
[
β∂2x, γ|u|2

]
− u+O(∆t 2), (3.13)

where [. . . , . . .]− denotes a commutator (see, e.g., Sec. 2.4 in [2]). Equation (3.11) has

the form of a linearized Eq. (3.12) with a different coefficient in the dispersion term

and with an extra phase. Therefore, (3.11) must be equivalent3 to a modified linearized

NLS, with the modification affecting only the corresponding terms:

iw̃t + (w̃χχ − w̃)/(Cβ) + γ(u2bw̃
∗ + 2|ub|2w̃) = 0, (3.14)

plus a O(∆t)-term proportional to the linearized form of the commutator (3.13). Ne-

glecting that latter term in comparison to the O(1)-terms in (3.14) and denoting ψ =

w̃ exp(−iωbt) to eliminate the explicit time dependence in the u2bw̃
∗-term, we rewrite

(3.14) as:

iψt + δψ + ψχχ/(Cβ) + γU2
b(ϵχ) (2ψ + ψ∗) = 0, (3.15)

where

δ = −ωb − 1/(Cβ). (3.16)

Here ωb is either ωpw or ωsol, and Ub is either constant or Usol, depending on whether the

background solution is a plane wave (1.7) or a soliton (1.12). The modified linearized

NLS (3.15) for the fd-SSM is the counterpart of Eq. (1.13) that was derived for the

s-SSM.

Our subsequent analysis of the instability of the first-order accurate fd-SSM (1.2) &

(1.5) will be based on Eq. (3.15). The instability of the second-order accurate version of

this method, where the order of the nonlinear and dispersive steps is alternated in any

3This was confirmed by direct and tedious Taylor expansion of w̃n+1 in (3.11).
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two consecutive full time steps [6], is the same as that of the first-order version. The

instability of higher-order versions (e.g., O(∆t 4)-accurate) can be studied similarly to

how that was done in Ref. [19] for the s-SSM.

The boundary conditions satisfied by ψ are still periodic:

ψ(−L/(2ϵ), t) = ψ(L/(2ϵ), t), ψχ(−L/(2ϵ), t) = ψχ(L/(2ϵ), t). (3.17)

This follows from the fact that ũn(x) satisfies the periodic boundary conditions (1.6)

and from (3.9), given that for kmax = π/∆x and L/2 =M∆x with some integer M ,

e−ikmaxL/2 = e−iMπ = eiMπ = eikmaxL/2.

There are three differences between Eq. (3.15) and the linearized NLS (1.14). Most

importantly, (3.15) has the opposite sign of the dispersion term. This is explained by

the shape of the curve P (k) for the fd-SSM in Fig. 4 at high wavenumbers, where the

curvature is opposite to that at k ≈ 0. Secondly, unlike the (−ωsol)-term in (1.14), the

δ-term in (3.15) with β < 0 can be either positive or negative, depending on the value

of C. Thirdly, the “potential” U2
b(ϵχ) (when Ub ≡ Usol) is a slow function of the scaled

variable χ. That is, solutions of (3.15) that vary on the scale χ = O(1) “see” the soliton

as being very wide.

Before proceeding to find unstable modes of Eq. (3.15) with Ub ≡ Usol, let us note

that (3.15) with Ub = const confirms the result of Ref. [8] regarding the instability of the

fd-SSM on the plane-wave background. Namely, for β < 0, Eq. (3.15) with Ub = const

describes the evolution of a small perturbation to the plane wave in the modulationally

stable case (see, e.g., Sec. 5.1 in [2]). That is, for β < 0, there is no NI, in agreement

with [8]. On the other hand, for β > 0, Eq. (3.15) describes the evolution of a small

perturbation in the modulationally unstable case, and hence the plane wave of the NLS

(1.1) can become numerically unstable. The corresponding instability growth rate found

from (3.15) and Eq. (5.1.8) of [2] can be shown to agree with the one that can be obtained

from Eq. (37) and the next two unnumbered relations in [8]. An example of this growth

rate is shown in Fig. 1(b). Also, using our (3.15) and Eq. (5.1.8) of Ref. [2], the threshold

value of ∆t can be shown to be given by (1.11), in agreement with [8].

4 Analysis of NI on background of soliton

4.1 Unstable modes of modified linearized NLS (3.15)

For the soliton, Ub in (3.15) equals Usol given by (1.12). Substituting into (3.15) and its

complex conjugate the standard ansatz [20] (ψ(χ, t), ψ∗(χ, t)) = (ϕ1(χ), ϕ2(χ)) e
λt and
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using yet another rescaling:

X =
A√
−β

χ ≡ 2A√
−β

x

∆x
, D = −Cβ

2

A2
δ ≡ β2

(
1

βA2
+ C

)
,

Λ =
Cβ2

A2
λ, V (y) = 2Cβ2sech 2(y),

(4.1)

one obtains: (
∂2X +D − V (ϵX)

(
2 1

1 2

))
ϕ⃗ = iΛσ3ϕ⃗, (4.2)

where σ3 = diag(1,−1) is a Pauli matrix, ϕ⃗ = (ϕ1, ϕ2)
T , and T stands for a transpose. If

(ϕ⃗, Λ) is an eigenpair of (4.2), then so are (σ1ϕ⃗, −Λ), (ϕ⃗∗, −Λ∗), and (σ1ϕ⃗
∗, Λ∗), where

σ1 =

(
0 1

1 0

)
is another Pauli matrix. Note also that λ is defined in the same way as in (1.9); hence

Re(Λ) ̸= 0 indicates an instability. Below we will use shorthand notations ΛR = Re(Λ)

and ΛI = Im(Λ).

We begin analysis of (4.2) with two remarks. First, this equation is qualitatively

different from an analogous equation that arises in studies of stability of both bright

[20] and dark [21] NLS solitons in that the relative sign of the first and third terms

of (4.2) is opposite of that in [20, 21]. This fact is the main reason why the unstable

modes supported by (4.2) are qualitatively different from unstable modes of linearized

NLS-type equations, as we will see below. While the latter modes are supported by the

soliton’s core (see, e.g., Fig. 3 in [22]), the unstable modes of (4.2) are supported by the

soliton’s “tails”.

Second, from (4.2) and (4.1) one can easily establish the minimum value of parameter

C where an instability (i.e., ΛR ̸= 0) can occur. The matrix operators on both sides

of (4.2) are Hermitian; the operator σ3 on the r.h.s. is not sign definite. Then the

eigenvalues Λ are guaranteed to be purely imaginary when the operator on the l.h.s. is

sign definite [23]; otherwise they may be complex. The third term on the l.h.s. of (4.2)

is negative definite, and so is the first term in view of (3.17). The second term, D, is

negative when

C < 1/(|β|A2). (4.3)

Thus, (2.2) and (4.3) yield the stability condition of the fd-SSM on the background of

a soliton. We will show later that an unstable mode indeed first arises when C just

slightly exceeds the r.h.s. of (4.3).

Since the potential term in (4.2) is a slow function of X, it may seem natural to

employ the Wentzel–Kramers–Brillouin (WKB) method to analyze it. In Appendix A

we show that, unfortunately, the WKB method fails to yield an analytic form of unstable
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modes of (4.2). Yet, as we also show there, it allows one to predict that localized modes

of (4.2) cannot exist around the soliton’s core and thus may only exist at the soliton’s

sides.

In Fig. 5 we show the first (i.e., corresponding to the greatest ΛR) such a mode for

L = 40, N = 29 points (hence ϵ = ∆x/2 ≈ 0.04), A = 1, β = −1, γ = 2. For these

parameters, the threshold given by the r.h.s. of (4.3) is C = 1, and parameter D in (4.2)

is related to C by:

D = C − 1. (4.4)

The numerical method of solving (4.2) is described in Appendix B, and the modes found

by this method are shown in Fig. 5(a) for different values of C. In Fig. 5(b) we show

the same modes obtained from the numerical solution of the NLS (1.1) by the fd-SSM.

These modes were extracted from the numerical solution by a high-pass filter, and then

the highest-frequency harmonic was factored out as per (3.9). The agreement between

Figs. 5(a) and 5(b) is seen to be good. Note that Fig. 5 shows, essentially, the envelope

of the unstable mode. The mode not extracted from the numerical solution is shown in

Fig. 6(a); it can also be seen at the “tails” of the soliton in Fig. 2(c).

In Fig. 6(b) we show the location of the peak of the envelope of the first unstable

mode, computed both from (4.2) and from the numerical solution of (1.1), versus pa-

rameter C. The corresponding values of the instability growth rate λ were shown earlier

in Fig. 3. Let us stress that λ for the localized modes of (4.2) was found to be purely

real up to the computer’s round-off error (∼ 10−15). There also exist unstable modes

with complex λ, but such modes were found to be not localized and to have smaller

growth rates than the localized modes.

As C increases from the critical value given by (4.3), the localized unstable mode

becomes narrower and also moves toward the center of the soliton. Moreover, higher-

order localized modes of (4.2) arise. Typical profiles of the second and third modes are

shown in Fig. 7, along with the parameter C for which such modes first become localized

within the spatial domain. In Appendix C we demonstrate that the process of “birth” of

an eigenmode that eventually (i.e., with the increase of C) becomes localized, is rather

complicated. In particular, it is difficult to pinpoint the exact value of parameter C

where such a mode appears. Therefore, the C values shown in Fig. 7 are accurate only

up to the second decimal place.

4.2 Effect of unstable modes on soliton

Let us now show how our results can qualitatively explain the observed dynamics of the

numerically unstable soliton — see the text after Eq. (2.2) and Fig. 2(c). Let ũunst be

15



−5 0 5 10 15 20
x

 

 

 C=1.02

 C=1.05

 C=1.20

potential

(a)

−5 0 5 10 15 20
x

 

 

 C=1.02

 C=1.05

 C=1.20

potential

(b)

−5 0 5
x

 

 

(c)

C=1.2

C=1.5

Figure 5: (a) Envelopes of the first localized mode on the right side of the soliton for

different values of C, as found by the numerical method of Appendix B. (b) Same as in

(a), but found from the numerical solution of (1.1), as explained in the text. (c) The

modes at both sides of the soliton found from the numerical solution of (1.1). Note that

these modes do not “see” each other because of the barrier created by the soliton, and

hence in general have different amplitudes as they develop from independent noise seeds.

In all panels, the potential is sech 2(ϵX) (see (4.1)) and the amplitude of the mode is

normalized to that of the potential.

the field of the unstable modes at the soliton’s sides. At an early stage of the instabilty,

it is much less than the amplitude of the soliton: |ũunst| ≪ A. Also, its characteristic

wavenumbers are much greater than those of the soliton: see Fig. 2(b) and (3.6). Then,

to determine its effect on the soliton, one substitutes u = usol + uunst into the NLS (1.1)

and discards all the high-wavenumber terms to obtain:

i(usol)t − β(usol)xx + γusol|usol|2 = −2γusol|uunst|2. (4.5)

This is the equation for a perturbed soliton with the perturbation being, in general, not

symmetric about the soliton’s center (see Fig. 5(c)). Indeed, the modes on the left and

right sides of the soliton do not “see” each other through the wide barrier created by the

soliton’s core and hence can have different amplitudes. Such an asymmetric perturbation

is known (see, e.g., [2], Sec. 5.4.1) to cause the soliton to move, which is precisely the

effect reported in Fig. 2(c).

5 Conclusions

The main contribution of this work is the development of the (in)stability analysis of

the fd-SSM beyond the von Neumann (i.e., constant-coefficient) approximation. As

previously for the s-SSM [19], our analysis is based on a modified equation for the

Fourier modes of the numerical error that approximately satisfy the resonance condition

|β|k2∆t = π. (5.1)
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Figure 6: (a) The numerical solution for t = 1500 and the same parameters as in Fig. 5,

with C = 1.05. (b) Location of the peak of the envelope of the first localized mode,

found by the method of Appendix B (solid line) and from the solution of (1.1) (stars).

Similar data for L = 40 and N = 210 are very close and hence are not shown.

Analyzing the (in)stability of the fd-SSM then proceeds similarly to the (in)stability

analysis of nonlinear waves, i.e., by solving an eigenvalue problem with a spatially-

varying potential. In view of this it is clear that properties of NI and, in particular, its

threshold, depend on the simulated solution and thus cannot be expected to be univer-

sally applicable to all solutions. In this part of our study, we explained the mechanism

and generic features of the NI for the standing soliton of the NLS.

The modified equation for the numerical error, Eq. (3.15), is different from the anal-

ogous modified equation, (1.13), for the s-SSM. Their analyses are also qualitatively

different, and so are the modes that are found to cause the instability of these two

numerical methods. For the s-SSM, these modes are almost monochromatic (i.e., non-

localized) waves ∼ exp(±ikx) that “pass” through the soliton very quickly. It is this

scattering of those waves on the soliton that was shown [19] to lead to their instability.

In contrast, for the fd-SSM considered in this work, the dominant unstable modes are

stationary relative to the soliton. Moreover, they are localized at the sides, as opposed

to the core, of the soliton. To our knowledge, such localized modes were not reported

before in studies of instability of nonlinear waves.

Since both the soliton and the unstable modes are localized, it is intuitively clear

that using boundary conditions other than periodic ones, (1.6), should not affect the NI.

We have verified and confirmed this for zero Dirichlet boundary conditions.

Equation (4.3) provides an approximate threshold of the NI, and our simulations,

reported in Sec. 2 and Appendix C, confirmed that an NI does indeed occur just slightly

above it. According to (4.3) and (2.2), our threshold yields the following relation between
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Figure 7: Similar to Fig. 5(a), but for the second (a) and third (b) localized modes. (c):

C values where localized modes of increasing order appear. Stars — for ϵ = 40/1024,

circles — for ϵ = 40/2048.

the time step and spatial mesh size: ∆t = O(∆x). Recently, a qualitatively different

NI threshold was established in [13] (see Eq. (2.9) there) by a different method, yielding

∆t = O(∆x2). Clearly, our threshold is sharper. However, both analyses, that of [13]

and ours, have limitations, which we will briefly discuss below.

The limitation of our analysis is that it is strictly valid only when the initial condition

is infinitesimally close to the soliton. In particular, this implies that it is also strictly

valid only in the limit ∆x → 0, because it is only then that the discretization error

of the fd-SSM is infinitesimally small.4 We verified this conclusion by simulating the

initial condition (2.1) for C = 0.99 (i.e. for ∆t being 0.5% below the threshold (4.3))

up to t = 100, 000. The parameters were the same as in Sec. 2, except that we repeated

the simulations for N = 210 and 211. Note that reducing ∆x = L/N by the factor of

2 reduces the discretization error, mostly caused by the Crank–Nicolson scheme (1.5),

by the factor of 4. For N = 210 (∆x ≈ 0.039), numerically unstable modes became

discernible above the noise floor5 around t = 50, 000 and have grown by one order of

magnitude by t = 100, 000. (The result of a similar experiment for C = 0.95 is shown

in Fig. 2(a), where no NI is visible.) For N = 211 (∆x ≈ 0.019), no trace of NI appears

at t = 100, 000.

In contrast, the analysis of [13] does not require the initial deviation from the soliton

to be infinitesimally small. (However, it makes a restrictive assumption of it being an

even function: ũ(−x) = ũ(x).) The price that one pays for removing that requirement

4A small but finite discretization error may cause NI in an indirect way, as follows. It will interact

with the soliton and cause its oscillations (which may be almost indiscernible); in Part III of this study

we will show that NI of an oscillating soliton is manifested somewhat differently from that of the exact

stationary soliton. We emphasize that a discretization error would not cause NI directly because its

spectral content is similar to that of the soliton and hence has only infinitesimally small amount of

high-k harmonics, which are the only ones that can become unstable.
5An explanation of this delayed appearance of NI will be presented in Parts II and III of this study.
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is that the corresponding threshold, ∆t = O(∆x2), is too conservative. A detailed study

of the NI threshold for initial conditions that are not infinitesimally close to the soliton,

and also for a generalized NLS, will be presented in Part III of this study.
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Appendix A: Eq. (4.2) not amenable to WKB, yet

qualitatively predicts localized modes at soliton’s sides

Away from “turning points” (see below) the WKB-type solution of (4.2) is:

ϕ⃗ =
(
a+e

θ+/ϵ + b+e
−θ+/ϵ

)
φ⃗+ +

(
a−e

θ−/ϵ + b−e
−θ−/ϵ

)
φ⃗−, (A.1)

where a±, b± are some constants, and

(θ′±)
2 = −D + 2V ±

√
V 2 − Λ2, V ≡ V (ϵX), θ′ ≡ dθ/d(ϵX), (A.2a)

φ⃗± =
1

[(θ′±)
2(V 2 − Λ2)]1/4

 √
Λ±

√
Λ2 − V 2

−i
√
Λ∓

√
Λ2 − V 2

 . (A.2b)

At a turning point, say, X = X0, the solution (A.1), (A.2) breaks down, which can

occur because the denominator in (A.2b) vanishes. In such a case, one needs to obtain

a solution of (4.2) in a transition region around the turning point by expanding the

potential: V (ϵX) = V (ϵX0) + ϵ(X −X0)V
′(ϵX0) + . . ., and then solving the resulting

approximate equation. For a single linear Schrödinger equation, a well-known solution

of this type is given by the Airy function. This solution is used to “connect” the so far

arbitrary constants a±, b± in (A.1) on both sides of the turning point.

Now a turning point of (4.2) is where: either (i) θ′+ = 0 or θ′− = 0, or (ii) (V (ϵX))2−
Λ2 = 0. The former case can be shown (see, e.g., [24]) to reduce to the single Schrödinger

equation case, where the solution in the transition region is given by the Airy function.

However, at present, no such transitional solution is analytically available in case (ii)6

[25, 26]. Therefore, the solutions (A.1) canot be “connected” by an analytic formula

across such a turning point, and hence one cannot find the eigenpairs (ϕ⃗, Λ) analytically.

Let us now show that if solutions (A.1) are localized, as we expect of unstable modes,

then they cannot exist at the soliton’s core and thus may only exist at its sides. Indeed,

6Note that in this case, (V 2 − Λ2)1/4φ⃗+ and (V 2 − Λ2)1/4φ⃗− are linearly dependent.
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assume, for simplicity, that ΛR ̸= 0 and ΛI = 0 for a localized mode (the same conclusion

as below can also be reached for ΛI ̸= 0). Note that just above the instability threshold,

D is small (see (4.1) and (4.3)), and so is Λ. Now, near the soliton’s core, V (ϵX) = O(1),

and hence from (A.2a) one sees that there θ2± > 0. Thus, both θ± are real, and hence

the corresponding (A.1) would grow exponentially away from the soliton’s core. This,

however, is not possible because on the scale of Eq. (4.2), the soliton is very wide, and

then a mode growing away from its center would become exponentially large before it

reaches the turning point. Thus, the only possibility for a localized mode of (4.2) is to

be centered at some point at the soliton’s side and decay in both directions away from

that point. A straightforward but tedious analysis shows that this is indeed possible

when D > 0 and ΛR ̸= 0, and is confirmed by Fig. 5.

Appendix B: Numerical solution of eigenproblem (4.2)

We multiply both sides of (4.2) by σ3 and discretize it using Numerov’s method, which

approximates the equation ΦXX = F (Φ, X) by a finite-difference scheme

Φm+1 − 2Φm + Φm−1 =
∆X 2

12

(
Fm+1 + 10Fm + Fm−1

)
(B.1)

with accuracy O(∆X 4). Here Φm ≡ Φ(Xm), F
m ≡ F (Φm, Xm), etc., and Xm are points

in the X-, not x-, domain, with m = 1, . . . ,M − 1. Note that the number of grid

points, M , in the X-domain is much greater than the number of grid points, N , in

the x-domain, because X ∝ x/ϵ; see (4.1), (3.10). Then, for the discretized solution

fk = [ϕ1
k, . . . , ϕ

M−1
k ]T (k = 1, 2) one obtains:

(−1)k−1

([
1

∆X 2
A+N {DI − 2V}

]
fk − N V f3−k

)
= iΛN fk. (B.2)

Here all matrices, denoted by script letters, have size (M − 1) × (M − 1): I is the

identity matrix; A is a circulant matrix with (−2) on the main diagonal, (+1) on

the sub- and super-diagonals and in the corner (i.e., (1,M − 1)th and (M − 1, 1)th)

entries, and the rest of the entries being zero; N has a similar structure to A with

Nm,m = 10/12 (see (B.1)), N(m−1),m = Nm,(m−1) = 1/12, N1,(M−1) = N(M−1),1 = 1/12;

and V = diag(V 1, . . . , V M−1). Next, defining the combined vector and matrices:

f̂ =

[
f1

f2

]
, Â =

(
A O
O A

)
, N̂ =

(
N O
O N

)
,

V̂ =

(
2V V
V 2V

)
, σ̂3 =

(
I O
O −I

)
,
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where O is the (M − 1)× (M − 1) zero matrix, one rewrites (B.2) as:

σ̂3

[
1

∆X 2
Â+DN̂ − N̂ V̂

]
f̂ = iΛN̂ f̂ . (B.3)

This equation has the form of the generalized eigenvalue problem G f̂ = λHf̂ where

H = N̂ is a positive definite matrix. This problem can be solved by Matlab’s command

eigs. As its options, we specified that 108 smallest-magnitude eigenvalues and the

corresponding eigenmodes needed to be computed. Among them, we looked only at

those with complex Λ. Beyond the instability threshold there are several such modes.

We visually inspected them and found that the most unstable mode was also the most

localized and also had a real eigenvalue. Finally, we verified that the eigenvalues did

not change to five significant figures whether we used ∆X = 1/10 or 1/20; so we used

∆X = 1/10.

Appendix C: “Birth” of localized unstable mode

The NI growth rates plotted in Fig. 3 are monotonic functions of the parameter C.

This, however, occurs only when C is sufficiently beyond the threshold value given by

(4.3). Here we will focus on the evolution of eigenvalues with ΛR ̸= 0 very close to

that threshold. We will show that “birth” of a localized unstable mode occurs in two

main stages. First, there is a stage where one or several modes with complex or even

purely real eigenvalues appear and disappear as C is increased. These modes are not

localized. Then, past some value which we denote Ccr, a mode with a real Λ > 0 is

“born”, and its eigenvalue quickly (in C) becomes dominant, i.e., begins to significantly

exceed real parts of all other eigenvalues except one (which is “born” slightly later).

Once the dominance of this pair of eigenvalues occurs, their modes become localized. It

is these modes (which almost coincide for suffiently large C − Ccr; see below) that are

shown in Fig. 5.

This two-stage process is quite different from a single bifurcation that typically takes

place when an unstable mode of a nonlinear wave is “born” (see, e.g., [27]). Our analysis

may suggest that this difference results from the finite length, L, of our domain, and

thus details of the instability development may be similar to those for a breather on

a finite lattice [28]. However, a thorough understanding of this issue remains an open

problem.

Results presented below are for L = 40, N = 29 (i.e., ϵ = 40/1024 ≈ 0.04); the rest of

parameters is the same as listed in Sec. 2. Parameters C and D are then related by (4.4):

D = C − 1. By solving (4.2) numerically as described in Appendix B, we observed that

eigenmodes with ΛR ̸= 0 are “born” in two ways. One is when two imaginary eigenvalues

±iΛI “collide” at the origin (i.e., ΛI → 0) and thereby give rise to two real ones. The
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other way is a “collision” of two imaginary eigenvalues iΛI1 and iΛI2 away from the

origin (i.e., iΛI1 → iΛI2 ̸= 0). In that case two complex eigenvalues are “born”.7 The

very first (i.e., for the smallest C) unstable mode is created in the former way. We will

now show that this mode is essentially non-localized and, moreover, it is not the mode

that eventually becomes the dominant unstable mode. However, to partially understand

creation of the latter mode at Ccr, we need to first discuss the former one.

This earliest, non-localized, mode is created from Λ = 0. Indeed, for Λ = 0, Eq. (4.2)

can be split into two uncoupled linear Schrödinger equations:(
∂2X +D − ν± V (ϵX)

)
ϕ± = 0, ϕ± = ϕ1 ± ϕ2, (C.1a)

where ν− = 1 and ν+ = 3. Note that, as per (3.17), ϕ± satisfy the periodic boundary

conditions:

ϕ±(−L/(2ϵ)) = ϕ±(L/(2ϵ)). (C.1b)

In Fig. 8(a) we show an example of a nontrivial solution of (C.1). In view of the

periodic boundary conditions, this figure is equivalent to Fig. 8(b). Recall from Sec. 4

that the eigenmode is exponentially small inside the soliton. Then the solution shown

in Fig. 8(b) can be thought of as being localized inside the valley bounded by the two

“halves” of the potential. Using this observation, one can estimate the isolated values of

D for which one of the equations (C.1a), along with (C.1b), has a nontrivial solution, by

the standard WKB method. The condition for the existence of a mode localized inside

the valley of Fig. 8(b) is given by the Bohr–Sommerfeld formula:(∫ Xleft

−L/(2ϵ)

+

∫ L/(2ϵ)

Xright

) √
D − νV (ϵX) dX = π

(
n+

1

2

)
, (C.2)

where ν is either ν− or ν+, n is an integer, and Xleft, right are the turning points (see

Appendix A), where

D − νV (ϵXleft, right) = 0. (C.3)

The number of full oscillation periods of the mode inside the valley equals n; for example,

in Fig. 8, n = 3.

When D ≪ 1, the potential in (C.3) can be approximated by an exponential:

sech 2(ϵX) ≈ 4 exp(−2ϵX). Then, using (4.1) and (C.3), we reduce (C.2) to

√
D

∫ L/(2ϵ)

Xright

√
1− exp[−2ϵ(X −Xright)] dX =

π

2

(
n+

1

2

)
, (C.4)

with Xleft = −Xright and

Xright =
1

2ϵ
ln

8νCβ2

D
. (C.5)

7As per the remark after (4.2), there is also a pair of eigenvalues with (−ΛI), so a quadruplet of

complex eigenvalues actually appears.
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Figure 8: (Color online) (a): A solution of (C.1) (solid); potential sech 2(ϵX) (red

dotted). The amplitude of the solution is normalized to that of the potential. (b):

Same as (a), but that panel is “cut” along the vertical dotted line at the center, and the

resulting halves are interchanged.

Neglecting the exponentially small terms of the order O
(
exp[−(L − 2ϵXright)]

)
, one

obtains from (C.4):

√
D

(
L− ln

8νCβ2

D
− 2(1− ln 2)

)
= ϵ π

(
n+

1

2

)
. (C.6)

Note that the WKB condition (C.2), and hence (C.6), is valid when n is sufficiently

large. In particular, it is not supposed to accurately predict the “birth” of the first

unstable mode, where n = 0. Indeed, Eq. (C.6) predicts that such a mode (for ν = 1)

emerges at D ≈ 5.9 · 10−6, while numerically it is found at D ≈ 1.6 · 10−5. (A similar

mode for ν = 3 emerges at a slightly higher value of D.) Formula (C.6) becomes accurate

to the fourth significant figure in D for n & 20.

As we noted above, the first unstable mode is not the one that eventually becomes

the dominant unstable mode. It disappears already at D ≈ 1.7 · 10−5, and there is an

adjacent interval of D values where all the eigenvalues of (4.2) are purely imaginary

(i.e., the soliton is numerically stable). As D increases, higher-order “real” (i.e., with

ΛI = 0) modes appear and disappear in a similar fashion, as do quadruplets of modes

with complex Λ. In both these types of modes, ΛR is fairly small: |ΛR| . D/10. There

also exist intervals of D, of increasingly small length, where all Λ’s are purely imaginary.

This situation persists until the dominant unstable mode appears at Dcr (= Ccr − 1).

This occurs as follows.

First, at D ≈ 0.012134, a “real” mode appears (see Fig. 9(a,b)), and from this

point on there always exists a “real” mode, even though the particular mode “born”

at D ≈ 0.012134 disappears later on. Specifically, at D ≈ 0.012928, another “real”

mode acquires ΛR greater than that of the mode “born” at D ≈ 0.012134, and the
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latter mode soon disappears (Fig. 9(c,d)). A similar switchover between “real” modes

occurs at least one more time near D ≈ 0.013750 (not shown). Next, another “real”

mode is “born” via a cascade of bifurcations near D ≈ 0.0162 (Fig. 9(e,f)), and its

ΛR crosses that of the previously dominant-ΛR “real” mode near D ≈ 0.01635. At

D = 0.0170, these two dominant “real” modes have ΛR ≈ 1.4 · 10−3 and 1.5 · 10−3

(Fig. 9(e)). Finally, these two modes gradually approach each other while crossing at

least once more near D = 0.01725. At D = 0.023 and beyond, their eigenvalues are

the same to five significant figures. Thus, remarkably, the dominant unstable mode

eventually becomes doubly degenerate. We verified that such a degeneracy also occurs

for the higher-order localized unstable modes, shown in Fig. 7.

0 0.5 1.5
x 10

−4

0

2

4

x 10
−4

R
e

( 
Λ

 )

D − 0.012

(a)

8.5 9.5
x 10

−4

0

2

4

x 10
−4

R
e

( 
Λ

 )

D − 0.012

(c)

2 4 6 8
x 10

−4

0

5

10

15
x 10

−4

R
e

( 
Λ

 )
D − 0.016

(e)

0 0.5 1.5
x 10

−4

0

10

x 10
−4

Im
( 

Λ
 )

D − 0.012

(b)

8.5 9.5
x 10

−4

0

10

x 10
−4

Im
( 

Λ
 )

D − 0.012

(d)

2 4 6 8
x 10

−4

0

10

x 10
−4

Im
( 

Λ
 )

D − 0.016

(f)

Figure 9: (Color online) Real and imaginary parts of selected modes of (4.2), including

the most unstable mode. (a) & (b): 0.01200 ≤ D ≤ 0.01220; (c) & (d): 0.01285 ≤
D ≤ 0.01300; (e) & (f): 0.01610 ≤ D ≤ 0.01700. Same line colors, styles, and widths

are used to indicate the same modes within one pair of panels (e.g., (c) & (d)). The

same line colors/styles/widths in different pairs of panels (e.g., in (a) & (b) and (c) &

(d)) do not imply the same modes.

To conclude, we present a hypothesis as to why the value Ccr, where a “real” mode

appears permanently (see above), is near C = 1.013. Let us interpret (C.6) in a way

that the n on its r.h.s. is not necessarily an integer, but a continuous function of the

parameter D. For those values of D when n is an integer, a mode with a real Λ either
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appears or disappears at the origin Λ = 0. Evaluating n at the values of D listed in the

previous paragraph in connection with Figs. 9(a)–(d), one finds:

at D = 0.012134 : n|ν=1 ≈ 29.02, n|ν=1 − n|ν=3 ≈ 0.99; (C.7a)

at D = 0.012928 : n|ν=1 ≈ 30.02, n|ν=1 − n|ν=3 ≈ 1.02; (C.7b)

at D = 0.013750 : n|ν=1 ≈ 31.04, n|ν=1 − n|ν=3 ≈ 1.05. (C.7c)

That is, both n|ν=1 and n|ν=3 are simultaneously very close to integers. At D =

0.012928, one of the “real” modes has not yet disappeared while the next one has

appeared (Fig. 9(c)). From (C.7) we observe that at this value of D, the difference

(n|ν=1 − n|ν=3) exceeds 1 for the first time. Thus, we hypothesize that Ccr ≡ 1 + Dcr

is found from the condition that (n|ν=1 − n|ν=3) exceeds 1 for the first time. Verifica-

tion of this hypothesis requires a deeper analytical insight than we have at the moment.

Moreover, finding a value of C past which the dominant real eigenvalue increases mono-

tonically (as seen in Fig. 9(e)) is also an open question.
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[13] D. Bambusi, E. Faou, and B. Grébert, Existence and stability of solitons for fully

discrete approximations of the nonlinear Schrödinger equation, Numer. Math. 123

(2013), 461–492.

[14] X. Antoine, W. Bao, and C. Besse, Computational methods for the dynamics of

the nonlinear Schrödinger/Gross–Pitaevskii equation, Comp. Phys. Commun. 184

(2013), 2621–2633.

[15] W. Bao and Q. Tang, Numerical study of quantized vortex interactions in the

nonlinear Schrödinger equation on bounded domains, Multiscale Model. Simul. 12

(2014), 411–439.

[16] G. Li, Recent advances in coherent optical communication, Adv. Opt. Photon. 1

(2009), 279–307.

[17] J. Von Neumann and R.D. Richtmeyer, A method for the numerical calculation of

hydrodynamic shocks, J. Appl. Phys. 21 (1950), 232–237.

[18] L.N. Trefethen, Spectral methods in Matlab (SIAM, Philadelphia, 2001), Chap. 10.

[19] T.I. Lakoba, Instability analysis of the split-step Fourier method on the background

of a soliton of the nonlinear Schrödinger equation, Num. Meth. Part. Diff. Eqs. 28

(2012), 641–669.

[20] D.J. Kaup, Perturbation theory for solitons in optical fibers, Phys. Rev. A 42

(1990), 5689–5694.

[21] H.T. Tran, Stability of dark solitons: Linear analysis, Phys. Rev. A 46 (1992),

7319–7321.

[22] D.E. Pelinovsky, Yu.S. Kivshar, and V.V. Afanasjev, Internal modes of envelope

solitons, Physica D 116 (1998), 121–142.

[23] I.M. Gelfand, Lectures on linear algebra (Interscience Publishers, New York, 1961),

Sec. 15.

26



[24] G. Chen and J. Zhou, Vibration and damping in distributed systems, vol. II (WKB

and wave methods, vizualization and experimentation) (CRC Press, Boca Raton,

1993), Sec. 1.2.

[25] S.A. Fulling, Adiabatic expansions of solutions of coupled second-order linear dif-

ferential equations. II, J. Math. Phys. 20 (1979), 1202–1209.

[26] A.A. Skorupski, Phase integral approximation for coupled ODEs of the Schrödinger

type, J. Math. Phys. 49 (2008), 053523.

[27] T. Kapitula and B. Sandstede, Instability mechanism for bright solitary-wave solu-

tions to the cubic-quintic Ginzburg–Landau equation J. Opt. Soc. Am. B 15 (1998),

2757–2762.

[28] J.L. Marin and S. Aubry, Finite size effects on instabilities of discrete breathers,

Physica D 119 (1998), 163–174.

27


