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Abstract

We analyze a mechanism and features of a numerical instability (NI) that can

be observed in simulations of moving solitons of the nonlinear Schrödinger equation

(NLS). This NI is completely different than the one for the standing soliton. We

explain how this seeming violation of the Galilean invariance of the NLS is caused

by the finite-difference approximation of the spatial derivative. Our theory extends

beyond the von Neumann analysis of numerical methods; in fact, it critically relies

on the coefficients in the equation for the numerical error being spatially localized.
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1 Introduction

In Part I of this study [1] we analyzed a numerical instability (NI) that occurs when a

soliton solution of the nonlinear Schrödinger equation (NLS)

iut − βuxx + γu|u|2 = 0; β < 0 (1.1)

is simulated by the finite-difference split-step method (FD-SSM):

(Nonlinear step):

u(x) = un(x) exp
(
iγ|un(x)|2∆t

)
(1.2a)

(Dispersive step):

i
um
n+1 − um

∆t
=

β

2

(
um+1
n+1 − 2um

n+1 + um−1
n+1

∆x 2
+

um+1 − 2um + um−1

∆x 2

)
. (1.2b)

Here ∆t and ∆x are the time and space discretization steps, um
n ≡ u(xm, n∆t), and xm

is a point in the discretized spatial domain of length L: −L/2 < xm < L/2. While

this FD version of the SSM is not used as widely as its spectral cousin (where the

counterpart of the dispersive step (1.2b) is computed in Fourier space), it is still a well-

known method (see, e.g., Refs. [8]–[15] in [1] and Ref. [2] here). Moreover, understanding

a mechanism of the NI of this FD method for a spatially varying solution, such as the

soliton (see Eq. (1.4) below), of a nonlinear equation may help one understand NIs of

other FD methods where the standard von Neumann analysis and the method of frozen

coefficients do not provide correct information.

In [1] we emphasized that the mechanism and properties of NI depend not only on

the numerical method and the nonlinear equation to which it is applied, but also on the

simulated solution. In fact, we showed that the NI of a soliton of the NLS solved by the

FD-SSM is completely different from the NI of its other solution, a so-called plane wave

[3]:

upw = (A/
√
γ) ei|A|2t, A = const; (1.3)

even when these two solutions have the same amplitude. (Earlier [4] we have demon-

strated that this was also the case for the spectral SSM.) In hindsight, however, one

could argue that these two NIs should have been different because the non-localized,

constant-amplitude plane wave is quite different from the localized soliton.

In this work we show that the NI mechanisms of two “types” of solitons — standing

and moving ones — are also completely different. Both these “types” are given by one

formula (for β < 0):

usol(x, t) = Usol(x− St) exp [iωsolt+Ksol(x− St)] ; (1.4a)
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Usol(x) = A
√

2/γ sech (Ax/
√

−β); ωsol = A2+|β|K2
sol, Ksol = S/(2|β|). (1.4b)

Parameter S denotes the soliton’s speed; thus the standing soliton has S = 0. We took

the word “types” in quotes because (1.4) describes, in fact, just one family of solutions

of the NLS, with the presence of the continuous parameter S reflecting the so-called

Galilean invariance of (1.1). It is well known that analitical properties (such as, e.g.,

stability) of the soliton do not depend on S. Thus, one would expect their numerical

(in)stabilities to also be the same or at least similar. However, as we show below, this

is not the case.

This work has been motivated by the numerical results of U. Ascher [2]. He considered

a collision of two solitons and observed NI for a certain relation between ∆t and ∆x.

Since the solitons were contained inside the computational domain by periodic boundary

conditions:

u(−L/2, t) = u(L/2, t), ux(−L/2, t) = ux(L/2, t), (1.5)

simulations could be performed over a long time. At t = 1000, which for the parameters

used in [2] corresponded to about 10 soliton collisions, a high-wavenumber ripple occu-

pying the entire domain was conspicuously present in the numerical solution. However,

note that a collision is a short-term event, and so just about 10 of them could not cause

that slowly growing ripple. Rather, the ripple must have occurred due to NI developing

for each individual (moving) soliton.

The above conclusion, while perfectly logical, was surprising to us. The reason is

that by the time that we learned of Ascher’s results, we had already studied [1] the NI

about the standing soliton and knew that it developed completely differently1 from what

is described in the previous paragraph. In particular, the NI of a standing soliton does

not cause any visible ripple outside of the soliton. We also thought that since physical

properties of the soliton are independent of its speed S, as mentioned after (1.4), so

should be its numerical properties. In the present study, we explain the reason behind

the above “paradox”. In particular, we find that the mechanisms of the NIs of the

standing and moving solitons are completely different.

Before we proceed, a clarification is in order about what we refer to as a “moving”

soliton. This is solution (1.4) with S = O(1). Thus, we explicitly exclude the “interme-

diate” case of a slowly moving soliton, where S ≪ 1. This case, which would provide

a “bridge” between the results for the standing and moving (with S = O(1)) solitons,

remains an unsolved problem. We briefly comment on it in Section 5 when discussing

Fig. 6. On the other hand, we note that there is also an upper bound on S. Namely, we

1Small distortions occur at the “tails” of the soliton, which eventually, at large t, cause the soliton

to start moving. This motion is eventually followed by disintegration of the pulse, but only at times

that are an order of magnitude greater than those considered in [2].
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showed in [5] that Ksol = S/(2|β|) is to be less than approximately 1/
√

|β|∆t in order

for the FD-SSM to yield an accurate solution of the NLS (1.1).

The main part of this work is organized as follows. In Section 2 we will present a

typical numerical result which demonstrates the same NI as observed by Ascher, but for

different parameters (which were chosen to be closer to those used in our study of the

standing soliton [1]). In Section 3 we will present a foundation on which an analysis of

this NI will be built. As in [1] and earlier in [4], this foundation is an equation satisfied

by high-wavenumber harmonics of the numerical error. We emphasize that this equation

is different from its counterparts in [1] and [4] and, therefore, requires a qualitatively

different analysis. This analysis is also different from the von Neumann analysis for a

moving plane wave [6, 5] in that it requires one to take into account spatially dependent

coefficients in the equation for the error. Our analysis is presented in Section 4. It

cannot be carried out exactly, and hence we will have to approximate the soliton by

a rectangular box. Such a crude approximation cannot be expected to yield accurate

predictions about the NI’s threshold, spectral location, and growth rate. However, it still

reveals the mechanism of this NI. Moreover, it explains qualitatively, and sometimes even

quantitatively, a number of the NI’s features. These features are listed and explained

in Section 5. In Section 6 we summarize our conclusions and also explain why the NI

observed for the standing soliton [1] is not observed for the moving one.

2 Numerical experiment

The initial condition in our numerical simulations was

u0(x) = sech (x) eiKsolx + ξ, (2.1)

where ξ is a Gaussian noise with amplitude of order 10−10 and Ksol is related to the

soliton’s speed in (1.4) by S = 2Ksol|β|. The result reported below is for S = 1.885,

which was chosen near S = 2 and so as to make the exponential factor in (2.1) be exactly

periodic in the computational domain. Thus, periodic boundary conditions (1.5) were

used in all our simulations2. Other computational parameters were: L = 40, N = 210,

t = 1500. Parameters of the NLS were: β = −1 and γ = 2. As in [1], we will see that a

key quantity in the analysis will be

C = (∆t/∆x)2 ; (2.2)

2For the standing soliton in a sufficiently large domain, considered in [1], any type of boundary

conditions could be used without affecting the soliton, and this also would not affect properties of the

NI. In contrast, for the moving soliton, periodic boundary conditions are the only ones that can support

such a solution of (1.1) over an arbitrarily long time.
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so we will refer to it rather than to the time step ∆t alone.

Panels (a) and (b) of Fig. 1 display a typical spectrum of the numerical solution and

an envelope of the unstable mode, obtained for the above parameters and for C = 0.9.

This value for C was chosen to contrast the cases of moving and standing solitons: In [1]

we showed that the NI threshold for the standing soliton with the same amplitude as in

(2.1) was just slightly above C = 1. Thus, NI of a moving soliton sets in for smaller C

values (or, equivalently, time steps) than the NI of the standing soliton. In fact, we have

observed (a weak) NI of the moving soliton with the same parameters for C as small

as 0.5. Let us note that the amplitude of the greatest of unstable modes in Fig. 1(a) is

about six orders of magnitude smaller than the soliton. As this mode continues to grow,

it becomes visible on the linear scale and in the x-space is observed as a high-frequency

ripple: see Fig. 7(b) in [2].

Panels (a) and (c) of Fig. 1 illustrate an important difference between the NIs of the

moving and standing solitons. Namely, the bandwidth of the unstable modes in Fig. 1(a)

(see also Fig. 7(b) below) is considerably narrower than that in Fig. 1(c). This is one

of the factors that lead to different equations for the numerical error for the moving

and standing solitons, as we will explain in the next section. Let us also clarify that

the plateaus near k = ±kmax in Fig. 1(c) are not the result of a merger of peaks like

those seen in Fig. 1(a) at a later stage of their evolution. (Such a merger could have

occurred via broadening of the peaks due to four-wave mixing.) The plateaus of unstable

harmonics of the standing soliton develop right away and preserve their shape during

the evolution.

3 Derivation of equation for numerical error

In order to make this paper self-contained, we present all steps of this derivation, even

though some of them were originally presented in [1]. We will note those steps where

differences from the case of the standing soliton occur.

In view of periodic boundary conditions (1.5), the dispersive step of the FD-SSM

(1.2) can be written as

un+1(x) = F−1
[
eiP (k)F [u(x)]

]
, (3.1)

where

eiP (k) ≡ 1 + 2iβr sin2(k∆x/2)

1− 2iβr sin2(k∆x/2)
= exp

[
2i arctan

(
2βr sin2(k∆x/2)

)]
, r =

∆t

∆x 2
,

(3.2)

u is defined in (1.2a), and F , F−1 are the discrete Fourier transform and its inverse.

Equations (1.2a), (3.1), and (3.2) are the effective equations of the FD-SSM. Their
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Figure 1: (a) Logarithm of the Fourier spectrum of the numerical solution described in

the text. Unstable modes are circled at both ends of the k-domain. The discretization

error seen on the right of the soliton is due to the approximation of the uxx-term in (1.1)

by the finite-difference method (1.2b). It develops for t = O(1) and only insignificantly

change its size at later times. (b) The envelope of the unstable mode filtered out by

a band-pass filter shown near the right edge of (a). It has an irregular shape, which

changes with time, because it is a packet of several plane waves. The soliton is shown

by the dotted line. Both the soliton and the unstable mode are normalized to have the

same amplitude. (c) Logarithm of a typical spectrum of a numerically unstable solution

of (1.1) with the background being a standing soliton.

solution is sought in the form

un = ub + ũn, |ũn| ≪ |ub|, (3.3)

where ub is the background solution and ũn is the numerical error. Below we take ub

to be the moving soliton (1.4). Substituting (3.3) into (3.1) and linearizing, one obtains

the general equation for the error:

F [ũn+1] = eiP (k)F
[
eiγ|ub|2∆t

(
ũn + iγ∆t(u2

bũ
∗
n + |ub|2ũn)

) ]
. (3.4)

Using the fact that we are specifically considering only those Fourier harmonics of ũn that

can potentially become numerically unstable, we will simplify (3.4) to a form amenable

to analysis.

The exponential growth of ũn can occur only if there is sufficiently strong coupling

between ũn and ũ∗
n in (3.4). This coupling is the strongest when the temporal rate of

change of the relative phase between those two terms is minimized. In [4] we showed that

this rate can be small only for those k where the exponent P (k) is close to a multiple

of π. Using (3.2) (see also Fig. 2), we see that this can occur only for sufficiently high

k where sin2(k∆x/2) = O(1) rather than O(∆x 2). This is confirmed by the numerical

experiment in Section 2: see Fig. 1(a).

When (3.3) is substituted into (3.4), the next step is to expand the phase P (k). In

so doing, we use the fact that r ≫ 1, because

r = ∆t/∆x 2 = C/∆t ≫ 1, (3.5)
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Figure 2: Normalized phase: |β|k2∆t for the spectral (s-) SSM (dashed) and as given

by (3.2) for the FD-SSM (solid). In both cases, r = 5. The horizontal line indicates the

condition of the first resonance: |P (k)| = π.

and from Section 2 we know that NI is observed when C = O(1). Then, expanding the

exponent in (3.2) in powers of (1/r), we find:

−P (k) = π − 1

|β|r sin2(k∆x/2)
+O

(
1

r3

)
. (3.6)

It is in (3.6) that the main difference between the present derivation and the one

for the standing soliton [1] occurs. In [1] we proceeded to expand the second term on

the right-hand side (r.h.s.) using the numerical observation (see Fig. 1(c)) that the

highest unstable harmonic is at kmax and that the bandwidth of unstable modes satisfies

|k − kmax| ≫ 1, where kmax = π/∆x. However, for the moving soliton, bandwidth of

unstable modes is found to be of order one; note that they are seen as peaks in Fig. 1(a)

and 7(b) rather than as a plateau in Fig. 1(c). From Fig. 1(a) one can also see that the

spectrum of unstable modes is approximately symmetric relative to some value k = O(1).

It is, therefore, convenient to seek

ũn = eiωsoltn+iKsol(x−Stn)
(
pn(x)e

iK0x + q∗n(x)e
−iK0x

)
. (3.7)

Here K0 = O(kmax) ≫ 1, which remains to be determined, and pn(x), qn(x) may vary

with x on a scale of order one3. Then, (±K0 + Ksol) are the approximate locations of

the unstable peaks. With this observation and using (3.5), Eq. (3.6) is reduced to

−P (k) = π − ∆t

C|β| sin2(K0∆x/2)
+O

(
∆t2
)
, (3.8)

3This is because the spectral width of the peaks of unstable modes is of order one, and so is the

product of the spectral and spatial widths for any signal.
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where we have also used Ksol = O(1) (see Introduction) and ∆x = O(∆t). Thus, the

bandwidth of the unstable peaks does not explicitly enter into our analysis; rather, it

will be determined later from those values of K0 for which unstable modes can exist.

The next few steps are similar to those in [1] and so we present them briefly. Intro-

ducing a new variable

ṽn =
(
e−iπ

)n
ũn = (−1)nũn, (3.9)

and substituting (3.8) (with term O(∆t2) being omitted) into (3.4) one obtains:

F [ṽn+1] = exp

(
− i∆t

Cβ sin2(K0∆x/2)

)
F
[
eiγ|ub|2∆t

{
ṽn + iγ∆t(u2

bṽ
∗
n + |ub|2ṽn)

} ]
.

(3.10)

Note that (3.10) describes a small change of ṽn occurring over the step ∆t, because for

∆t → 0, the r.h.s. of that equation reduces to F [ṽn]. Therefore we can approximate the

difference equation (3.10) by a differential equation, as explained in [1]. In the leading

order, the result is:

iṽt + ṽ/(C|β| sin2(K0∆x/2)) + γ(u2
bṽ

∗ + 2|ub|2ṽ) = 0; (3.11)

recall that β < 0. Its apparent difference from the counterpart for the standing soliton —

Eq. (3.14) in [1] — is in the absence of the ṽxx-term. The reason behind that difference

is explained after Eq. (3.6) above.

Finally, using (3.7) and (1.4), separating the eiK0x and e−iK0x terms, and employing

the change of variables (x, t) −→ (z = x− St, t), we obtain:

pt − Spz = iµp+ iγU2
sol(z) (2p+ q), (3.12a)

qt − Sqz = −iµq − iγU2
sol(z) (p+ 2q), (3.12b)

where {p(x, t), q(x, t)} are time-continuous counterparts of {pn(x), qn(x)} and

µ =
1

C|β| sin2(K0∆x/2)
− A2 + |β|K2

sol. (3.13)

Similarly to [1], one can show that boundary conditions for Eqs. (3.12) are periodic. To

be more precise, in light of (3.7) it is p(x, t) exp[i(Ksol +K0)x] and q(x, t) exp[i(Ksol −
K0)x] that are to be spatially periodic. However, in all our numerical simulations we

have used the initial condition where Ksol was on the spectral grid (see, e.g., Section 2),

whence exp[iKsolx] is periodic. As for the yet unknown K0, when later on we determine

a range for its values, we will select from that range only the values on the spectral grid;

hence exp[±iK0x] will be periodic. Thus, without loss of generality, we require

p(−L/2, t) = p(L/2, t), px(−L/2, t) = px(L/2, t), (3.14)
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and similarly for q. Since these conditions hold at all times t, the first argument of p

and q in (3.14) may equally be interpreted as either x or z.

In the next Section we will use Eqs. (3.12)–(3.14) to study the NI of a moving soliton.

As we have noted already, they differ from their counterpart for the standing soliton in

that the terms with the second-order spatial derivative are absent. This is a direct

consequence of the numerically observed width of the unstable peaks being of order one

for the case of moving soliton (Fig. 1(a)), whereas such peaks (or, rather, a plateau) are

considerably wider in the Fourier space for the standing soliton (Fig. 1(c)). We also note

that this difference is an “external” piece of information in the sense that it is supplied

to the analysis by the numerics. Determination from purely analytic considerations of

how the speed of the soliton affects the aforementioned features of unstable modes in

Fourier space remains an open problem.

However, the main difference of Eqs. (3.12)–(3.14) from their counterparts for the

standing soliton is the S∂z-terms, which were absent for the standing soliton. These

terms represent convection rather than dispersion; in other words, they account for

the modes’ passing through the soliton (in the reference frame where the soliton is not

moving). We will show that it is this relative motion of the soliton and certain high-k

Fourier harmonics that may cause NI. In contrast, NI of a standing soliton was shown

[1] to be caused by modes that do not move relative to the soliton.

4 Analysis of NI based on equations for numerical

error

Let us describe challenges in using Eqs. (3.12)–(3.14) to study NI of a moving soliton.

Most obviously, they have a spatially varying coefficient U2
sol(z). Hence, in a standard

way, one would expect to relate them to an eigenvalue problem which, in turn, would

have to be solved numerically, as in [1]. However, unlike in [1], one of the parameters,

µ, depends on an unknown value of K0, related to the spectral location of unstable

peaks, and this makes the eigenvalue-based approach impractical. Indeed, if one seeks

a solution of (3.12) in the standard form (p(z, t), q(z, t))T = ρ⃗(z)eλt, one obtains an

eigenvalue problem (
iSσ3∂z − µ− γU2

sol(z)

(
2 1

1 2

))
ρ⃗ = iλσ3ρ⃗, (4.1)

with ρ⃗ satisfying periodic boundary conditions (see (3.14)); here σ3 = diag(1,−1) is a

Pauli matrix. Given parameters of the soliton, the NLS, and the numerical scheme (i.e.,

C), one knows all coefficients in (4.1) except K0 and the eigenvalue λ. Then, finding

λ corresponding to NI in the problem would require scanning through many values of
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K0 to determine those special ones where a NI exists. Not only would this make the

numerical solution of (4.1) considerably more time-consuming than its counterpart for

the standing soliton, but it would also not provide any insight into why the instability

occurs only for some special values of K0 but not for all K0. Such an insight could only

come from an analytical solution of (4.1). Since we have been unable to find such a

solution exactly, we had to resort to an approximation.

Q

γ U
sol
2 (z)

Figure 3: Schematics of a box profile approximating γU2
sol in (3.12).

A widely used approximation consists of replacing γU2
sol(z) with a box profile of

width ℓ and height Q, as illustrated in Fig. 3. While such a crude approximation cannot

be expected to yield a quantitatively accurate description of NI, it still allows us to

understand the nature of unstable modes as well as the dependence of NI’s features on

such parameters as Ksol (or, equivalently, S), the length of the spatial domain L, and

the mesh size ∆x.

Without loss generality the left-hand edge of the box can be put at z = 0. Then

the solutions of (4.1) with U2
sol replaced by the box profile are given by the following

expressions inside and outside the box:

0 ≤ z ≤ ℓ :

ρ⃗ = a−in

(
µ+ η + 2Q

−Q

)
eiκ

−
in z + a+in

(
−Q

µ+ η + 2Q

)
eiκ

+
in z,

(4.2a)

ℓ ≤ z ≤ L :

ρ⃗ = a−out

(
1

0

)
eiκ

−
out z + a+out

(
0

1

)
eiκ

+
out z,

(4.2b)

where

η =
√
(µ+ 2Q)2 −Q2, κ±

in = (−iλ± η)/S, κ±
out = (−iλ± µ)/S. (4.3)
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The constants a±in, out are found using the continuity of this solution at z = ℓ − 0 and

z = ℓ + 0 and at z = L and z = 0, with the latter condition being equivalent to the

periodic boundary condition. The existence of nontrivial solutions of the resulting linear

system determines the eigenvalue λ:

eλL/S = R±
√
R2 − 1, (4.4a)

R = cosΦ+ +
Q2

(µ+ η + 2Q)2 −Q2
(cosΦ+ − cosΦ−) . (4.4b)

Φ± = (µ(L− ℓ)± ηℓ)/S (4.4c)

Eigenvalues with Reλ > 0 exist for

|R| > 1. (4.5)

Thus, (4.5) along with (4.4b,c) is the condition of NI of a moving soliton.

Let us now point out the two main differences between the analyses of the NI for

a moving soliton (in this Section) and a standing one (in [1]). First, the box-profile

approximation of the soliton cannot be used to find unstable modes of the standing

soliton, because those modes can exist only on the soliton’s “tails”, which have finite

slope. More specifically, they can exist only due to a balance between the potential

created by the soliton and the dispersion due to a ∂zz-like term. Thus, they cannot be

supported by the discontinuous “jumps” on the box’s sides. In contrast, unstable modes

of a moving soliton are supported by some sort of resonance that occurs due to periodic

passage (governed by the convective terms S∂z in (3.12)) of Fourier harmonics through

the soliton; see next paragraph.

Second, the analysis for a moving soliton critically depends on the soliton’s speed,

S, not being zero (note the S in the denominators in (4.3) and (4.4)). Physically, this

means that high-k harmonics, for which (3.11) and (3.12) were derived, move with speed

S relative to the soliton. This is because these harmonics have a vanishingly small group

velocity, (dP (k)/dk)/∆t (see Fig. 2) in the original reference frame where the soliton is

moving with speed S. Thus, the possibility of the NI inherently depends on this relative

motion. In contrast, unstable modes of a standing soliton do not move relative to it.

5 Features of NI of moving soliton and their expla-

nation

As we announced in Introduction, the focus of our study is to understand a mechanism

of the NI of a moving soliton. This includes finding modes that cause NI, as well as
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estimation of their growth rate and a threshold for their appearance. Numerical results

of [2] and Section 2 presented evidence, and the analysis of Section 4 confirmed, that

these unstable modes are delocalized, plane-wave-like packets. The NI is caused by a

pair of these waves, denoted as p and q in Section 4, repeatedly (due to the periodic

boundary conditions) passing through the soliton and interacting with each other. This

situation should be contrasted with the unstable modes of a standing soliton [1], which

are localized and “pinned” at the “tails” of its host pulse.

Below we will show how to use Eqs. (4.4), (4.5) to explain qualitatively, and some-

times even quantitatively, a number of features (including the growth rate) of the NI of a

moving soliton, observed in numerical simulations. A list of these features follows in the

next paragraph. The NI threshold ∆tthresh and its dependence on ∆x will be discussed

in Section 6.

(i) The height and spectral width of unstable peaks decrease as their wavenumber |k|
decreases;

(ii) The wavenumbers of the unstable peaks vary in inverse proportion to ∆x;

(iii) The wavenumbers of the peaks are not symmetric about Ksol, as one could have

concluded from (3.7);

(iv) The instability growth rate, Reλ, varies in inverse proportion to the length L of

the computational domain;

(v) The instability decreases as C is decreased or as Ksol is increased.

(vi) The unstable mode could stay “hidden” and then appear above the noise floor only

after some time, which for sufficiently small C can be on the order of hundreds of

units.

Feature (i) is illustrated by Fig. 1(a), while evidence for the other features will be given

as we proceed.

A convenient way to analyze the NI condition is to consider a parametric represen-

tation R = R(µ) and K0 = K0(µ), where for the latter one inverts (3.13):

K0 =
2

∆x
arcsin

√
1

C|β|(µ− |β|K2
sol + A2)

. (5.1)

The resulting plot of |R| versus K0 is shown in Fig. 4(a) for the same parameters as used

for Fig. 1(a,b). For other parameters, the plot R = R(K0) looks qualitatively similar.

We have also used the values

ℓ = 1.76, Q = 4/ℓ, (5.2)
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where the first is the full width at half maximum of the sech 2 profile and the second

follows from Qℓ =
∫∞
−∞ γU2

sol(z)dz = 4 for A = |β| = 1. In Fig. 4(b) we show a detailed

view of (a) that demonstrates that the NI condition (4.5) is satisfied only in narrow bands

of wavenumbers k. As we noted before (3.14), values of K0 must be on the spectral grid,

and hence the increasingly narrow bands where |R| > 1 occurring towards the decreasing

values of K0 may simply miss points on the spectral grid. This, along with the fact that

the “tips” of |R| that exceed 1 become smaller as K0 decreases explains feature (i) stated

above.
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0

R
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30 40 60 70
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K
0

|R
|

 

 

    R
  −R
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Figure 4: (a) R(K0) and (b) a detailed view of (a) near ±R(K0) = 1.

Feature (ii) is illustrated by Table 1. The simulation parameters are the same as

those used for Fig. 1, except that we have varied C and also compared the cases of

N = 210 and N = 211 grid points, so that the corresponding ∆x differ by a factor

of 2. The locations of the respective peaks of unstable modes is seen to differ by an

approximately reciprocal factor. An explanation for this follows directly from (5.1).

Results of Table 1 also illustrate feature (iii): the positive and their respective neg-

ative peaks are not symmetric about Ksol. That is,

(k+
peak + k−

peak)/2 ̸= Ksol. (5.3)

The l.h.s. of this formula is plotted in Fig. 5(a). The analytical estimate for this quantity

is obtained as follows. Since at any given time the soliton occupies only a small part

of the computational domain, the unstable mode is described for the most part by its

“outside of the box” expression (4.2b). Along with the expression (4.3) for κ±
out and the

fact that for the unstable modes λ is purely real (see (4.4a) and (4.5)) this implies that

{p, q∗} ∝ exp[−i(µ/S)z]. Then from (3.7) it follows that

k±
peak = ±K0 +Ksol − µ/S, (5.4)
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C k±
peak, N = 210 k±

peak, N = 211

0.9 77.0 62.5 56.2 154.4 125.0 112.2

−76.2 −61.8 −55.6 −153.3 −124.4 −111.7

1.0 63.9 56.4 51.5 128.0 112.6 102.9

−63.1 −55.7 −50.9 −127.2 −112.0 −102.4

1.25 71.8 58.7 52.0 144.5 117.2 103.8

−70.7 −57.8 −51.2 −143.4 −116.2 −103.0

1.50 74.0 57.6 50.5 149.5 115.3 100.7

−72.8 −56.6 −49.5 −147.7 −114.2 −99.7

Table 1: Wavenumbers of the three most unstable peaks; k+ > 0, k− < 0. For C ≥ 1 the

outer peaks (those with larger |k±
peak|) contain several grid points; only the wavenumber

of the maximum |F [u](k)| is listed in those cases.

which confirms (5.3).

Figure 5 demonstrates that the locations of unstable peaks are quite accurately pre-

dicted by our approximate analysis. However, this analysis considerably (by a factor

of order two for C ≈ 1) overestimates the instability growth rate. Moreover, as C de-

creases, the discrepancy between the analytical and numerically observed growth rates

increases.

Yet, our analysis easily explains feature (iv), whereby the instability growth rate

scales in inverse proportion to the length of the computational domain (assuming that it

far exceeds the width of the soliton). To that end, we will first explain why one typically

has

|R| − 1 ≪ 1 where |R| > 1, (5.5)

as seen in Fig. 4. For C, A, Ksol all of order one, µ is also of order one; see (3.13).

(For the specific values A = Ksol = |β| = 1 used here, µ ≥ 1/C.) Then, even if we

conservatively assume µ > 0, then from (4.3) one has η/Q >
√
3, and then

(µ+ η + 2Q)2/Q2 > (
√
3 + 2)2 ≈ 14. (5.6)

We stress that this is a conservatively low estimate; in our simulations the respective

values were higher than about 22. Relation (5.6) implies that the second term in (4.4b)

is small. From this one concludes that the “bumps” of |R| occur where Φ+ ≈ πn for

some integer n and that

|R| − 1 ≤ 2/
((

(µ+ η)/Q+ 2
)2 − 1

)
, (5.7a)

which in view of (5.6) and the note below it we regard as as small number. Combining
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Figure 5: (a) The l.h.s. of (5.3) versus the wavenumber of unstable peaks with k > 0.

Solid, dashed, and dotted lines are the analytical expressions obtained from (5.4) for

C = 1, 1.25, 1.5 and the parameters stated in the text. Circles, stars, and triangles are

the respective numerical values. (b) Line and symbol styles pertain to the same cases as

in (a). Lines are obtained from the analytical expressions for max(|R|, 1), so that the

“bumps” indicate locations of bands of unstable modes. Symbols indicate the locations

of numerically obtained unstable peaks. The data for different values of C are vertically

shifted for clarity.

this with (4.4a) one obtains

λ ≈
√
2(S/L)

√
|R| − 1, (5.7b)

which provides the reason behind feature (iv).

Formulas (5.7) and (3.13) also explain why increasing Ksol (and hence S = 2|β|Ksol)

eventually reduces the growth rate of the NI; this was stated as part of feature (v). Below

we will present our argument as a crude estimate but will confirm it with analytical ex-

pressions following from our analysis above and also by results of numerical simulations.

For the purpose of this estimate we will assume that the first two terms on the r.h.s. of

(3.13) approximately cancel each other, and then µ ∼ K2
sol. With the same accuracy,

from (4.3) we have η ∼ K2
sol + 2Q, and then from (5.7) we find

max λ ∝ Ksol/(K
2
sol/Q+ 2). (5.8)

This shows that as Ksol increases, the instability growth rate eventually vanishes, al-

though it does grow initially as Ksol increases from zero. These conclusions are qualita-

tively confirmed by Fig. 6. As an aside, let us note that the broad “pedestals” of the

unstable peaks for Ksol = 0.3 and 0.5 seen in Fig. 6(b) are reminiscent of the spectrally
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broad plateau of unstable modes for the case of a standing soliton in Fig. 1(c). This

agrees with our remark at the end of Introduction that for sufficiently small Ksol (or S)

there should be a regime where the NI of a moving soliton turns into that of a standing

soliton. Our analysis cannot capture this regime for the following reason. For a standing

soliton, unstable modes fundamentally require the existence of the soliton’s “tails”, by

which those modes are supported. The box-like approximation of the soliton used above

does not have “tails”. Therefore, bridging the analyses in the cases of a pulse with and

without “tails” remains an open problem.
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Figure 6: (a) NI growth rate, computed from (5.7), as a function of wavenumber. The

parameters are as previously described in the text, except that C = 1.25, Ksol is varied

as stated below, and N = 211. (This larger N , leading to a smaller ∆x, is needed

to keep the discretization error due to the FD approximation (1.2b) sufficiently small

for the larger values of Ksol.) The curves, from bottom to top, correspond to Ksol =

0.31, 0.47, 0.94, 1.57, 2.04; they are vertically shifted for clarity. Note that only the

higher-k part of the spectrum is shown. (b) The results of numerical simulations for

the same respective parameters as in (a).

The other part of feature (v) — that as C decreases, the NI growth rate decreases —

is explained similarly to the above. Indeed, it follows from (3.13) that µ increases as C

decreases, which via (5.7) implies that λ decreases. The main difference from (5.8) here

is that this decrease occurs monotonically with C.

Finally, feature (vi), which can be referred to as “delayed” NI, is illustrated by

Fig. 7(a). This seemingly mysterious feature has a simple explanation. The noise ξ(x)

in the initial condition, (2.1), consists of Fourier harmonics with random phases and

random amplitudes. Growth of any Fourier harmonic occurs only as long as it overlaps

with the unstable mode. Examples of spectral and spatial profiles of the unstable mode
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are shown in Fig. 7(b,c). The overlap factor between a Fourier harmonic and this mode,

OF(k) =

∣∣∣∣∣
∫ L/2

−L/2

e−ikxumodedx

∣∣∣∣∣ /
√
L

∫ L/2

−L/2

|umode|2dx, (5.9)

is shown in Fig. 7(d). A point to note is that for all wavenumbers including the location

of the spectral peak of the unstable mode, kpeak, this factor is considerably (see below)

less than one:

|OF(k)| ≤ |OF(kpeak)| ≈ 0.7. (5.10)

Let us consider evolution of the Fourier harmonic with k = kpeak:

F [u](kpeak, t) = F [u](kpeak, 0)

(
OF(kpeak) e

λmostt +
∑
j

OF(kj)e
λjt

)
, (5.11a)

where λmost and λj are the eigenvalues of the most unstable mode and all other modes,

respectively. Over long time, the second term on the r.h.s. of (5.11a) is negligible

compared to the first one. Therefore, asymptotically,

F [u](kpeak, t) ≈ OF(kpeak)F [u](kpeak, 0)e
λmostt. (5.11b)

Thus, the spectral peak of the most unstable mode will become visible above the noise

floor, F [u](k)floor, when∣∣OF(kpeak)F [u](kpeak, 0) e
λmostt

∣∣ > F [u](k)floor. (5.12a)

Note that F [u](k)floor, which is estimated from the spectrum by simple visual inspection,

is determined not by the average values of the magnitudes of Fourier harmonics, but by

their top values: just examine any plot of Fourier spectra in this paper. From (5.12a),

one has:

tdelay ≈ ( ln [1/OF(kpeak)] + ln [F [u](k)floor/F [u](kpeak, 0)] ) / Reλmost ≈
(
0.35+(& 0)

) /
Reλmost,

(5.12b)

where in the last step we used (5.10) and the note after (5.12a). One can see that

the weaker the NI (i.e., the smaller C and hence Reλmost), the longer it takes the NI to

become observable. The dependence of the delay time on the initial noise realization,

illustrated in Fig. 7(a), is also evident from (5.12b).

6 Conclusions and discussion

In this work we have analyzed the NI that may occur when a moving soliton (with speed

S = O(1)) is simulated by the FD-SSM. As in our earlier papers [4, 1], the analysis
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Figure 7: Simulation parameters are the same as in Section 2, except that C = 0.7 and

t = 2500. (a) Evolution of the height of the right spectral peak (see (b)) of the unstable

mode for two different noise realizations in initial condition (2.1). (b) Fourier spectrum

of the numerical solution corresponding to the smaller delay time in (a). (c) Real and

imaginary parts of the envelope, exp[−ikpeakx]umode, of the mode indicated in (b). (d)

Overlap factor computed from (5.9).

went beyond the standard von Neumann analysis of numerical methods. In fact, in our

analyses it was critical to account for the fact that the background solution had spatially

varying profile (more specifically, it was localized).

The moving and standing solitons are members of the same family of solutions,

(1.4), where the soliton’s speed enters as a continuous parameter. It is well known
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that analytical properties of the soliton do not depend on S. Yet, the NIs of these two

“types” of solution were numerically shown to manifest themselves completely differently

[1, 2]. Namely, while the unstable modes of a standing soliton are localized at the

soliton’s “tails”, unstable modes of a moving soliton are plane waves occupying the

entire computational domain. The NI is caused by interaction of two spectrally well-

separated waves, denoted as p and q in (3.7), at the location of the soliton.

Our findings support the statement that we announced in Part I of this study [1]

and also in Introduction: Mechanism and properties of a NI may depend not only on

the numerical method and the nonlinear equation being simulated, but also on the

simulated solution. This may raise a question as to why one even wants to study NI

of a particular solution if NI of any other solution may be different? We propose the

following answer. First, our emphasis is on understanding the mechanism of the NI, i.e.

what makes certain modes go unstable. The number of such mechanisms is likely to

be (much) smaller than the number of various solutions of various nonlinear equations.

Having collected a “library” of such mechanisms, one can then identify one for a problem

where one observes an NI. Second, it may be reasonable to expect that mechanisms and

properties of NI of solutions that are, in some sense, similar to one another, can also

be similar. (We will explain below why solitons (1.4) with S = 0 and S = O(1) are

not similar as far as numerical instability is concerned.) In Part III of this study we

will demonstrate that oscillating solutions of the NLS or of its generalized version that

includes a potential term, have the NI mechanism that is the same or very similar to

that of the standing soliton [1]. Yet, some properties of the NI considered in Part III

will be different from those in [1].

To conclude, let us comment on two issues. The first is the NI threshold for a moving

soliton. From estimate (5.7a), one may conclude that such a threshold does not exist.

This is because for arbitrarily small ∆t (or, equivalently, C), there are always bands

of wavenumbers k where |R| > 1 and hence the NI growth rate λ > 0; see (5.7b),

(3.13), and (4.3). Thus, by the above argument, the FD-SSM would be unconditionally

unstable. A more general (i.e. independent of the specifics of the model) justification

of this conclusion can be based on (4.1). The operator on the r.h.s. of this eigenvalue

problem and σ3 on the l.h.s. are Hermitian. If the operator on the r.h.s. had been sign

definite, iλ would have been guaranteed to be real [7]; no NI would occur in this case.

If one treats i∂z as a continuous operator, it is sign indefinite and unbounded, and so

the operator on the r.h.s. of (4.1) is sign indefinite for any µ (or C). Hence one cannot

guarantee that iλ is real; i.e., NI may (and generically will) occur. On the other hand,

note that i∂z is defined on the discrete grid and so it can only take on values within

the interval [−kmax, kmax]. The sign indefiniteness of the entire operator on the r.h.s. of

(4.1) may be caused by positive values of that operator. It is, however, eliminated once
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one allows µ > Skmax (Here and below we neglect terms O(1), keeping in mind that

kmax ≫ 1 and µ ∝ 1/C ≫ 1.) Using (4.1), where we approximate sin(K0∆x/2) ≈ 1,

and (2.2), we obtain the following order-of-magnitude estimate for the NI threshold:

∆tthresh =
1√
π|β|S

∆x3/2. (6.1)

However, such an estimate is of no practical value. Indeed, we have repeatedly mentioned

that our analysis had overestimated the NI growth rate, and already for C = 0.7 (and

Ksol ≈ 1), the NI may take t > 1000 to become just barely visible above the noise floor.

For C = 0.5, it takes several thousand time units to appear above the noise floor, and

for a yet smaller C it will take even longer. Thus, it is unlikely that such a weak NI

could be significant in simulations.

The second issue is an explanation of why, in general, the NIs for the standing

and moving solitons are different. More specifically, why does the NI of the standing

soliton not occur, in the moving reference frame, for a moving soliton? Answers to both

questions are based on the dispersion characteristic of the FD-SSM, shown in Fig. 2.

For the general question, it suffices to note that the Galilean invariance of the NLS,

manifested by the continuous parametrization of (1.4) by S, hinges on the dispersion

characteristic of the NLS being quadratic (as shown in Fig. 2 for the Fourier SSM).

Clearly, for high wavenumbers, where the NI occurs, the dispersion characteristic of the

FD-SSM is not quadratic. Hence there is no reason to expect that the NIs of solitons

with different S must be related.

To answer the specific question above, let us start by noting two facts. First, as we

showed in Secs. 3 and 4 (see also [5]), NI occurs via interaction of two groups of Fourier

harmonics (p- and q-terms in (3.7)). Second, if an unstable mode were to propagate

along with the soliton, it would have to have the same group velocity as the soliton.

Now, note that on the dispersion curve of the FD-SSM, there are only two points where

the slope (i.e., the group velocity) has the same value S = O(1). One of these two

points — the closer one to k = 0 — corresponds to the moving soliton. The other

point corresponds to one group (say, the p-term in (3.7)) of potentially unstable Fourier

harmonics. But, there can be no third point with the same slope, which would have

been required for the q-term to exists, and hence an interacting (p, q)-pair, leading to a

NI, cannot occur. Note that for the standing soliton (S = 0), there are three locations

on the dispersion curve where the slope is (almost) zero: at k = 0 and near k = ±kmax.
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