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Identifying Useful Statistical Indicators of Proximity
to Instability in Stochastic Power Systems
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Abstract—Prior research has shown that autocorrelation and
variance in voltage measurements tend to increase as power
systems approach instability. This paper seeks to identify the
conditions under which these statistical indicators provide reliable
early warning of instability in power systems. First, the paper
derives and validates a semi-analytical method for quickly calcu-
lating the expected variance and autocorrelation of all voltages
and currents in an arbitrary power system model. Building on
this approach, the paper describes the conditions under which
filtering can be used to detect these signs in the presence of mea-
surement noise. Finally, several experiments show which types of
measurements are good indicators of proximity to instability for
particular types of state changes. For example, increased variance
in voltages can reliably indicate both proximity to a bifurcation
and the location of increased stress. On the other hand, growth of
autocorrelation in certain line currents is related less to a specific
location of stress but, rather, is a reliable indicator of stress occur-
ring somewhere in the system; in particular, it would be a clear
indicator of approaching instability when many nodes in an area
are under stress.

Index Terms—Autocorrelation, critical slowing down, phasor
measurement units, power system stability, stochastic processes,
time series analysis.

I. INTRODUCTION

T O make optimal use of constrained infrastructure, power
systems frequently operate near their stability limits. Bi-

furcation theory provides a framework for understanding these
instabilities [1]–[4] and has motivated the development of new
methods for online stability monitoring [5]–[11].
This existing work has largely focused around determin-

istic power system models. However, real power systems are
constantly influenced by stochastic perturbations in load and
(increasingly) variable renewable generation. Because random
fluctuations can substantially change the stability properties
of a system [12], several have proposed the use of stochastic
approaches to stability analysis (e.g., [13]–[22]).
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Indeed, outside of the power systems literature, there is
growing evidence that complex systems show statistical early
warning signs as they approach instability [23], [24]. This
phenomenon, known as critical slowing down (CSD) [25], is
the tendency of a dynamical system to return to equilibrium
more slowly in response to perturbations as it approaches
a critical bifurcation due to change in a slowly-varying pa-
rameter. Examples of critical transitions in power system are
long-term voltage instability due to sustained load buildup [26]
or inter-area oscillatory instability caused by gradual increase
in power transfer of a weak tie line. Each of these types of
bifurcations has been shown in prior work to exhibit statistical
early warning signs [27], [28]. Increasing autocorrelation and
variance in measurements, two common signs of CSD, have
been shown to signal proximity to critical transitions in a
variety of dynamical systems [23]. However, not all measure-
ments show these signs early enough to provide warning with
sufficient time to take mitigating actions [29]. Understanding
which variables provide useful early warning of instability is
necessary for the practical application of these concepts. Doing
so requires a detailed knowledge of how autocorrelation and
variance change as a system's state changes.
A few papers have studied the properties of variance and

autocorrelation as indicators of instability in power systems
[30]–[35]. Reference [30] showed, using simulations, that
variance and autocorrelation of bus voltages increase before
bifurcation. Reference [28] derives the autocorrelation function
of a power system's state vector near a saddle-node bifurcation
and uses the result to estimate the collapse probability for
power systems. In [31], a framework is proposed to study
the impact of stochastic power injections on power system
dynamics by computing the moments of the states. In [32],
the authors showed that for some state variables, increases in
autocorrelation and variance appear only when a power system
is very close to the bifurcation, indicating that CSD does not
always provide useful early warning of instability. Reference
[33] calculates the variance of state variables to analyze the
impact of wind turbine mechanical power input fluctuations on
small-signal stability.
The goal of this paper is to present a general method for esti-

mating the autocorrelation and variance of state variables from
a power system model and to use the results to determine which
variables in a power system provide useful early warning of crit-
ical transitions in the presence of measurement noise. To this
end, Section II presents a semi-analytical method for calculating
the variance and autocorrelation of algebraic and differential
variables. This method enables the fast calculation of voltage
and current statistics for many potential operating scenarios in
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large power systems, and unlike the method in [28], is not lim-
ited to the immediate vicinity of a bifurcation. Section III illus-
trates the method using the 39-bus test case and shows that some
variables are better indicators of proximity to instability than
others. Section IV extends the analysis to systems with mea-
surement noise and presents a method for detecting CSD in the
presence of measurement noise. Section V uses this approach to
identify stressed areas in a power network. Finally, our conclu-
sions are presented in Section VI.

II. CALCULATION OF AUTOCORRELATION AND VARIANCE
IN MULTIMACHINE POWER SYSTEMS

This section presents a semi-analytical method for the fast
calculation of variance and autocorrelation of bus
voltage magnitudes and line currents in power system. Fluctua-
tions of load and generation are well known sources of stochas-
ticity in power systems.While this section models only random-
ness in load, the method can be readily extended to the case of
stochasticity in power injections.

A. System Model
Adding stochastic load to the set of general differential-alge-

braic equations (DAE) that model a power system gives

(1)
(2)

where represent differential and algebraic equations,
are vectors of differential and algebraic variables (generator
rotor angles, bus voltage magnitudes, etc.), and is the vector
of load fluctuations. The algebraic equations consist of nodal
power flow equations and static equations for components such
as generator, exciter, and turbine governor. The differential
equations describe the dynamic behavior of the equipment. In
this paper, for modeling load fluctuations, we take an approach
similar to [4], [36], and [37] and assume that load fluctuations
follow the Ornstein-Uhlenbeck process:

(3)

where is a diagonal matrix whose diagonal entries equal ,
where is the correlation time of the load fluctuations, is
a diagonal matrix whose diagonal entries equal nominal values
of the corresponding active or reactive power of loads,
and is a vector of independent Gaussian random variables:

(4)
(5)

where are two arbitrary times, is the Kronecker delta
function, is the intensity of noise, and represents the
unit impulse (delta) function. Equations (1)–(3) form the set of
SDAEs that models a power system with stochastic load.
We also consider the frequency-dependence of loads, which

can measurably impact the statistics of voltage magnitudes [32].
Loads are thus modeled as follows [38], [39]:

(6)

(7)
(8)

where is the frequency deviation at the load bus,
are the baseline voltage angle, active, and reactive power of
each load, are exponents that determine the level of fre-
quency dependence, is the nominal frequency, and is the
bus voltage angle.
Using this model, we studied the New England 39-bus test

case [40]. As load increases, a Hopf bifurcation occurs just be-
fore the nose of the PV curve (see [41] and [42]).

B. Solution Method
Linearizing (2) gives the following:

(9)

where are the Jacobian matrices of with respect to
. Linearizing (1) and (3) and eliminating via (9) gives

the following:

(10)

where are the Jacobian matrices of with respect to
and . If we let , (10) can
be re-written in the standard form:

(11)

The covariance matrix of satisfies the Lyapunov equa-
tion [43, p. 110]:

(12)

which can be solved efficiently in operations using
MATLAB's lyap function. We refer to our approach as
semi-analytical, since the solution of (12) requires a numerical
method. In the subsequent sections we compare the results
from (12) to numerical simulations of (1)–(3).
The stationary autocorrelation matrix can be computed given
and an equation from [43, p. 111]:

(13)

where . From (12) and (13) the normalized autocor-
relation function of can be calculated:

(14)

The covariance matrix of the algebraic variables, , is found
from (9) and (12):

(15)

where is the matrix from (9). Similarly, the autocorrelation
function of is

(16)

Finally, the covariance and autocorrelation matrices for voltage
magnitudes are a subset of the matrices from (15) and (16).
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Fluctuation-induced deviations of the current magnitudes,
, in a line between buses and can be found by lin-

earizing the following:

(17)

where is the magnitude of the current of the line between
buses are the voltage magnitude and angle of bus

and are magnitudes and angles of the diagonal
and off-diagonal elements of the system admittance matrix. By
linearizing (17) one can find from and then compute the
covariance and autocorrelation matrices of from equations
similar to (15) and (16).
Comparing the semi-analytical method with the numerical

solution shows that the former is significantly more time-effi-
cient. For the numerical simulations in this paper, we solved
(1)–(3) using the trapezoidal DAE solver in the Power System
Analysis Toolbox (PSAT) [44]. To find numerical values for

and , we ran 100 240-s simulations, with an integra-
tion step size of 0.01 s, and then computed the statistics. For
the 39-bus case with 140 variables, solving for using the
semi-analytical method took approximately 0.08 s, whereas cal-
culating the variances using numerical simulations took about
24 h.

III. USEFUL EARLY WARNING SIGNS: VOLTAGE
MAGNITUDES AND LINE CURRENTS

This section applies the method in Section II to calculate
the autocorrelation and variance of voltages and currents in the
39-bus test case. These results are subsequently used to iden-
tify particular locations and variables in which the statistical
early-warning signs are most clearly observable.

A. Autocorrelation and Variance of Voltages
Using the methods described in Section II, we calculated

of bus voltage magnitudes in the 39-bus test case
both semi-analytically and numerically using PSAT. In order
to see how these statistics change as the system state moves
toward the bifurcation, we increased all loads uniformly, mul-
tiplying each load by the same factor. For the correlation time
and intensity of noise, we used: s and
pu. The values of in (7) and (8) were chosen randomly
from within and , respectively [38]. For all results in
this paper, we chose the autocorrelation time lag s,
based on the criteria for choosing an optimal in [32].
Fig. 1 shows several typical, illustrative examples of how

of bus voltage magnitudes depend on load level in
the 39-bus case. These results show that, as anticipated from
CSD theory, both and of voltage magnitudes increase
as the system approaches the bifurcation. However, not all of
these signs appear sufficiently early to detect the bifurcation
and take mitigating actions. For example, in buses 7, 14,
and 26 exhibits a conspicuous increase when the load level is
10%–15% below the bifurcation. These variables are good early
warning signs (EWS) of the impending bifurcation. In contrast,

in buses 20 and 36 is not a useful warning sign as its in-
crease occurs too close to the bifurcation. The situation with au-
tocorrelation is reversed, as shown in the second panel of Fig. 1.

Fig. 1. Variance and autocorrelation of voltage magnitudes for five buses in the
39-bus test case versus load level. Load level is the ratio of the system loads to
their nominal values. b denotes the bifurcation point. The bus number associated
with each curve is shown next to it. Here and everywhere below the autocorre-
lation time lag s.

The autocorrelation of voltage at bus 36 shows a noticeable in-
crease when the system is 20%–30% away from the bifurcation.
In comparison, for buses 7, 14, 20, and 26, autocorrelation of
voltage is relatively steady until very close to the bifurcation.
By examining and for all buses in our test system,

we have concluded that, as Fig. 1 illustrates, good EWS occur
in two different types of buses. We found that is a good EWS
for load buses, whereas is a good EWS at buses that
are close to generators with low inertia. In addition, we found
that at generator buses is much smaller than at load buses,
largely due to generator voltage control systems. As explained
in Section IV, this limits the use of at generator buses
as an EWS.

B. Autocorrelation and Variance of Line Currents

The fact that autocorrelation of voltages is not uniformly
useful as an EWS prompted us to look at other variables,
particularly currents, that might be more useful indicators.
Results for and of currents, shown in Fig. 2, suggest
that while of almost all lines increase measurably with
the increase of the load level, increased is clearly
observable only in some of the lines, such as line [6 31]. As
was the case with voltages, the common characteristic of lines
that show clear increases in is that they are connected
to a generator with low or moderate inertia. The explanation
for this appears to be that increased is closely tied to
the way that generators respond to perturbations as the system
approaches bifurcation. Increases in are not clearly
observable in lines that are close to load centers, such as line
[4 14] in Fig. 2.
Examining changes in of several state variables

showed that only magnitudes of voltages and line currents may
be, under the conditions mentioned above, good EWS of the
impending bifurcation. Other variables such as voltage angle,
current angle, generator rotor angle and generator speed did not
show measurable or clear monotonically increasing patterns in

that can indicate proximity to a bifurcation.
One can ask if the explanation of which specific system vari-

ables serve as useful EWS could be obtained by studying the
eigenvectors of the state matrix. Our investigation has yielded a
negative answer to this question. There are several eigenvalues
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Fig. 2. Variance and autocorrelation of current of two lines. The numbers in
brackets are bus numbers at two ends of the lines.

whose real part, , is close to zero, but the entries of their
eigenvectors corresponding to the variables that are useful EWS
[e.g., voltage magnitudes of buses 7 and 14; see Fig. 1(a)] ex-
hibit different trends as the load level increases. While in some
of these “dominant” eigenvectors, those entries indeed grow
substantially, in others there is only marginal growth or even
decay. Thus, we conclude that the underlying properties that
make a variable useful as an EWS (i.e., to exhibit substantial
growth sufficiently far from the bifurcation) occurs from some,
yet unknown, combination of several eigenvectors. This should
be contrasted with the behavior very close (within % or less)
to a bifurcation, where the system behavior is dominated by the
single eigenvector whose is closest to zero [28].
Similarly, one might ask if one can use the eigenvectors of

the covariance matrix, , to identify variables that are useful
EWS.While additional study is needed to fully characterize this
relationship, we do find evidence that the eigenvector elements
associated with the variables that show useful EWS tend to in-
crease sufficiently before the bifurcation to be useful indicators.

IV. DETECTABILITY AFTER MEASUREMENT NOISE

This section examines the detectability of increases in and
of voltages and currents given the presence of measure-

ment noise. In addition, we present a method for reducing the
impact of measurement noise using a band-pass filter and ex-
amine its robustness against change in system parameters.

A. Impact of Measurement Noise on Variance and
Autocorrelation
Clearly, measurement noise will adversely impact the observ-

ability of increases in of voltages and currents. In
order to model this impact, we assumed that measurement noise
at each bus is normally distributed with a standard deviation
that is proportional to the steady-state mean voltage for this load
level: . As a result the measured variance, ,
of a bus voltage increases to

(18)

where is the variance before adding measurement noise.
Applying this method, Fig. 3 shows and for the

voltage magnitudes of the same five buses used in Section III-A,
but after adding measurement noise. The results show that mea-
surement noise causes the increases in to occur only close
to the bifurcation, except for bus 36. In fact, decreases

Fig. 3. Variances and autocorrelations of voltage magnitudes of five buses in
the 39-bus test case versus load level, accounting for measurement noise.

for most buses, until close to the bifurcation. The reason for this
decrease is that, based on (18), decreases with , and
decreases as the system moves toward the nose of the PV curve.
Also, because of the 1% measurement noise, until
close to the bifurcation for most buses. For bus 36, which is a
generator bus, is almost constant since (and as a result
of ) is held constant by the exciter; for generator
buses.
Fig. 3 also shows that increases significantly near

the bifurcation for buses 7, 14, and, to a lesser extent, for bus
26. Appendix A demonstrates that the increase in of
these buses is largely an artifact of adding measurement noise:
it is primarily due to increases in rather than that of .
Autocorrelation of is almost zero for buses 20, 36 since
the uncorrelated measurement noise dominates the voltage of
buses near generators.
Thus, measurement noise essentially washes out the useful

EWS that we reported in Section III-A. In addition, there is an-
other issue impacting the detectability of EWS, which we dis-
cuss in the next subsection.

B. Spread of Statistics
One important point regarding the detection of increased

and is that the measured statistics of a sample of a vari-
able's measurement data (which an operator can observe in finite
time) are different from the mean statistical properties of that
variable over infinitely manymeasurements. Although themean
of these statistics typically grows as the system approaches a
bifurcation, the variance (spread) of these statistics that results
from finite sample sizes can cause difficulty in estimating the
distance to the bifurcation.
In order to quantify the detectability of an increase in or

, we introduce an index , which is the probability
of overlap between probability density functions (pdfs) of two
random variables as shown in Fig. 4:

%
%

%
%

% % (19)

where is the statistic of interest [ or ], %
and % are the pdfs of for load levels of 80% and
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Fig. 4. Left panel shows the empirical pdfs of , which can be or
of measurements for two load levels. Measure is equal to the sum of the
hatched areas. The dash-dot line shows the mean of versus load level. The
right panel shows an alternative view of the pdfs.

95% of the bifurcation, and is the point where the two dis-
tributions intersect. This measure ranges from 0 to 1, where
0 suggests that there is no overlap between the two distribu-
tions (i.e., detectability is not impeded by the statistic's spread),
while means that the two distributions completely
overlap (i.e., the spread of the statistic makes changes in un-
detectable). When the statistic has a decreasing trend, we de-
clare ; such an cannot be used as an EWS be-
cause, by design, an EWS needs to increase near a bifurcation.

roughly corresponds to the probability of being able to
correctly distinguish between the measured statistics at 80% and
95% load levels. The rationale for choosing 95% as the upper
level for this metric is that this level is close to the bifurcation,
but not so close that mitigating action is unlikely to be practical.
The rationale for the 80% level is that 80% load is potentially
a high load condition, but not one that is fundamentally out of
the ordinary-one in which mitigating action is necessary. Other
quantities could also be chosen for this measure. However, fur-
ther investigation of the results presented in the paper indicated
that the choice of these quantities does not impact the conclu-
sions of this work as long as the two load levels are not too close
to each other or too far from the bifurcation.

C. Filtering Measurement Noise

In this section, we explore the use of a band-pass filter to
reduce the impact of measurement noise on the statistics of
voltage and current measurements. The reason for filtering out
the high frequency content of measurements is that the power
spectral density (PSD) of voltages and currents (see Fig. 5)
shows that the power of the system noise (i.e., voltage or current
magnitude variations in response to load fluctuations) is con-
centrated mostly in its low frequencies. This appears to be typ-
ical for Hopf and saddle-node bifurcations in power systems.
On the other hand, in order to detect CSD, it is necessary to
remove slow trends that result not from CSD but from other
factors, such as gradual changes in the system's operating point
[45]. Care should be taken while choosing the filter bandwidth,
so the filter incorporates all weakly damped modes. Identifying
modes by eigenvalue analysis in a power system model for var-
ious operating conditions is crucial for choosing the right filter
bandwidth for that system. By experimentation, we found that
a band-pass filter with a pass-band of [0.1, 2] Hz reduces the

Fig. 5. Power spectral density of the current of line [6 31] for several load levels
listed in the legend. Bifurcation is at .

Fig. 6. Variance and autocorrelation of voltage magnitude of buses 7 and 36
versus the load level after filtering the measurement noise. In this and subse-
quent figures, the lines show the mean and the discrete symbols rep-
resent 5th, 25th, 75th, and 95th percentiles of values of for 100
realizations at each load level. The vertical dash-dot lines show
% % .

impact of measurement noise in this system optimally. The ra-
tionale for these bounds can be seen from Fig. 5, which shows
the PSD of a typical current magnitude in our system. We use
this filter for all “filtered” results reported subsequently.
Fig. 6 shows of buses 7 and 36 after fil-

tering measurement noise. Comparing Fig. 6 with Fig. 3 shows
that using the band-pass filter significantly improves the de-
tectability of increases in , which is close to load centers,
but is not effective for bus 36, which is connected to a generator.
The reason is that, even with filtering, it is still necessary that

without measurement noise be sufficiently large so that mea-
surement noise does not dominate it. of measurement noise
after filtering will approximately be

(20)

where is the variance of measurement noise after filtering;
are upper and lower cut-off frequencies of the filter; and

is the sampling frequency of measurements. Assuming
and Hz, we get . From

Fig. 1, one can see that only of the load buses exceeds this
value near the bifurcation.
Fig. 6 also shows that after filtering out measurement noise,

the increase in is detectable near the bifurcation.
However, as mentioned in Section IV-A, increases in
primarily result from increases in , and thus do not provide
additional information regarding the proximity of the system
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Fig. 7. Variance and autocorrelation of currents of lines [6 31] and [4 14] after
filtering the measurement noise.

Fig. 8. Index for of bus voltages across the 39-bus test case. Here,
and in Fig. 9, each rectangle represents the index for of the bus next
to it. In order to illustrate the results more clearly, we show for
measurements with , because quantities with this spread become
indistinguishable.

to the bifurcation. Since for generator buses,
also does not increase measurably as the system

approaches the bifurcation, even after filtering.
Similar to the case without measurement noise, of line

currents close to generators increase more clearly than that of
lines near load centers. Fig. 7 shows of currents of
lines [6 31] and [4 14] after filtering the noise.
In general, filtering noise from line currents is easier than

from voltages since the ratio of of the system noise (defined
above) to of measurement noise is larger for currents.
Fig. 8 shows the index for across the 39-bus test

case after filtering measurement noise. The results in Fig. 8 il-
lustrate our earlier statement that of buses near load centers
are good EWS of the bifurcation while of generator buses
are not.
Fig. 9 shows the index for of lines across

the 39-bus test case after filtering the measurement noise. The
results in Fig. 9 show that of the lines near generators
provide good EWS of the bifurcation while of the rest
of the lines do not provide useful EWS.
Note that while filtering of measurement noise can be helpful

in detecting the increase in of buses near load centers,
it is not helpful in detecting an increase in of these
buses. This is because the of such buses are not in-
herently good indicators of the proximity to the bifurcation;
see Section III-A. Also, filtering measurement noise will not be
helpful in retrieving the statistics of the bus voltages close to

Fig. 9. Index for of lines across the 39-bus test case. Each
rectangle represents index for of the line next to it.

generators since their variances are small compared to that of
measurement noise. In contrast, of lines near genera-
tors provide good EWS for the bifurcation and from almost
all lines provide good EWS.

D. Sensitivity Analysis

This section investigates the robustness of the observations
from Section IV-C regarding which variables provide good
early warning of bifurcations. By varying a number of system
parameters, described below, we verify that the conclusions
reached in Section IV-C are not sensitive to such parameter
variations.
In the first case, we assumed that unlike the assumption in

Section II, the intensity of load perturbations does not growwith
increase in load. Instead of using the term or in
(3), where and increased with the load level, we assumed

or , where and corresponded to the load
level at 70% of the bifurcation. Using the same method as in
previous sections, the results confirmed that of load buses
and of lines near generators are useful EWS for this
case as well.
The results for three additional cases also confirm the con-

clusions from Section IV-C. In the second case, we randomly
assigned different values of and to all generators to be
within 40% of the corresponding values used in Section IV-C.
In doing so, we held the ratios constant in order to pre-
vent unrealistic values. The third case examines the robustness
of the band-pass filter against measurement noise with different
characteristics. To do so, we assumed that measurement noise to
be a zero-mean Gaussian random variable with standard devia-
tions fixed at 0.01 pu and for voltages and currents, re-
spectively, where corresponds to the load level at 70% of the
bifurcation. The fourth case chooses load correlation times ran-
domly to be between 0.6 and 1.4 s among all 39 buses. In each
of these cases we found the same qualitative patterns described
previously: variances in voltages near loads and autocorrelation
of currents near generators consistently increased before bifur-
cations.
While the results from these four cases confirm the conclu-

sions from Section IV-C, further study is necessary to verify
the conclusions regarding optimal EWS for other systems and
different parameter changes.
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Fig. 10. Panel (a) shows after disconnecting the two lines con-
nected to bus 4. The mean of the for the 5 buses that show the
highest increases in variance, as well as the 5th, 25th, 75th, and 95th percentiles
of their values, are shown. Panel (b) shows for 5 lines that ex-
hibit the largest increases in . The results are shown after filtering of
measurement noise.

V. DETECTING LOCATIONS OF INCREASED STRESS

This section examines the potential to use statistical proper-
ties of measurements to detect the locations of increased stress
in a power system. By studying two scenarios, we investigated
whether patterns of change in and in a stressed area
are different from the rest of the grid, so they can be helpful in
identifying the location of the stressed area.

A. Transmission Line Tripping

In the first scenario, we disconnected lines between buses
4 and 14 and buses 4 and 5 in order to increase stress in the
area close to bus 4. For this experiment, the load level was held
constant at 1.45 times the nominal. We calculated the ratios of
variances in the stressed case to the corresponding variances at
normal operating condition; we called them and

for the magnitudes of voltages and line currents,
respectively. We also calculated the difference between the
corresponding autocorrelation functions in the two cases; we
called them and . Values of

and that are sufficiently larger than 1
and 0, respectively, indicate significant increase in the corre-
sponding statistic. Fig. 10(a) shows after adding
measurement noise and filtering. The five bus voltages shown
have the highest mean of among all buses. The
figure shows that the voltage of the buses near bus 4 have the
largest among the system buses. As with voltages,

close to bus 4 showed more growth than in the rest of
the system. These results suggest that larger increases in
and in one area of the system, relative to the rest of the
system, can indicate that this area is stressed.
Our results from Section IV identified certain lines whose

autocorrelation of currents can be good EWS of bifurcation.
We now comment on what behavior these autocorrelations
exhibit in this experiment. It turns out that not all of these auto-
correlations show a measurable increase; the five lines whose
currents' autocorrelations show the largest increases are shown
in Fig. 10(b). While it is not possible to pinpoint the location
of the disturbance based only on the patterns of change in these
autocorrelations, it is possible to tell, based on them, that the
disturbance has occurred in a certain area of the network. This

Fig. 11. PV curve for the three cases described in Section V-B. The vertical
line corresponds to the base load level.

knowledge would reinforce the information obtained from
monitoring variances of voltages and currents. As explained in
Section IV-A, does not provide useful information
regarding which areas in the grid are most stressed.

B. Capacitor Tripping
This section provides an example in which the statistical mea-

sures, and , (at least partially) indicate the location of
stress in the network, but the mean voltages do not change
enough to be good indicators. This example was designed to test
the hypothesis that and can provide information that
is not readily available from the mean values.
For this example, we added a new bus (bus 40) and an under-

load tap changing (ULTC) transformer that connects bus 40
with bus 15. We also transferred the load of bus 15 to bus 40.
Fig. 11 shows the P-V curve of bus 40 for three cases. In Case
A, the system is in normal operating condition. In Case B, a
3-MVAR capacitor at bus 40 is disconnected and in Case C,
the tap changer changes the tap from 1 to 1.1 in order to re-
turn the voltage to the normal operating range ([0.95 1.05] pu).
Fig. 11 shows that the disconnection of the capacitor reduces
the stability margin significantly, which manifests itself in lower
voltage at bus 40. However, the increase in the ULTC's tap ratio
to 1.1 returns the voltage to a value close to its normal level.
Fig. 12(a) shows

for five lines, after filtering the measurement noise. These
five line currents show the largest increase in among all
lines. The first three highest occur in lines that
are close to the stressed area. However, some of the lines that
are close to that area do not show significant or any increase
in . For example, of line [14 15] decreases. Never-
theless, considering lines with the highest growth in can
clearly be helpful in identifying the location of the area of
the system under excessive stress. As was the case for line
currents, the results show that buses that exhibit the largest
increases in are close to the stressed area. Fig. 12(b) shows

for 5
lines. The positive values indicate the increase in .
The results in Fig. 12(b) show that lines that exhibit the largest
increase in are close to the stressed area.

C. Discussion
The results presented in this section show that comparing

and for a stressed operating condition with their vari-
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Fig. 12. Panel (a) shows for 5 lines that exhibit the
largest increase in among all lines. Panel (b) shows

for 5 lines that exhibit the largest increase in .

ances for the normal operating condition can be useful in de-
tecting stressed areas of a power system. The reason for this is
that the variances of voltage and current magnitudes show larger
increases near the stressed area of a power system, compared to
variances in the rest of the system. The results also show that

can be helpful in detecting the stressed area's approx-
imate location, although it may not be helpful in pinpointing
the exact location of the stress. Autocorrelation of bus voltages
were not found to be useful for pinpointing the stressed location
for the reason explained in Appendix A.

VI. CONCLUSION
This paper investigates the use of statistical signals (autocor-

relation and variance) in time-series data, such as what is pro-
duced from synchronized phasor measurement systems, as in-
dicators of stability in a power system.
First, we derived a semi-analytical method for quickly com-

puting the expected autocorrelation and variance for any voltage
or current in a dynamic power systemmodel. Computing the sta-
tistics in this way was shown to be orders of magnitude faster
than obtaining the same result by simulation, and allows one to
quickly identify locations and variables that are reliable indica-
tors of proximity to instability. Using this method, we showed
that the variance of voltagemagnitudes near load centers, the au-
tocorrelation of line currents near generators, and the variance of
almost all line currents increased measurably as the 39-bus test
case approached bifurcation. We found that these trends persist
under various system conditions, even in the presence of mea-
surement noise, provided that the data are band-pass filtered.
Finally, the paper provides results suggesting that the statistics
of voltage and current data can be helpful in identifying not only
whether a system is seeing increased stress, but also the location
of the stress.
Together, these results suggest that, under certain conditions,

these easily measured statistical quantities in synchrophasor
data can be useful indicators of stability.
With additional development, the semi-analytical method

may be particularly useful for real-time power system stability
monitoring. Quick calculation of statistics for various scenarios
could help in developing a probabilistic index of system sta-
bility by calculating distributions of measurements' statistics
for multiple operating conditions. However, it is necessary to
take further steps to achieve a reliable index. First, it is essential

to accurately account for the impact of filtering measurement
noise in the analytical results. Also, the success of this approach
requires an accurate statistical model of measurement noise
and load fluctuations.

APPENDIX A
The equation for before band-pass filtering is

(21)

If will be almost zero. This is the case
for generator buses or buses close to generators such as buses
20 and 36. However, if increases such that and

is sufficiently larger than 0 , then
will rise significantly with load level, in part because of increase
in and in part because of increase in . This hap-
pens for buses close to load centers such as 7 and 14. Com-
paring of voltage of buses 7 and 14 in Fig. 1 with those
in Fig. 3 shows that these quantities increase significantly after
adding measurement noise while their increase without mea-
surement noise is much smaller. This shows that the increase
in for load buses is more due to the increase in
than due to the increase in .
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