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Abstract

We propose an exponential time-differencing method based on the leapfrog scheme for numer-

ical integration of the generalized nonlinear Schrödinger-type equations. The key advantage of

the proposed method over the widely used Fourier split-step method is that in the new method,

numerical instability at high wavenumbers is strongly suppressed. This allows one to use time

steps that considerably exceed the instability threshold, which leads to a proportional reduction

of the computational time. Moreover, we introduce a technique that eliminates numerical instabil-

ity at low-to-moderate wavenumbers that is common for methods based on the leapfrog scheme.

We illustrate the performance of the proposed method with examples from two applications areas:

deterministic wave turbulence and solitary waves.
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1 Introduction

The Fourier split-step method (SSM) is, perhaps, the most popular numerical method of solving

the generalized nonlinear Schrödinger equation (NLS),

iut + uxx +
(
γ|u|2 + V (x)

)
u = 0, (1)

and similar equations, which arise in diverse applications. For a survey of various methods for this

equation see, e.g., recent reviews [1, 2] and references therein. The SSM is explicit and hence easy

to implement; it is relatively fast as it requires O(N logN) operations per time step, where N is

the number of grid points; it also conserves (to numerical precision) the L2-norm of the solution.

While it does not conserve the Hamiltonian (or some spatially discretized form of it), the SSM only

causes it to slightly fluctuate about the initial value rather than systematically deviate from the

latter, as, e.g., any explicit Runge–Kutta method would do. Such a quasi-preservation of conserved

quantities by the SSM makes it well suited for simulation of long-time evolution.

Let us note that in such long-time simulations, in contrast to short-time ones, one rarely focuses

on high accuracy of the obtained solution. For example, when simulating oscillations of a pulse

in a potential well, it is reasonable to ask for the period and amplitude of those oscillations with

accuracy, say, 0.1 %, but not for the exact location of the pulse after hundreds of such periods. Other

actively researched areas concerned with long-time evolution are wave turbulence and formation of

waves of extremely high amplitude (rogue waves); see. e.g., reviews [3]–[5]. In those studies one is

interested in statistics of, e.g., waves’ height and speed, but not in a precise values of the solution;

see, e.g., [6]. Accuracy of about 0.1 % or even lower may be quite appropriate for such statistical

simulations.

Since simulations of long-time evolution require a considerable amount of physical time, one

may be tempted to increase the numerical time step, given that a relatively low accuracy would

be acceptable. However, for the SSM, the upper bound on the time step ∆t is often set by the

condition of numerical stability:

∆t < ∆x2/π, (2)

where ∆x is the spatial mesh size. Condition (2) was first obtained in [7] for the pure NLS and

later rederived in numerous studies. While this numerical instability (NI) may often be too weak

to affect the solution over short time intervals, it will destroy or strongly degrade the solution over

long times.

In this paper we propose an alternative to the SSM that allows one to use time steps that can

be several times1 greater than the threshold (2). This leads to a proportional reduction of the

computational time. The main application of our technique is in studies of wave turbulence and

rogue wave formation, where non-localized solution is simulated in a large domain with periodic

boundary conditions. We will demonstrate with examples that the accuracy of statistical informa-

tion obtained by the proposed technique is acceptable for such applications. Another advantage of

1at least three–four times in one spatial dimension and even more in higher dimensions
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the newly proposed method is that it can be straightforwardly applied to conservative or nearly

conservative evolution equations with any type of the nonlinear term. This is in contrast to the

SSM, whose applicability hinges on one’s ability to efficiently solve the nonlinear “substep” of the

evolution.

Before we present our main idea, let us explain why two well-known methods to suppress NI,

and hence to use a large time step, will not work for the above applications. One such method

is filtering of high-k (k is wavenumber) components of the solution where NI occurs. However,

filtering leads to energy dissipation, which affects both the L2-norm and the Hamiltonian and thus

may considerably alter the evolution over long times. This will occur even though the “share”

of numerically unstable high-k Fourier harmonics in the solution is typically very small, less than

0.001 % or so. The reason is that in the NLS or similar equations, nonlinearity results in energy

“flowing” from low to high wavenumbers during the evolution; the inverse “cascade” also takes

place; see, e.g., [5, 6] and references therein. Thus, numerical dissipation (i.e., filtering) at high k

will affect the low-k, i.e. smooth, part of the solution.

The other way to greatly increase the NI threshold is to use either a linearly implicit method

(as, e.g., in [8]) or a SSM with a finite-difference, instead of spectral, discretization of the uxx term

in (1). This has been shown to modify the stability condition (2) to be

∆tthresh = O(∆x), (3)

where the numerical coefficient on the right-hand side (r.h.s.) of (3) depends on the details of the

method as well as on the nature of the simulated solution, e.g., plane wave [7] or soliton [9]. However,

both linearly implicit methods and finite-difference discretizations, unless the latter are of very high

order (see, e.g., [10]), truthfully mimic the dispersion only for k = O(1). Already for moderately

high k = O(1/
√
∆x) ≪ kmax = π/∆x, which still represent physically significant components of

the solution, a typical finite-difference discretization significantly distorts the dispersion relation2;

see, e.g., [11]. Thus, it cannot be used to simulate phenomena like rogue wave formation, where

high-k components play an important role.

In this paper we propose an exponential time differencing (ETD) method that uses the leap-frog

(LF) scheme for integration of the nonlinear and potential-dependent terms in (1). We will refer

to this method as ETD-LF. We will first demonstrate that the ETD-LF has a considerably weaker

high-k NI than the SSM. However, this alone does not allow one to use this method for long-time

simulations. Since the method is based on the LF scheme, it suffers from a low-k NI. The main

contribution of the present work is a demonstration that a properly modified ETD-LF is capable of

simulating long-time evolution of the generalized NLS with time steps exceeding the NI threshold

severalfold compared to the SSM. The accuracy achieved with it appears to be acceptable in most

statistical studies.

The main part of this work is organized as follows. In Section 2 we introduce the ETD-LF and

a related method. In Section 3 we analyze their low-k and high-k NI. In particular, we show that

2It is, in fact, this distortion that raises the NI threshold from (2) to (3).
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the high-k NI of the ETD-LF is considerably weaker than that of the SSM. In Section 4 we discuss

modifications of the ETD-LF that address these NIs. In Sections 5 and 6 we report numerical

examples that demonstrate performance of the modified ETD-LF in simulations of deterministic

wave turbulence in one and two spatial dimensions, respectively. In Section 7 we summarize this

work. Appendices A and B contain auxiliary results on high-k NI of the ETD-LF. Appendix A also

demonstrates that the ETD-LF is effective in simulations of solitary waves.

2 Exponential time differencing and integrating factor LF meth-

ods

The idea behind the ETD and integrating factor (IF) methods was originally formulated for ordinary

differential equations [12]–[14] and later applied to partial differential equations [15], [16]. Below

we illustrate it for equations of the form

iut + Lu+N = 0, (4)

where L is a linear operator with spatially constant coefficients and N includes all other terms.

The generalized NLS (1) is a special case of (4). Let F and F−1 be operators of Fourier transform

and its inverse:

û(k, t) ≡ F [u] =
1√
2π

∫ ∞

−∞
u(x, t) e−ikxdx, u(x, t) = F−1[û] =

1√
2π

∫ ∞

−∞
û(k, t) eikxdx.

In what follows we will label the Fourier transform of any quantity with an over-hat; in particular,

L̂ ≡ L̂(k) will denote the Fourier symbol of operator L. Taking the Fourier tranform of (4) yields

iût + L̂û+ N̂ = 0. (5)

Solving this from t1 to t2 as a linear inhomogeneous equation yields:

e−iL̂t2 û(t2)− e−iL̂t1 û(t1) =

∫ t2

t1

e−iL̂t′ iN̂ (t′) dt′, (6)

where we have suppressed the obvious k-dependence of variables. Thus, the linear term in (4),

which is often numerically stiff, is accounted for exactly by (6). One may think that this may

eliminate the numerical stiffness due to L in methods based on (6). However, as we will show

in Section 3.2, the stiffness may still remain depending on the numerical implementation of the

integral term in (6).

This numerical implementation depends on two things: (i) what finite difference discretization

is used to approximate the integral, and (ii) what is assumed about the time evolution of N̂ (t).

Regarding (i), in this work we use the LF discretization. This choice is based on the well-known

fact that the LF scheme preserves the L2-norm when applied to linear conservative equations.

While the generalized NLS is not linear, we still expect — and later will confirm by examples —
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that an LF-based method nearly preserves the L2-norm and the Hamiltonian of its solution3. In

fact, a number of previous studies have used LF-based methods to solve the (generalized) NLS

[17, 18] and other conservative nonlinear equations [19, 8]. Let us also note that the LF scheme is a

member of the so called “geometric integrators” family of numerical methods (see, e.g., [20]), and

such methods are known (see, e.g., [21]) to be well suited for integration of Hamiltonian equations.

Finally, the LF scheme is explicit, which makes its implementation simple and hence competitive

with that of the SSM.

Assumption (ii) in the previous paragraph distinguishes between the ETD and IF methods (see,

e.g., [16]). For the ETD, one assumes that N̂ (t) in (6) varies on a time scale of order one (i.e.,

much greater than O(∆t)) for all k, including those where |L̂| ≫ 1. On the other hand, the factor

exp[−iL̂t′] is integrated exactly. Then, applying the LF scheme to (6), one obtains the ETD-LF

method:

e−iL̂tn+1 û(tn+1)− e−iL̂tn−1 û(tn−1) =
e−iL̂tn+1 − e−iL̂tn−1

−iL̂
iN̂ (tn) . (7)

In the case of the NLS (1), L̂ = −k2 and N̂ = F [ (γ|u|2 + V (x))u ]; then with tn = n∆t, (7)

becomes:

eik
2∆t û(tn+1)− e−ik2∆t û(tn−1) = 2i∆t sinc (k2∆t) N̂ (tn) . (8)

For the IF methods, one assumes that the entire integrand in (6), i.e. e−iL̂t iN̂ (t), varies on a

time scale of order one. Then, applying the LF scheme to (6), one obtains the IF-LF method:

e−iL̂tn+1 û(tn+1)− e−iL̂tn−1 û(tn−1) = 2∆t e−iL̂tn iN̂ (tn) . (9)

For the NLS (1) this simplifies to:

eik
2∆t û(tn+1)− e−ik2∆t û(tn−1) = 2i∆t N̂ (tn) . (10)

One can see that the only difference between (8) and (10) is in the factor sinc (k2∆t). In the next

section we will show that this factor is responsible for the difference in the stability properties of

the ETD-LF and IF-LF.

Both these methods have the second-order accuracy in time, inheriting this property from the

LF scheme4. As the first step of either method, one can, in principle, use any first-order method

without compromising the overall second-order accuracy. However, we found by experimentation

that it benefits the accuracy to compute the solution at t1 = ∆t by a second-order method. We

used the second-order Runge–Kutta ETD method, ETD-2RK, from [16]:

c1 = ∆t e−ik2∆t sinc (k2∆t/2), c2 = (∆t− c1)/(ik2∆t); (11a)

â = û0 e
−ik2∆t + c1 iN̂0, a = F−1[â]; (11b)

3Here “nearly” means that these quantities slightly fluctuate about, but do not systematically deviate from, their

initial values.
4There are no known “geometric integration” explicit methods of order higher than two, apart from fractional-step

(also known as split-step) methods; see, e.g., [22]. Thus, one cannot increase the order of the ETD-LF (or the IF-LF)

without making it implicit and thereby significantly slower, which would undo its main advantage over the SSM.
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û1 = â+ c2 i(N̂a − N̂0), u1 = F−1[û1]; (11c)

where u0 is the initial condition and N̂0 and N̂a stand for N̂ evaluated at u0 and a, respectively.

The Fourier transform (including that for the computation of spatial derivatives) was implemented

by the discrete (fast) Fourier transform for all the methods considered in this paper.

While the ETD and IF methods, and, of course, the LF scheme, have been known for a long

time (see, e.g., recent studies [24]–[30] and references therein), we are not aware of any work where

their combination (7)–(10) has been applied to the NLS-type equations.

3 Numerical instability of ETD-LF and IF-LF

We will obtain an equation for the numerical error and use it to infer stability of the methods derived

in the previous section. We will employ the same technique as in [23] (see below) to analyze NI of

the SSM on the background of the soliton of the NLS. The advantages of this technique over the

von Neumann analysis are: (i) it does not require the background solution to be a plane wave or

a constant in space, nor does it limit the equation to have spatially constant coefficients; (ii) it

may provide intuitive understanding of the mechanism of the instability of the numerical method

(see Section 3.1). The limitations of this technique are: (i) the equation is specific to the error

within a certain spectral range rather than for all Fourier harmonics at once; (ii) it is valid only

for a sufficiently small ∆t, so that one can approximate the difference equation with a differential

one. In Sections 3.1 and 3.2 we will obtain equations for the low-k and high-k numerical errors of

the NLS; that is, we focus on specific implementations (8) and (10) of the general methods (7) and

(9).

3.1 Low-k numerical instability of ETD-LF and IF-LF

We assume ∆t ≪ 1 and k = O(1) in (8) and (10); the coefficients of N̂ are always assumed to be

of order one. We represent the numerical solution as

u(x, tn) ≡ un(x) = ub(x, tn) + ũn(x), |ũn| ≪ |ub|, (12)

where ub mimics the actual (“physical”), or background, solution, and ũn is the numerical error.

Substitution of the Fourier transform of (12) into (8) and (10) yields:

eik
2∆t ̂̃un+1 − e−ik2∆t ̂̃un−1 = 2i∆t Ĝ[k2∆t]M̂(ub, ũn), (13a)

where Ĝ = sinc (k2∆t) for the ETD-LF, Ĝ ≡ 1 for the IF-LF, and M̂ is the linearization of N̂ :

M̂ = F
[
2γ|ub|2ũn + u2bũ

∗
n + V (x)ũn

]
. (13b)

The zeroth-order in ∆t solution of (13) satisfies: ̂̃un+1 = ̂̃un−1, which admits two possibilities:

̂̃u(±)

n+1 = ±̂̃u(±)

n . (14)
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This is well known for any method based on the LF scheme, which involves three time levels. The

quantity ũ(+) will be referred to as the “physical” error. Indeed, it exhibits a continuous evolution:

ũ
(+)
n+1 − ũ

(+)
n = O(∆t) · |ũ(+)| (see the r.h.s. of (13a)) and thus mimics the physical perturbation of

the background solution ub. On the other hand, ũ(−) is a parasitic error, i.e., a numerical artifact

(its time evolution is not continuous: ũ
(−)
n+1 − ũ

(−)
n = O(1) · |ũ(−)|). The parasitic error is harmless

unless it grows and contaminates the solution u(x, t). The evolution equation for the numerical

error is obtained by expanding the l.h.s. of (13a) into the Maclaurin series while assuming that

(±1)n̂̃u(±)
(tn) are continuous functions of time, so that

̂̃u(±)
(tn+1) = ±

(̂̃u(±)
(tn) + ∆t̂̃u(±)

t (tn) +
∆t2

2
̂̃u(±)

tt (tn) + . . .

)
. (15)

Neglecting terms O(∆t3), one finds from (13a):

̂̃u(±)

t + ik2̂̃u(±)
= ±M̂(ub, ̂̃u(±)

); (16)

here we have used that, for both the ETD-LF and IF-LF, Ĝ[k2∆t] can be replaced by unity for

k2∆t ≪ 1. Taking the inverse Fourier transform of (16) yields (for V (x) ≡ 0, which we set in the

remaining derivations for simplicity)5:

iũ
(±)
t + ũ(±)

xx ± γ(2|ub|2ũ(±) + u2bũ
(±) ∗) = 0. (17)

Not surprisingly, this is (up to the (±) in front of γ) the linearized NLS; the accuracy with which

it has been obtained is consistent with the LF being a second-order scheme.

The evolution of the numerical error depends on the sign of γ (and, of course, on the background

solution ub). For the focusing NLS (γ > 0) and ub being a plane wave of amplitude A, small

perturbations with |k| ∈ (0, 2γA2 ) are known to undergo modulational instability (see, e.g., [31]).

The evolution of the “physical” part of the error, ũ(+), is governed by the linearized NLS (with

the (+) in front of γ) and hence will be indistinguishable from the evolution of any “physical”

perturbation that may exist in the system. On the other hand, the parasitic error, ũ(−), obeys

the evolution governed by Eq. (17) with the (−) in front of γ. This is equivalent to a “physical”

perturbation of a plane wave in the defocusing case, where perturbations are known to be stable.

Thus, for γ > 0, the numerical low-k error will be dominated by ũ(+) and therefore will closely

approximate the behavior of a “physical” perturbation. When ub is not a plane wave, the conclusion

will be qualitatively the same. This is because ũ(+) and ũ(−) will obey the evolutions governed

by the focusing and defocusing NLS, respectively, and the former is known to exhibit much more

volatile dynamics than the latter (we also will demonstrate this by an example in Section 5).

For the defocusing NLS (γ < 0), the “physical” error ũ(+) will obey the modulationally stable

dynamics, while Fourier harmonics with k ∈ (0, kMI) of the parasitic error ũ
(−) will be modulation-

ally unstable. That is, the parasitic error will be governed by the “more volatile” focusing NLS

5All conclusions of this paper remain valid also for V (x)�≡ 0 as long as max |V (x)|∆t ≪ 1. Thus, for V (x) ∼ x2,

they may be altered, although the ETD- and IF-LF methods themselves will remain applicable for sufficiently small

∆t.
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and hence will, eventually, overcome the “physical” solution. Thus, both ETD- and IF-LF are nu-

merically unstable for simulating a defocusing NLS. The underlying reason for this low-k NI is the

existence of the parasitic error ũ(−). Let us note that a similar NI was explained in [32] by the von

Neumann analysis for the method proposed in [17]. However, as we have remarked earlier, the von

Neumann analysis did not reveal a connection between the NI observed there and the “physical”,

i.e. modulational, instability of the parasitic error. Our method, based on Eq. (17), predicts that

any numerical method based on the LF scheme, not just that of [17], will suffer from this NI for

the defocusing NLS.

To conclude this subsection, let us note that the presence of a parasitic error ũ(−) is also

responsible for a nonlinear NI in the focusing NLS. We did not undertake its analysis here since

this would have taken us in a direction completely unrelated to the main thrust of this work. We

merely note that analysis of such (or closely related) nonlinear NI, for a different equation, was

done in [33]. This nonlinear NI occurs for Fourier harmonics with relatively low k, which are within

the spectral band of the “bulk” of the solution. In Section 4.1 we will give an example of this NI.

Its manifestation is rather universal [33]: once those parasitic harmonics reach a certain critical

size (which may take several hundreds of time units), they undergo an explosive growth, and the

numerical solution blows up within just a few time units. In contrast, for the defocusing NLS,

addressed in the previous paragraph, the growth of ũ(−) is more gradual, but the parasitic error

takes a smaller time to develop from the noise level to a size where it destroys the solution. For the

parameters considered in this work, this time was several tens to about a hundred of time units.

3.2 High-k numerical instability of ETD-LF and IF-LF

Here we assume that the spectrum of numerical error ũn is concentrated near |k| = k0 ≫ 1. As in

[23], we will show that high-k NI can occur only for k0 ≈ kπm, where

k2πm∆t = πm, m = 1, 2, . . . . (18)

Denote k20∆t ≡ ϕ; then in the zeroth order in ∆t, ũ satisfies eiϕ ̂̃un+1 = e−iϕ ̂̃un−1, which admits

two solutions: ̂̃u(±)

n+1 = ±e−iϕ ̂̃u(±)

n . (19)

In the next approximation, we allow eiϕ ̂̃u(±)
to be slow functions of time, just as in (15). For ũ

with a sufficiently narrow spectrum whose wavenumbers satisfy

|k2 − k20|∆t ≪ 1, (20)

one obtains, similarly to (16):

̂̃u(±)

t + i(k2 − k20)̂̃u(±)
= ±Ĝ

[
ϕ+ (k2 − k20)∆t

]
M̂(ub, ̂̃u(±)

). (21)

Here we have assumed, just as when approximating the difference equation (13a) by the differential

equation (16), that the term on the r.h.s. of (21) multiplied by ∆t is sufficiently small. For future
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reference we note that this assumption may be violated for some high-k harmonics at those times

when the spectrum expands considerably.

Before moving on, let us explain why k0 ≈ kπm is necessary for the occurrence of NI [23]. The

r.h.s. of (21) contains two terms varying with time steps as e−iϕn and eiϕn, respectively; see (13b)

and (19). An instability, similar to the modulational instability, can occur only when these terms

are in synchronism with each other, which requires e2iϕ = 1. This condition is equivalent to (18).

The above considerations imply that the threshold for high-k NI is

∆tthresh = π/k2max, (22)

where kmax is defined after (3). Note that (22) is consistent with condition (2).

Continuing with (21), one can easily take its inverse Fourier transform when Ĝ ≡ 1, i.e. for the

IF-LF method. The result is:

iũ
(±)
t + (ũ(±)

xx + k2πmũ(±) )± γ(2|ub|2ũ(±) + u2bũ
(±) ∗ ) = 0, (23)

which is the same (apart from the (±) in front of γ) as the equation for the high-k numerical error

of the SSM; see Eq. (A2) in [23]. As shown there, the role of the γ-term is to enable interaction

of harmonics with k ≈ kπm and k ≈ −kπm with each other, which is the mechanism of high-k NI.

Importantly, unlike in the low-k case, the NI resulting from that interaction is independent of the

sign of γ (see Eq. (3.25) in [23]). Therefore, for any background solution ub whose spectrum is

negligibly small near |k| ∼ kπ (see below), such as a soliton or plane wave, the NI of the IF-LF

and SSM must be very similar. In Appendix A we demonstrate this for ub being the soliton. On

the other hand, for solutions whose spectrum expands considerably past kπ, as in the examples in

Section 5, we have found that NI for the IF-LF is stronger than that for the SSM, as illustrated in

Fig. 1(a). We comment on a possible reason for that in Appendix A.

For the ETD-LF, i.e. when Ĝ[k2∆t] = sinc (k2∆t) ≡ sinc (πm + (k2 − k2πm)∆t), the inverse

Fourier transform of (21) cannot be found exactly. However, note that sinc (πm) = 0 for m =

1, 2, . . . (see Fig. 2) and therefore Ĝ[k2∆t] = O(|k2 − k2πm|∆t) ≪ 1. A counterpart of (23) for the

ETD-LF is then:

iũ
(±)
t + (ũ(±)

xx + k2πmũ(±) ) +O(|k2 − k2πm|∆t) = 0. (24)

In particular, for |k − kπm| = O(1), the last term in (24) is O(
√
∆t) ≪ 1. This shows that the

high-k NI of the ETD-LF is strongly suppressed compared with that of the IF-LF and the SSM;

see Fig. 1(a). Let us note that the spikes seen in the spectrum of the ETD-LF solution do not grow

exponentially; this is confirmed by Fig. 1(b). As for the IF-LF, they are created and augmented

at times when the spectrum expands past the corresponding kπm (see Appendix A). With each

subsequent expansion they grow (on average), but do so much slower than exponentially. As we

will discuss in Section 4.2 and demonstrate in Sections 5 and 6, those spectral distortions affect the

solution only insignificantly.
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Figure 1: (Color online) Fourier spectra of the numerical solution of (1) with V (x) ≡ 0 and the

initial condition (32). Here and below in this paper, we show only the part with k > 0, since the

spectra are symmetric relative to k = 0. The parameters in all displayed cases are the same as in

Section 5.1, except that ∆t = 1.8 · 10−3 and t = 20 for panel (a) and t = 10, 000 for panel (b).

Panel (a) compares IF-LF (thicker solid, blue), SSM (thinner solid, red), and ETD-LF (dotted,

black). No stabilization (see Section 4) is used for IF-LF and ETD-LF. The spikes in the spectra

of IF-LF and SSM are the exponentially growing numerically unstable modes. (For example, the

IF-LF solution is destroyed by the NI before t = 50.) Panel (b) shows the solution obtained with

ETD-LF at t = 10, 000 for the same parameters as in (a). Dotted (black) line is for the case where

no amelioration of spectral distortions near |k| = kπ and k2π was used; solid (green) line is when

such amelioration techniques, described in Appendix B (see also Section 4.2) were used. Both

simulations in panel (b) had to use stabilization (28) every tstabilize = 10 time units to overcome

the low-k NI described in Sections 3.1 and 4.1.

k / k
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∆ t /π)3 ]
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∆ t]

Figure 2: Functions depicting the strength of the nonlinear interaction, Ĝ, for the ETD-LF (solid)

and for its modified version used in Section 6 (dashed). The dotted lines are guides for the eye.

In Appendix A we also show that the NI does not occur in the ETD-LF for the soliton back-

ground solution. In particular, in this case the ETD-LF appears to be numerically stable for ∆t

10



exceeding the NI threshold by more than ten times.

4 Suppression of low-k numerical instability and high-k distortions

of ETD-LF

Since the high-k NI of the ETD-LF is much weaker than that of the IF-LF, we have chosen the

former method as a “platform” to modify. Our goal is to suppress the low-k NI, as well as ameliorate

distortions in the spectrum in the vicinity of kπm, described in the previous section. We will show

later that suppression of the low-k NI is critically important to render the ETD-LF usable for

long-time simulations. On the other hand, amelioration of the high-k distortions will prove not to

be significant to improve performance of the ETD-LF with large time steps.

4.1 Suppression of low-k numerical instability

As we noted in Section 3.1, the low-k NIs are due to the parasitic component ũ(−) of the numerical

error. Therefore, if ũ(−) is suppressed, so will be the NI. The growth rate of the linear low-k NI

for the defocusing NLS is O(1): see (17). For the nonlinear low-k NI for the focusing NLS, the

growth rate is even smaller; see the end of Section 3.1. Then, it will suffice to suppress ũ(−) every

tstabilize = O(1) time units to keep it from growing in the long term. The most common way to

do so, which has long been known for LF-based methods, is to simply discard solution un+1 while

keeping un and then restart the simulation from scratch. However, this does not eliminate ũ(−)

that has already been created, but merely makes its accumulation slower because ũ(−)’s created at

each restart add up incoherently.

We have chosen another approach, where ũ(−) is actually eliminated (with the same accuracy

with which (19) is valid) at each tstabilize time unit. The simplest suppression scheme is:

v̂n = (v̂n + v̂n−1)/2, v̂n+1 = (v̂n+1 + v̂n)/2, (25)

where v̂n = ûn e
ik2∆tn ; v̂n and v̂n+1 are then used for the computation of the solution at the

(n + 2)th time level. The averaging of the two successive time levels in (25) suppresses ũ(−), as

seen from (14). However, this introduces dissipation. Indeed,

u(tn+1) = u(tn + 0.5∆t) +
∆t2

2
(u(tn + 0.5∆t))tt + . . . , (26)

and then this step modifies the simulated equation, (1), as:

iut + uxx +
(
γ|u|2 + V (x)

)
u = O(∆t2) · iutt, (27)

which reveals dissipation with rate O(∆t2). Over long simulation times this may be significant.

Therefore, we employed averaging over several time levels:

v̂n =
11

16
v̂n +

15

64
(v̂n−1 + v̂n+1)−

3

32
(v̂n−2 + v̂n+2) +

1

64
(v̂n−3 + v̂n+3), (28)
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and similarly for v̂n+1. This produces dissipation at a rate O(∆t6), which we found not to affect

our results. We will refer to (28) as a stabilization step. A value of tstabilize can be established by

a quick experimentation; we found the results not to be sensitive to it within a reasonably wide

range.

Let us mention that time instances when stabilization needs to be applied can instead be

determined automatically. Given (14) or (19), one can write the numerical solution as

un = ub(tn) + ũ(+)
n + (−1)nũ(−)

n , (29)

where ub(tn) is the background solution at tn and the last two terms are the two components of

the numerical error. Both ub and ũ(±) vary little over one time step. Consider now two quantities:

∆1u ≡ un+1 − un ≈ (ub)t∆t+ ũ
(+)
t ∆t− 2(−1)nũ(−) ≈ (ub)t∆t− 2(−1)nũ(−), (30a)

∆2u ≡ un+1 − 2un + un−1 ≈ (ub)tt∆t2 − 4(−1)nũ(−); (30b)

here all functions on the r.h.s. are evaluated at tn, and we have neglected derivatives of ũ(+)

compared to the corresponding derivatives of ub. Since ∆t ≪ 1 and initially one has

|ũ(−)| ≪ |(ub)t|∆t, (31a)

then, also initially,

∥∆1u∥ = C0∥∆2u∥, C0 ≫ 1, (31b)

where ∥ . . . ∥ is the L2-norm. If ∥ũ(−)∥ begins to grow, that will eventually increase the ratio

∥∆2u∥/∥∆1u∥. One can monitor that ratio (say, every t = 1 units) and prescribe that once that

ratio has exceeded C0 by a specified factor (say, five), a stabilization step (28) is to be applied. Once

the decision to apply stabilization has been made, one saves the solution at seven successive time

levels and at the seventh, applies (28). In our simulations, however, we did not need to implement

such a monitoring because finding a working value of tstabilize was easy.

Concluding the discussion of the low-k NI in the focusing NLS, in Fig. 3 we illustrate its

development when suppression of ũ(−) is not applied. The simulated setup is that considered in

Section 5.2 with similar parameters and the time step is ∆t < ∆tthresh, so that no high-k NI or

spectral distortions could occur. The time evolution of ∥∆1u∥ and ∥∆2u∥ (Fig. 3(a)) indicates

that near t = 200, the parasitic error component ũ(−) begins to grow. Figures 3(b,c) show the

spectra of ∆1u and ∆2u at t = 1 and t = 250, which confirm the above conclusion. Figure 3(d)

shows the spectra of the solution u at t = 365 when stabilization is and is not applied. The

feature that indicates the low-k NI is the broader central part compared to that of the undistorted

(i.e., stabilized) solution. In the x-space, such a broader spectrum is manifested by a relatively

small-period ripple in u; compare Figs. 3(e,f). Finally, the solution blows up (due to the NI) around

t = 373, i.e. only a few time units after the broader central part of the spectrum of u had developed

to become visible on a logarithmic scale.
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Figure 3: See text for explanation. Panels (e,f) show only part of the computational domain.

4.2 Amelioration of high-k distortions

We have tried several approaches to suppress distortions in the solution’s spectrum near ±kπ

and ±k2π. For example, we multiplied the coefficient Ĝ = sinc (k2∆t) in (8) (see also (13a))

by empirically chosen factors that reduced the value of that coefficient in a broader vicinity of

|k| = kπm. The result of applying two approaches (different from the one just described) which

were most successful in combatting the spectral distortions is shown in Fig. 1(b). The distortions

near ±kπ are entirely removed, while near k2π their size is considerably reduced. Despite that, we

have found that they did not noticeably alter the accuracy of the statistical quantities (see Section

5) computed by the ETD-LF. For this reason we did not use any such correctional techniques in

the examples reported in Section 5. For the same reason, we describe the techniques employed to

“clean up” the spectrum in Fig. 1(b) in Appendix B rather than in the main text.

5 Numerical experiments in one spatial dimension

We will report results for four cases. The first two are different examples of the generalized focusing

NLS (1) while the other two illustrate robustness of our modified ETD-LF method in situations

where the LF scheme alone has been known to be prone to low-k NI. In all examples, the simulation

time was t = 3000, and the initial condition was taken as

u(x, 0) = 1 + 0.24 cos(15∆k x+ 0.7) + 0.33 sin(21∆k x+ 0.2) + 0.42 cos(31∆k x) + ξ(x), (32)
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where ξ(x) ∼ 10−10 is white noise added to define the noise floor. To avert the low-k NI, the

stabilization by Eq. (28) was applied every tstabilize = 10 time units in Sections 5.1 – 5.3. In

Section 5.4, where we considered a defocusing NLS, we used a smaller value, tstabilize = 1. This was

necessary because, as we mentioned at the end of Section 3.1, the parasitic error ũ(−) grows initially

faster for the defocusing than for the focusing NLS. Since the above values of tstabilize correspond

to once per every several hundreds or even thousands of time steps, applying the stabilization step

did not affect the computational time perceptibly.

For each example we report the following statistical quantities: the probability density func-

tion (PDF) of |u|2; the PDF of |ux|2; the correlation function in space, Cx(δx) = ⟨u∗(x, t)u(x +

δx, t)⟩ / ⟨|u(x, t)|2⟩; and the correlation function in time, Ct(δt) = ⟨u∗(x, t)u(x, t+ δt)⟩ / ⟨|u(x, t)|2⟩.
Note that having information from the PDF of both |u|2 and |ux|2 allows one to conclude about

the distribution of the solution’s energy between the potential and kinetic parts (these are given

by, respectively, the second and first terms in (35c) below); see also the last two sentences in the

caption to Fig. 10.

The PDFs were computed as follows. Starting at some time moment in a late stage of the

simulation, we recorded values of |u|2 and |ux|2 at every grid point. This was done nav, x times

every trecord, x time units. We used the following respective values for nav, x and trecord, x: 10
3 and 0.5

(Section 5.1); 400 and 0.25 (Section 5.2); 103 and 0.05 (Section 5.3); 500 and 2 (Section 5.4). The

values for trecord, x were chosen so that |Ct(trecord, x)| ≪ |Ct(0)|, i.e. the records were only weakly

correlated in time, and then the values of nav, x ensured that the system’s properties remained

statistically constant over the averaging period. The PDFs are then computed as histograms

normalized in the standard way: ∫ ymax

0
PDF (y) dy = 1.

The x-correlation function was obtained by a similar averaging procedure.

For the t-correlation function, the averaging had to be done differently. At instances tj in a late

stage of the simulation, where j = 1, . . . , nav, t, we recorded the field u(x, tj) for all x. We then

computed the product Pj =
∑

xi
u∗(xi, tj)u(xi, tj + δt) /

∑
xi
|u(xi, tj)|2 at later time instances

(tj + δt). Finally, we took the average over all tj :

Ct(δt) =
1

nav, t

nav, t∑
j=1

Pj ≡
1

nav, t

nav, t∑
j=1

∑
xi

u∗(xi, tj)u(xi, tj + δt)∑
xi

u∗(xi, tj)u(xi, tj)
. (33)

The instances tj were taken sufficiently far apart so that the field is substantially uncorrelated:

Ct(tj+1 − tj) ≈ 0, and we used nav, t = 100.

We will now address the issue of benchmarking, i.e. what method(s) with what spectral and

temporal resolution can be used to provide a reference solution. We will first address this issue

in general, and provide specific details for each of the four examples in the respective subsections

below.
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The candidate methods were the second-order (symmetrized) SSM and the ETD-4RK. The

latter is the ETD method based on the 4th-order Runge–Kutta scheme, proposed in [16]. It has

been shown to produce highly accurate results when applied to the NLS and other nonlinear wave

equations (see, e.g., [26, 27, 29]). Let us, however, clarify three aspects about the ETD-4RK.

First, it is almost four times slower than the SSM and ETD-LF (whose computational speeds

are approximately the same). Second, even though for a given ∆t, the ETD-4RK is much more

accurate than the other two methods, its speed cannot be increased considerably by taking larger

time steps. The reason is that the ETD-4RK has the same NI threshold ∆tthresh as the IF-LF and

SSM. This was revealed by the von Neumann analysis for a plane-wave background solution, which

we do not present here. Even though the growth rate of harmonics with |k| ≈ kπ was found to be

about an order of magnitude less for the ETD-4RK than for the SSM, the high-k NI still destroys

the solution over long times considered in the examples in Sections 5.1–5.4 and 6.1, 6.2. A similar

comment pertains to 4th-order SSMs, whose stability was analyzed in [23] and which we did not

use in this paper. Third, unlike the ETD-LF and SSM, the ETD-4RK does not nearly preserve the

L2-norm and the Hamiltonian (see Section 2); rather, those quantities computed for the ETD-4RK

solution exhibit systematic drift. However, we have found that for sufficiently small time steps,

such as those used below, that drift up to t ∼ 3000 may be less than average fluctuations of the

conserved quantities computed by the ETD-LF and SSM.

For all benchmarking simulations we used a smaller time than for the “main” ones: t = 1000

instead of t = 3000. This had to be done because benchmarking simulations with the highest

resolution for the ETD-4RK took quite a long time even for t = 1000: more than a week in Section

5.1 and more than three days in Section 5.2 (on a personal computer running Matlab).

5.1 Pure focusing NLS

Here we set V (x) ≡ 0, γ = 2, and L = 48π in the NLS (1).

5.1.1 Benchmarking simulations

To compare accuracy of the ETD-4RK, ETD-LF, and SSM, we varied both the number of grid

points N , i.e. spectral resolution, and ∆t. For N = 212 ≡ N0, one has kmax = 85.3, and the NI

threshold is ∆tthresh(N0) ≡ ∆t0 = 4.3 · 10−4.

First, we have verified that all four statistical quantities — the two PDFs and the two correlation

functions — obtained by the ETD-4RK remain practically the same when N was increased to

N = 2N0, 3N0, and 6N0 and ∆t was decreased according to (2):

∆t(N) = 2 · 10−4
/
(N/N0)

2 . (∆t0/2)
/
(N/N0)

2. (34)

Thus, results for any of the above N ’s can be chosen as benchmark ones; in Fig. 4 they are shown

by the thick black line.

Second, we repeated this for the ETD-LF and SSM with ∆t = ∆t(N)/2. The ETD-LF results for

N = N0 are already quite close to the benchmark ones: see thin solid lines in Fig. 4. They improve
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Figure 4: Benchmarking simulations with ETD-4RK (thick solid), ETD-LF (thin solid), SSM

(dashed); see more explanations in the text. In (c), Im[Cx(δx)] is almost zero for all methods and

hence is not plotted.

only a little for N = 2N0 and N = 3N0, whereas for N = 6N0 they become indistinguishable

from the benchmark results. The SSM’s PDFs for N = N0 are quite far from the benchmark ones,

although the correlation functions are not considerably worse than those obtained by the ETD-LF;

see dashed lines in Fig. 4. For N = 2N0, all four of the SSM’s results are improved and become

about as close to the benchmark results as the ETD-LF’s ones with N = N0 to 3N0. For N = 3N0,

the SSM’s results become noticeably closer to the benchmark ones than they are for N = 2N0.

Thus, the SSM’s performance improves more gradually with N than the ETD-LF’s performance.

Finally, for N = 6N0 the SSM’s results become indistinguishable from the benchmark ones.

In Fig. 5 we illustrate how the three methods handle conserved quantities of the pure NLS:

I2 =

∫ L

0
|u|2 dx (mass); (35a)

J2 = i

∫ L

0
(u∗ux − u∗xu) dx (momentum); (35b)

I4 =

∫ L

0

(
−|ux|2 + (γ/2)|u|4

)
dx (Hamiltonian); (35c)
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I6 =

∫ L

0

(
−|uxx|2 + (γ2/2)|u|6 − (γ/2)(|u2|x)2 − 3γ|ux|2 |u|2

)
dx (higher-order law [34]).

(35d)

As we have mentioned earlier, the systematic drift of the conserved quantities computed by the

ETD-4RK is much smaller than their fluctuations in the ETD-LF and SSM, and hence can be

ignored.
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Figure 5: Time evolution of Rj(t) = (Ij(t)− Ij(0))/Ij(0) (solid: j = 2; dashed: j = 4; dash-dotted:

j = 6) and of J2(t) − J2(0) (dotted), computed by the ETD-4RK (a), ETD-LF (b), and SSM (c)

for N = N0 and ∆t = ∆t0/2. The lines for I6 and J2 are labeled in panel (a) for clarity. The lines

for I2 and J2 are identically zero in panel (c).

As a side note, let us mention that these conserved quantities, or more specifically, their errors

Rj , defined in the caption to Fig. 5, can be used to confirm the second-order accuracy of the

ETD-LF even for ∆t > ∆tthresh
6. Let us define

Rj, av =
1

Tav

∫ 1000

1000−Tav

√
Rj(t)2 dt, j = 2, 4, 6, (36)

where Tav = 500 for the ETD-LF and SSM and Tav = 100 for the ETD-4RK (because its data

exhibit a systematic drift). Figure 6 demonstrates that these quantities sufficiently closely (within

20%) follow the second-order (for the ETD-LF and SSM) and fourth-order (for the ETD-4RK)

dependencies on the time step. It should be mentioned that the fact that the conserved quantities

computed by the SSM are less accurate than those computed by the ETD-LF (for the specific

example in this subsection), is of secondary importance. Of primary importance is the fact that the

ETD-LF can operate with a four-time greater time step and hence save its user the computational

time.

Third and last, we set N = N0 and investigated how much one was to reduce ∆t in order to have

the SSM approximate the benchmark PDFs sufficiently accurately. We found that for ∆t = ∆t0/10,

the PDFs obtained by the SSM achieve approximately the same accuracy as the PDFs obtained

by the ETD-LF for N = N0 and ∆t = ∆t0/2 (Fig. 4(a,b)). Thus, for the pure NLS with the above

parameters, it will take the SSM about five times longer to obtain results with accuracy similar to

6The solution itself of the NLS cannot be used for this purpose. Indeed, since the system exhibits deterministic

chaos, any two solutions that are initially different, no matter how slightly, will separate by an amount O(1) over the

long times considered in this study.
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Figure 6: Dependence of the time-averaged errors (38) on the time step for N = N0. Circles/solid

lines, stars/dashed lines, and triangles/dashed-dotted lines pertain to the ETD-4RK, ETD-LF,

and SSM, respectively. The thin dashed line underneath the ETD-LF data has the slope of 2.

The data for the ETD-4RK and SSM for ∆t > ∆t0 are not shown because the numerical solution

there is unstable and hence is dominated by the unphysical, high-k noise. Data for the ETD-LF

for ∆t ≥ 8∆t0 are not shown, as in this case the error R6, av becomes greater than 1%, which is

beyond the accuracy accepted in this study. The R2, av-data for the SSM are not shown because

this quantity for the SSM is identically zero.

that of the ETD-LF. Perhaps more surprisingly, even the ETD-4RK will be faster than the SSM

in this particular case.

Based on the above, we chose the ETD-4RK with ∆t . ∆t0/2 as the benchmark method in

this subsection.

5.1.2 Results

Here we simulated the pure NLS (1) with parameters listed in Section 5.1.1, and we used t = 3000

and N = N0 ≡ 212. As noted there, the maximum resolved wavenumber and the NI threshold are

kmax ≈ 85.3 and ∆tthresh = 4.3 · 10−4. The corresponding computational spectral window is rather

tight, in the sense that during the moments when the spectrum7 expanded the most, it rised above

the noise floor (see (32)) by about an order of magnitude at the edges of the window (as opposed

to not exceeding that floor). Let us emphasize that we made this choice intentionally, because for

a wider spectral window, the time step would have to decrease according to (2) if one is to exceed

the NI threshold by a fixed factor. A decreased ∆t leads to increased accuracy of the results. This

is further aided by the fact that for a smaller ∆t, the wavenumbers ±kπm are farther from the

center of the spectrum and hence the distortions around ±kπm will be weaker (see Fig. 1(b)). We

will mention an example later of this subsection. Let us note that we have not observed any effect

of spectral aliasing on the quantities that we measured.

In Fig. 7 we compare the statistical quantities for the benchmark method (ETD-4RK with

∆t = 2 · 10−4) and the ETD-LF with ∆t = 1.7 · 10−3 ≈ 4∆tthresh. The spectrum of the ETD-LF

solution looks qualitatively similar to that in Fig. 1(b) (dotted line). Despite such distortions of the

7of the benchmark solution
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spectrum, the statistical quantities obtained by the ETD-LF match fairly well with the benchmark

ones. If one uses ∆t = 9 · 10−4 & 2∆tthresh with the ETD-LF, then Cx(δx) becomes almost

indistinguishable from the benchmark one on the scale of Fig. 7(c), while in Ct(δt) conspicuous

deviations begin to occur past δt = 2, similarly to the green curve in Fig. 7(d) (see below for its

meaning). Decreasing the time step by an additional factor of two, to ∆t = 4 · 10−4, makes Ct(δt)

quite accurate for the entire range shown in that figure. On the other hand, both PDFs require a

much smaller ∆t, about ∆tthresh/4, to become indistinguishable (on a logarithmic scale) from the

corresponding benchmark curves.
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Figure 7: Comparison of the four statistical quantities for the pure NLS (Section 5.1.2), obtained

by the ETD-4RK with ∆t = 2 · 10−4 (thick solid) and ETD-LF with ∆t = 1.7 · 10−3 (thin solid).

In addition, in (d), the green lines show the result obtained by the ETD-LF with N = 3 · 211 and

∆t = 1.7 · 10−3/(1.5)2 (see (34)).

Now recall that the spectral window for which we have shown the above results is rather tight.

In fact, it took us some experimentation, where we had gradually narrowed the spectral window

and determined when the results would change significantly. Instead, one may choose to stay on

the safe side and use a 50-percent wider window (with N = 3 · 211 grid points), while still using

the time step four times greater than the adjusted NI threshold as per (34). Then Cx(δx) becomes

almost indistinguishable from the benchmark result, while Ct(δt) improves considerably: see the
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green curves in Fig. 7(d). The PDFs, however, do not visibly change.

Finally, we ran a ETD-4RK simulation with N = 212 and ∆t = 4 · 10−4, which is just below

the NI threshold. This appears to affect the PDF(|ux|2) and the two correlation functions rather

insignificantly. The PDF(|u|2) also remains almost the same up to a value 10−1 and then begins to

exceed the benchmark curve; at |u|2 = 20 it exceeds it by almost an order of magnitude.

The above leads to the following comparison of computational speeds.

• If one is willing to accept a PDF(|u|2) with a somewhat inaccurate “tail”, as described in the

previous paragraph, and also the ETD-LF results with ∆t = 1.7 ·10−3 and N = 212, then the

speed gain of the ETD-LF over the ETD-4RK is about 4 × (3.5 . . . 4) ≈ 15 times. Here the

former factor is due to 1.7 · 10−3/∆tthresh ≈ 4 and the latter one is due to the ETD-LF being

faster than the ETD-4RK.

• If it is essential to resolve the “tail” of Cx(δx) accurately, then one needs to use the ETD-LF

with a twice smaller step size, ∆t ≈ 2∆tthresh. In this case, the speed gain is 7 to 8 times.

• If it is essential to resolve the fine oscillatory structure of the “tail” of Ct(δt), then further

reduction of ∆t for the ETD-LF is required, and its speed gain reduces to the mere speed

gain of the ETD-LF over ETD-4RK with the same time step (i.e. 3.5 to 4).

• If it is essential to resolve the PDFs, and especially PDF(|u|2), very accurately, then the

ETD-LF provides no to little gain over the ETD-4RK, since the former would require a 3–4

times smaller time step than the latter.

• Finally, a speed gain of the ETD-LF over the SSM would amount only to the excess of ∆t over

∆tthresh, as both methods have about the same speed for the same ∆t. If only the correlation

functions need to be approximated, then the speed gain of the ETD-LF over the SSM is two

to four times. If, however, one needs to resolve the PDFs, and the accuracy of the ETD-LF

results shown in Fig. 7(a,b) is sufficient, then the speed gain is comparable or greater than

that over the ETD-4RK. This follows from our observation in Section 5.1.1 that the SSM

requires ∆t ∼ ∆tthresh/10 to resolve the PDF(|u|2) with the same accuracy as the ETD-LF

with ∆t ∼ ∆tthresh.

5.2 Focusing NLS with potential

We simulated (1) with V (x) ≡ 0.25 sin(6x + φ) and γ = 2 in a domain of length L = 32π using

N = 212 grid points. The corresponding kmax ≈ 128 and hence ∆tthresh = 1.9 · 10−4. The following

considerations led us to choose the above parameters.

As far as the choice of V (x) goes, we wanted the effect caused by the potential to satisfy two

conditions. On one hand, it had to make the statistical quantities to be substantially different from

those in the pure NLS case. From our study [35], we knew that a correlated multiplicative noise

in the NLS considerably increases the probability that the amplitude of the solution of (1) can
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reach high values. While our potential is deterministic and time-independent, the same mechanism

of solution enhancement has appeared to also apply for it. Thus, after a quick experimentation,

we chose a periodic potential with wavelength close to 1. On the other hand, we had to keep its

amplitude, 0.25, to be relatively small; otherwise the generation of high-amplitude events was so

strong that it would require a much wider computational spectrum, and hence a much smaller time

step, for which simulations would have become prohibitively time-consuming (see below).

The need to include the phase φ into V (x) will be explained when we discuss the benchmarking

simulations below.

The computational spectral window was, again, chosen to be tight: the solution’s spectrum

at |k| = kmax, at the moments of its greatest expansion, exceeded the noise floor by almost three

orders of magnitude. However, such bursts were also isolated and very rare — just a few over

t = 3000, and the solution’s spectrum at the edges of the spectral window stayed below the noise

floor most of the time. As we have noted earlier, using a wider computational spectral window, and

thus a smaller time step, would only improve the results of the ETD-LF whose time step exceeds

the NI threshold by a fixed factor.

5.2.1 Benchmarking simulations

In benchmarking simulations (t = 1000), we set φ = 0 in V (x) and observed that results obtained

by any of the methods — ETD-4RK, ETD-LF, and SSM — could depend on the time step value

even for sufficiently small time steps: ∆t = ∆tthresh/2 and ∆t = ∆tthresh/4. This should be

contrasted with the situation for the pure NLS, where the ETD-4RK results with such time steps

were almost indistinguishable from one another. The greatest difference occurred in the time

correlation function, whose values after the first “lobe” could differ by up to 100%. Widening the

computational spectrum by using N = 3 · 211 instead of 212 grid points for the same L = 32π (and

reducing ∆t accordingly) would not improve the situation.

Our explanation of this inconsistency among simulations was this. The dynamics of the solution

of the NLS, both with and without potential, is chaotic. Hence, using different time steps and/or

numerical methods should be expected to lead to solutions that at a long time may be completely

different. However, the statistical quantities would remain close, as long as averaging of the solution

takes place during its evolution. In the pure NLS case, the solution is uniform in space, and hence

the averaging occurs over both space and time. On the contrary, in the presence of the potential,

averaging over space occurs less efficiently, because the solution is not uniform in space.

To make the space averaging more thorough, one could increase the spatial domain. We,

however, adopted a different strategy. Since the initial condition (32) is the same in all simulations,

one generates different solutions by simply shifting the potential. Therefore, for each method and

each ∆t, we ran eight simulations with

V (x) = 0.25 sin(6x− 2jπ/8), j = 0, 1, . . . 7, (37)

and then averaged all statistical quantities over these eight cases. Using considerably more φ-values
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in the interval [0, 2π) would have improved the spatial averaging. However, it would have also been

time-prohibitive, considering that the ETD-4RK simulation with ∆t = ∆tthresh/4 for t = 3000,

reported below, took more than 10 days. For the same reason, we did not use simulations with

N = 3 · 211 in our comparison of results.

Thus, for the benchmarking, we verified that at t = 1000, the PDFs and the spatial correlation

function obtained by the ETD-4RK, ETD-LF, and SSM with ∆t = ∆tthresh/2 and ∆t = ∆tthresh/4

were all consistent among themselves after averaging over the eight values of φ. The time correlation

functions were still not very close even after the averaging, but at least they showed the same trend

as δt increased. Unlike the pure NLS case, here the SSM results were as accurate as the ETD-4RK

ones, and so the SSM is the main competitor of the ETD-LF in terms of speed.

5.2.2 Results

Figure 8 shows the comparison of the four statistical quantities obtained by the ETD-4RK with

∆t = ∆tthresh/2 and ∆t = ∆tthresh/4, by the ETD-LF with ∆t = 6.0 · 10−4 > 3∆tthresh, and

by the SSM with ∆t = ∆tthresh. We presented ETD-4RK results for two different ∆t’s in order

to illustrate that the values of the time-correlation function deviate from each other even in these

cases, which presumably would be more accurate than the lower-order methods (ETD-LF and SSM)

with greater ∆t’s. Moreover, the deviations between the values of Ct(δt) for the two ETD-4RK

cases are comparable in size to those for the ETD-LF and SSM. Therefore, we conclude that the

ETD-LF with a step size exceeding the NI threshold by more than three times is almost as accurate

as the SSM with ∆t = ∆tthresh. Thus, the ETD-LF here provides a three-fold speedup compared

to the SSM.

Evolution of conserved quantities: I2, given by (35a), and a modified form of the Hamiltonian

(35c):

I4,mod =

∫ L

0

(
−|ux|2 + (γ/2)|u|4 + V (x)|u|2

)
dx, (38)

obtained by the ETD-4RK with ∆t = ∆tthresh/4, is similar to that shown in Fig. 5(a). The relative

fluctuations of I2 and I4,mod do not exceed 0.001% at t = 3000 in this case. Relative fluctuations

of these quantities obtained by the ETD-LF with ∆t & 3∆tthresh grow up to 0.05% and 1%,

respectively. For the SSM with ∆t . ∆tthresh, the relative fluctuations of I4,mod increased to 1%;

the quantity I2 is conserved exactly.

5.3 Focusing NLS with linear pumping and nonlinear damping

The purpose of this example is to illustrate that the ETD-LF with the stabilization step, such as

(28), is suitable for long-time simulation of problems involving dissipation. This may not be obvious

given the well-known fact that the LF scheme itself is unstable for such problems. However, the

instability of the LF scheme is caused by the parasitic error ũ(−), discussed in Section 3.1. The

stabilization step suppresses growth of such an error and thereby makes the ETD-LF stable.
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Figure 8: (Color online) Comparison of the four statistical quantities for the NLS with potential

(Section 5.2), averaged over eight values of φ (see (37)). Black: ETD-4RK (thinner — ∆t =

∆tthresh/4; thicker — ∆t = ∆tthresh/2); green: ETD-LF; red: SSM. In panels (a)–(c) some of

the curves appear indistinguishable. Note that all of the horizontal scales are different from the

corresponding scales in Fig. 7.

We simulated (1) with V (x) = −iα and γ = 2 + iα, where we set α = 0.05. A similar equation

was considered, e.g., in [36]. Other simulation parameters were as in Section 5.1: L = 48π and

N = 212, so that ∆tthresh = 4.3 · 10−4. The spectra of the solution at t = 1000 and t = 3000 are

shown in Fig. 9(a), and a sample of the waveform is shown in Fig. 9(b). One can see that the

given combination of the linear pumping and nonlinear damping terms leads to the development

of a highly oscillatory solution, whose frequency increases with time. One can also see that for the

parameters chosen for our example, the computational spectral window is sufficiently tight in the

sense discussed in the previous subsections.

From benchmarking simulations, performed for t = 1000, we have found that the four statistical

quantities obtained by the ETD-4RK with ∆t . ∆tthresh and ∆t . ∆tthresh/2 are almost indis-

tinguishable. Therefore, they can be used as benchmark results. In fact, we have also found that

the results obtained by the SSM with ∆t . ∆tthresh are very similar to the ETD-4RK results. In

Fig. 10 we present the four statistical quantities obtained by the ETD-4RK with ∆t . ∆tthresh/2,

23



wavenumber
0 20 40 60 80

lo
g 10

 | 
F

 [u
] |

 

-8

-6

-4

-2

0

2 (a)

t=1000

t=3000

x
0 10 20

|u
|

0

1

2

(b)t=0
t=3000

Figure 9: Spectra (a) and waveforms (b) of the solution of the NLS with linear pumping and

nonlinear damping (Section 5.3) at different times.

SSM with ∆t . ∆tthresh, and ETD-LF with ∆t ∼ 3.5∆tthresh. The latter results are seen to be

very close to those obtained by the methods with ∆t < ∆tthresh. Thus, the computational time of

the ETD-LF is approximately 3.5 times less than that of its closest competitor, which in this case

is the SSM.

5.4 Defocusing NLS with potential

The purpose of this example is to illustrate that the ETD-LF with a stabilization step, such as

(28), is suitable for long-time simulation of yet another type of problems where a LF-based method

without stabilization would not be applicable. In Section 3.1 we explained that the parasitic error

ũ(−), produced by the ETD-LF when simulating the defocusing NLS, leads to low-k NI. The

stabilization step with tstabilize = 1 has been found to suppress the parasitic error, which made

the method suitable for simulation of the defocusing NLS.

We simulated (1) with γ = −2 and

V (x) = 2 sin(4x− 2jπ/8), j = 0, 1, . . . 7, (39)

where considering several values of the phase of the potential served the same purpose as in Section

5.2 (see also below). In the defocusing NLS the dynamics of the solution is relatively “laminar”,

compared to the “volatile” dynamics in the focusing NLS. As a consequence, the spectrum of the

solution is much narrower in the defocusing case. We had found by experimentation that presence

of a potential such as (39) makes the spectrum a few tens of percent broader, and hence we included

it in our example. The sample spectrum and waveform of the solution are shown in Fig. 11. Other

simulation parameters were as follows: L = 100π and N = 212, so that ∆tthresh = 1.9 ·10−3. Unlike

in the previous examples, the computational spectral window is not tight for the solution obtained

by benchmark methods, although it is still tight for the solution obtained by the ETD-LF with

∆t > ∆tthresh.
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Figure 10: (Color online) Comparison of the four statistical quantities for the NLS with linear

pumping and nonlinear damping (Section 5.3): ETD-4RK with ∆t = 2.0 · 10−4 (thick solid); ETD-

LF with ∆t = 1.5 · 10−3 (thin solid); SSM with ∆t = 4.0 · 10−4 (dashed). In panels (a)–(c) some of

the curves appear indistinguishable. Note that the range of |ux|2 is much greater than that of |u|2.
This indicates a highly oscillatory solution, in agreement with Fig. 9(b).

As in Section 5.3, benchmarking simulations at t = 1000 revealed that the four statistical

quantities, including Ct(δt), obtained by the ETD-4RK with ∆t . ∆tthresh and ∆t . ∆tthresh/2

are almost indistinguishable. In particular, the averaging of the solution over space, facilitated by

taking multiple shifted replicas of the potential as per (39), occurs much more efficiently for the

defocusing NLS than for the focusing one, considered in Section 5.2. Therefore, below we use the

ETD-4RK results with ∆t . ∆tthresh/2 as the benchmark.

In Fig. 12 we present the four statistical quantities obtained by the ETD-4RK with ∆t .
∆tthresh/2, the SSM with ∆t . ∆tthresh, and the ETD-LF with ∆t ∼ 4∆tthresh. The latter results,

except for Ct(δt), are seen to be very close to the benchmark and SSM ones. We also verified that the

time correlation function obtained by the ETD-LF with ∆t ∼ 3∆tthresh lies approximately midway

between that obtained with ∆t ∼ 4∆tthresh and the benchmark one. Thus, the computational time

of the ETD-LD is approximately 3 – 4 times (depending on the desired accuracy) less than that of

its closest competitor, which, as in Section 5.3, is the SSM. It is possible that the ETD-LF with a
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Figure 11: (a): Spectra for the ETD-4RK with ∆t = 0.9 · 10−3 and ETD-LF with ∆t = 7.5 · 10−3

at t = 3000; and (b): waveforms (for the ETD-4RK) of the solution of the defocusing NLS with

potential (Section 5.4).

still greater time step can also provide reasonably accurate results. However, we did not push such

a comparison because ∆tthresh in this case is already quite large; then using ∆t > 4∆tthresh will

likely result in loss of accuracy, even though the NI may still be suppressed.

Evolution of conserved quantities I2 and I4,mod is similar to that reported in Section 5.2, except

that their relative fluctuations are more than an order of magnitude smaller than their counterparts

in that subsection.

6 Numerical experiments in two spatial dimensions

In higher spatial dimensions, simulations typically take longer than in one dimension (even though

some of the simulations considered in Sections 5.1 and 5.2 took several days). Therefore, speeding

up higher-dimensional simulations may be even more essential than one-dimensional ones. Below

we will first argue that in D > 1 dimensions, the gain in the computational speed provided by

the ETD-LF over the SSM can be up to a factor of D higher than in one dimension. Then we

will present two numerical examples supporting this claim. In the process, we will propose a

simple modification of the ETD-LF which will enable the method to better preserve the conserved

quantities of the (generalized) NLS.

We will explain the above claim about the computational speed gain using D = 2 as an exam-

ple. The explanation hinges on a few assumptions. First, for simplicity, we will assume that the

maximum wavenumbers along both dimensions are equal: kmax, x = kmax, y ≡ kmax; this is when the

upper bound, D, for the speed gain can be achieved (see below). Thus, the spectral computational

domain is a square

|kx| ≤ kmax, |ky| ≤ kmax. (40)

Second, we will assume that this domain is tight in the sense defined at the beginning of Section

5.1.2 and as was the case in all examples in Section 5 and as will be in both examples considered
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Figure 12: Comparison of the four statistical quantities for the defocusing NLS with potential

(Section 5.4). The line styles are similar to those in Fig. 10: ETD-4RK with ∆t = 0.9 · 10−3 (thick

solid); ETD-LF with ∆t = 7.5 · 10−3 (thin solid); SSM with ∆t = 1.8 · 10−3 (dashed). In panels

(a)–(c) some of the curves appear indistinguishable. Note that the horizontal scales are different

from the corresponding scales in Figs. 7, 8, and 10.

below. Third, we will assume that the solution’s spectrum has an (at least approximate) circular

symmetry; this indeed occurs in many applications (see the numerical examples below) and does

not imply any symmetry in the spatial domain. Finally, our comparison between D = 1 and D = 2

(or, more generally, an arbitrary D) will pertain to such solutions for which the ratio of their

spectral width to kmax is approximately the same for all values of D.

The last three assumptions have the following important corollary: The accuracy of the numer-

ical solution is determined by the ratio (kπ/kmax). Here kπ =
√

π/∆t (see (18)) is the approximate

lowest location of wavenumbers where conspicuous distortions of the ETD-LF solution’s spectrum

occur: see Figs. 1(b) and 11(a). To justify the above corollary, note that the denominator, i.e.,

kmax, in that ratio, is not the largest magnitude of the wavenumber vector in the computational

domain (40), but rather the radius of the largest circle inscribed in that domain. Further note that

accurate resolution of Fourier harmonics outside that circle,

k2x + k2y = k2max, (41)
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would not increase the accuracy of the solution, because not all of them are contained inside the

domain (40). Therefore, recalling the assumed circular symmetry of the solution’s spectrum, one

concludes that distortions in those harmonics do not affect the numerical solution’s accuracy (as

long as those harmonics do not increase exponentially in time, which would signify an NI).

Let σD be the gain in the computational speed of the ETD-LF over the SSM in D dimensions.

We want to demonstrate that σD/σ1 = D. As in most examples in Section 5, one has σD =

∆t/∆tthresh,D, where ∆t is a time step yielding a certain accuracy (or, equivalently, a certain

amount of distortion in the numerical solution) and ∆tthresh,D is the NI threshold in D dimensions.

Given the above expression for kπ, one has σD = (π/k2π)/∆tthresh,D. Next, in two dimensions, the

NI threshold is given, instead of (22), by

∆tthresh,D = π/(k2max, x + k2max, y) = π/(2k2max) ≡ π/(Dk2max), (42)

because the numerically unstable harmonics first occur at wavenumbers with (|kx|, |ky|) = (kmax, kmax).

Using the above information, one deduces the computational speed gain in D dimensions com-

pared to one dimension:
σD
σ1

=

(
π/k2π

)
/
(
π/(Dk2max)

)(
π/k2π

)
/
(
π/k2max

) = D, (43)

which proves our claim. Note that above we have essentially used one of our earlier assumptions

that the same ∆t produces similar distortions to the numerical solution in D and one dimensions.

Recall that in the one-dimensional examples in Section 5 we observed a typical speed gain of

the ETD-LF over SSM to be a factor of three to four. Therefore, in two dimensions we expect the

gain to be a factor of six to eight. The two examples considered below support this prediction.

They both refer to the generalized NLS

iut + (uxx + uyy) +G(|u|2)u = 0, (44)

where two different forms of the function G are considered in Sections 6.1 and 6.2.

6.1 Defocusing cubic nonlinearity

It is well known that in the focusing cubic NLS (44), with G(|u|2) = γ|u|2 and γ > 0, the solution

undergoes a collapse in finite time. Therefore, as our first example, we considered the case γ = −2.

The initial condition was taken to be similar to (32):

u(x, y, 0) = 1 + 0.24 cos(15∆k x+ 0.7) + 0.33 sin(21∆k x+ 0.2) + 0.42 cos(31∆k x) + ξ(x)

+ 0.27 cos(16∆k y − 0.7) + 0.36 sin(22∆k y − 0.6) + 0.39 cos(30∆k y + 0.9). (45)

Its exact form, however, is not important for the conclusions to be drawn, as long as it presents some

sufficiently deeply modulated, pseudo-random profile. We chose the spatial domain to be a square

[−L/2, L/2] × [−L/2, L/2] with L = 12π and simulated (44) until t = 300. We have empirically

found that the solution’s spectrum gradually broadens, and to resolve it up to t = 300 we needed
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N = 210 grid points along each dimension. (In this case the longest of the simulations reported

below, which used the ETD-4RK, took approximately one week.) The corresponding solution and

its spectrum at t = 300 are shown in Fig. 13 8. Note that kmax = 85.3, so that according to (42),

∆tthresh, 2 = 2.2 · 10−4. When using the ETD- and IF-LF, we employed the stabilization step (28)

with tstabilize = 1, as in Section 5.4.

Figure 13: Magnitude (a) and spectrum (b) of the solution of (44) with G(|u|2) = −2|u|2 at t = 300;

other parameters are listed in Section 6.1. The solution is uniform in space, and therefore only

quarter of the spatial computational domain is shown.

The statistical quantities: the two PDFs and two correlation functions, were computed exactly

as described in Section 5, except that the summation was performed over both dimensions of the

spatial grid. The data for the averaging were collected over the last t = 50 units of the evolution.

Just for simplicity, we chose to continue computing the x-correlation function Cx(δx), as opposed

to the more natural circularly symmetric correlation function Cr(δr), where δr ≡
√

δx2 + δy2.

We monitored the conserved quantities of the numerical solution: mass, x- and y-components

of the momentum, and the Hamiltonian, defined as in (35)(a–c), except the integration is now

in two dimensions. When we applied the SSM or IF-LF with ∆t = 2 · 10−4 . ∆tthresh, 2, those

quantities fluctuated around the mean zero by less than 10−3%. For the ETD-4RK with the same

∆t, they exhibited a systematic drift, but it was less than 10−5% over the considered time, and

hence could be ignored. However, for the ETD-LF with ∆t = 1.25 · 10−3 (see below), the relative

change of the Hamiltonian is over 1%, and, most disturbingly, it is a systematic drift (unlike in

all of the one-dimensional examples in Section 5): see the dashed line in Fig. 14(f). The rate

of the drift decreased approximately quadratically with ∆t, but still remained conspicuous even

for ∆t . ∆tthresh, 2. The relative changes of the mass and momentum were one–two orders of

magnitude less than the corresponding change of the Hamiltonian, but also exhibited a systematic

8We also carried out simulations of (44) with a potential term, V (x, y)u, and found the solution and its spectrum

to be qualitatively similar to those obtained for V (x, y) ≡ 0. We could not, however, perform the averaging of

the results over the potential, as described in Section 5.2.1, because it would have been time prohibitive given our

computational resources (two personal computers running Matlab).
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drift. By varying tstabilize, we verified that this drift is not due to the stabilization step (28).

We were unable to find an explanation for this drift. (The most puzzling was the fact that it

occurs in two dimensions, but not in one.) However, given that this drift is absent in the IF-LF,

we have found a means to substantially reduce it in the ETD-LF. Namely, we conjectured that it

was due to the strength of the nonlinear interaction, Ĝ = sinc
(
(k2x + k2y)∆t

)
, being substantially

less than unity (see Section 3.1 and, specifically, the solid line in Fig. 2) in those parts of the

computational spectral domain where the solution’s Fourier harmonics still contained “enough”

energy. Now note that instead of the above expression for Ĝ, one could have used an empirical

expression

Ĝmod = sinc
(
π
[
(k2x + k2y)∆t / π

]m )
, m > 1. (46)

In Fig. 2 we show the trace (in one dimension) of this expression for m = 3; it is seen to be close

to unity over a significantly larger (compared to m = 1) part of the spectral domain where the

solution has most of its content. Yet, Ĝmod vanishes at all kπl, l = 1, 2, . . . and hence guarantees

suppression of the high-k NI.

In the simulations with ETD-LF reported below, we used Ĝmod withm = 3 instead of sinc
(
(k2x+

k2y)∆t
)
in (8). For the same ∆t, this substantially reduced the amount of drift of conserved

quantities: compare the dashed and thin solid lines in Fig. 14(f).

We compared the PDFs and correlation functions obtained by the ETD-LF with ∆t = 1.25 ·
10−3 ≈ 6∆tthresh, 2 and with ∆t = 1.6 · 10−3 . 8∆tthresh, 2 with the same quantities obtained by

the ETD-4RK and SSM with ∆t = 2 · 10−4 . ∆tthresh, 2; see Fig. 14(a–e). The PDFs are seen

to agree quite well for all cases. The spatial correlation functions obtained by the SSM, ETD-LF

with ∆t = 1.25 · 10−3, and ETD-LF with ∆t = 1.6 · 10−3 differ from that obtained by the ETD-

4RK by about 1, 2, and 3% for sufficiently large δx. Since the temporal correlation functions in

all four cases appear to be very close in Fig. 14(d), we compared (in panel (e)) the deviations

of these functions from the “asymptotic”9 functional form of Ct(δt). Parameters of that form:

Ct, asymp(δt) = 0.82 exp[i(2.9δt+0.005)], were found by an inspection of the Ct(δt) obtained by the

ETD-4RK close to δt = 4. From Fig. 14(e) we see that the temporal correlation function obtained

by the ETD-LF with ∆t ≈ 6∆tthresh, 2 stays within about 2% of the “benchmark” one (obtained by

the ETD-4RK) up to δt ≈ 2; as one increases ∆t up to 8∆tthresh, 2, larger deviations are observed

as early as for δt ≈ 1.

Let us also mention that the statistical quantities obtained by the “original” ETD-LF (i.e.,

using (46) with m = 1) with ∆t ≈ 6∆tthresh, 2 were within 1% from those obtained by the modified

ETD-LF with the same time step. This may be consistent with the fact (Fig. 14(f)) that the

Hamiltonian in the original ETD-LF drifts only by about 1%. However, in longer simulations,

deviations can become greater, and then the use of the modified ETD-LF over the original one may

become imperative.

9In passing, let us note that the presence of nonvanishing correlations in space in time, as seen in panels (c)

and (d), indicates that the solution has a hidden “plane-wave background” that oscillates in time as a whole. The

presence of this background is also evident from the spectral peak at kx = ky = 0 in Fig. 13(b).
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To summarize the results of this numerical experiment, we have shown that if one is willing

to tolerate moderately small (up to 3%) errors in the statistical quantities, one can reduce the

computational time by a factor of 8, by using the ETD-LF with a time step that is 8 times greater

than the NI threshold for the SSM. Using the ETD-LF with a smaller ∆t and thereby achieving

a speed gain of the factor of 6 instead of 8, one can reduce the error to about 2%. For reference,

the SSM simulation in this section took approximately 40 hours on a personal computer running

Matlab; the more accurate ETD-4RK simulation required more than four times as long.

6.2 Focusing saturable nonlinearity

As our second example, we considered the generalized NLS (44) with focusing, but saturable non-

linearity: G(|u|2) = 2|u|2/(1+ |u|2). Note that for large |u|2, this function saturates at the constant

value 2, and this arrests a collapse. Somewhat surprisingly, the solution’s spectrum in the saturable

focusing case turned out to be narrower than in the cubic defocusing case; see Fig. 15(b). This

allowed us to use a smaller spectral computational domain and hence a larger time step and a

longer computational time.

The initial condition and the spatial computational domain are the same as in Section 6.1. We

used N = 3 · 28 grid points along each dimension, which resulted in kmax = 63.8 and ∆tthresh, 2 =

3.8 · 10−4. We computed the solution until t = 500. When using the ETD-LF, we employed the

stabilization step (28) with tstabilize = 5. Computation of the statistical quantities was performed

exactly as in Section 6.1. The expression for Ct, asymp(δt) is now 0.43 exp[i(1.7δt− 0.3)].

We used the ETD-4RK and SSM with ∆t = 3.7 ·10−4 . ∆tthresh, 2 and the modified (as per (46)

withm = 3) ETD-LF with ∆t = 2.5·10−3 & 6∆tthresh, 2 and ∆t = 3·10−3 ≈ 8∆tthresh, 2. Panels (a)–

(e) in Fig. 16 demonstrate that the agreement between the ETD-LD results with ∆t & 6∆tthresh, 2

and the ETD-4RK ones is the same or even slightly better than between the SSM and ETD-4RK

results (see panel (e)). For ∆t ≈ 8∆tthresh, 2, the ETD-LF and SSM results are approximately

equidistant from the ETD-4RK ones. The overall better performance of the ETD-LF in this

example, compared to that considered in Section 6.1, appears to be due to the fact that the “bulk”

of the solution’s spectrum is narrower relative to the spectral domain’s width10 in Fig. 15(b) than

in Fig. 13(b). The same reason appears to be behind a much smaller drift of the Hamiltonian:

compare Figs. 14(f) and 16(f).

To summarize the results of this numerical experiment, the ETD-LF provided a gain in the

computational speed between factors of 6 and 8 compared to the SSM, for a similar accuracy.

7 Conclusions

We proposed to use an ETD method based on the LF scheme to integrate the generalized NLS

(1) or (44). The equation of the method is given by (8), or, more generally, by (7). Adding a

10Even though in both cases, the domains are tight in the sense defined in Section 5.1.2.

31



| u | 2
0 1 2 3 4 5

lo
g 10

  P
D

F
 (

 |u
|2  )

 

-2

-1

0

1

2

3

4

5
(a)

| u
x
 | 2

0 20 40 60

lo
g 10

  P
D

F
 (

 |u
x|2  )

 

-2

-1

0

1

2

3

4

5
(b)

δ x
0 2 4 6 8 10

R
e 

[ C
x (

 δ
 x

 )
 ]

0.85

0.90

0.95

1.00 (c)

δ t
0 1 2 3 4

R
e 

 a
nd

  I
m

  o
f  

 C
t (

 δ
 t 

)

-1

-0.5

0

0.5

1
(d)

Re

Im

δ t
0 1 2 3 4

R
e,

 Im
 [ 

C
t (

 δ
 t 

) 
- 

 C
t, 

as
ym

p (
 δ

 t 
) 

]

0

0.1

(e)

Im

Re

time
0 100 200 300

(I
4 -

 I 4(0
) 

) 
/ I

4(0
)

×10-3

-15

-10

-5

0

5

-3·10-4

-2.5·10-3

(f)

Figure 14: (Color online) Panels (a)–(e): Comparison of the four statistical quantities for the

defocusing cubic NLS (Section 6.1). ETD-4RK (black, thin dashed) and SSM (red, thick dashed)

with ∆t = 2 · 10−4; modified (as per (46) with m = 3) ETD-LF with ∆t = 1.25 · 10−3 and with

∆t = 1.6 ·10−3 (green solid, thin and thick, respectively). Note the vertical scales in panels (c) and

(e). In panel (d), a small “dent” in the thick green curve around δt = 3.6 is a computational artifact.

Panel (f): Relative change of the Hamiltonian computed by the original ETD-LF (dashed) with

∆t = 1.25 · 10−3 and the modified ETD-LF with ∆t = 1.25 · 10−3 (thin solid) and ∆t = 1.6 · 10−3

(thick solid).
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Figure 15: Magnitude (a) and spectrum (b) of the solution of (44) with G(|u|2) = 2|u|2/(1 + |u|2)
at t = 500; other parameters are listed in Section 6.2.

stabilization step, such as (28), that suppresses a parasitic numerical error, we eliminated NI of

Fourier harmonics with wavenumbers k = O(1), which would otherwise occur in any method based

on the LF scheme.

We have predicted and demonstrated that the NI of high-k harmonics is eliminated (or strongly

suppressed) by the use of the ETD, as opposed to, say, IF, method; compare (8) with (10). This

suppression of the NI has allowed us to use time steps that exceeded the NI threshold 3 to 4

times and still obtain sufficiently accurate characteristics of the statistical behavior of the solution.

In the examples considered in Sections 5.2 – 5.4 this resulted in the gain of the computational

speed (compared to the SSM) by a factor of 3 to 4; the exact values are stated at the end of the

respective subsections). In the case of the pure NLS, considered in Section 5.1, the speed gain

could be substantially higher, depending on the goal of the study. In the two-dimensional examples

considered in Section 6, the speed gain was also higher: a factor between 6 and 8. We also argued

there that this is the generic case: the speed gain in D-dimensional simulations can be a factor

of D greater than that in one-dimensional simulations. A summary of typical CPU times and

of respective computational gains provided by the ETD-LF over its closest competitors for the

examples considered in Sections 5 and 6 is given in Table 1.

Rephrasing a statement from the previous paragraph, let us emphasize that the speed gain by

the ETD-LF was not due to its order of accuracy being higher than those of other methods. The

ETD-LF’s order is two, the same as the order of the SSM used in this work. The order of the

ETD-4RK is four. However, one could not use larger time steps in the ETD-4RK to speed it up

because this would have resulted in a high-k NI. The same pertains to the SSM or its higher-order

versions11. In contrast, the time steps in the ETD-LF can be increased far beyond the NI threshold,

with the limitation being imposed only by the accuracy of the obtained solution, but not by the

NI. It was an important point of this study to demonstrate that this accuracy is sufficient for the

ETD-LF to yield practically the same statistical information about the solution as the other, much

11It was shown in [23] that fourth-order versions of the SSM have the same NI threshold as the second-order one.
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Figure 16: (Color online) Panels (a)–(e): Comparison of the four statistical quantities for the

focusing saturable NLS (Section 6.2). ETD-4RK (black, thin dashed) and SSM (red, thick dashed)

with ∆t = 3.7 · 10−4; modified (as per (46) with m = 3) ETD-LF with ∆t = 2.5 · 10−3 and

with ∆t = 3 · 10−3 (green solid, thin and thick, respectively). Panel (f): Relative change of the

Hamiltonian computed by the original ETD-LF (dashed; but see next sentence) with ∆t = 2.5·10−3

and the modified ETD-LF with ∆t = 2.5·10−3 (thin solid) and ∆t = 3·10−3 (thick solid). The curve

for the original ETD-LF had to be scaled down by a factor of 10 in order to facilitate comparison

within the same vertical axis.
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Example CPU time Name and CPU time of Speed-up

in Sec. for ETD-LF closest competitor factor

5.1a 0.77 ETD-4RK 5.7 7.4

5.2 26 SSM 79 3.0

5.3 0.25 SSM 0.83 3.3

5.4b 0.067 SSM 0.20 3.0

6.1b 6.3 SSM 40 6.3

6.2c 3.0 SSM 23 7.7

Table 1: Computational times (in hours) of the ETD-LF and its closest competitors for the exam-

ples considered in Sections 5 and 6. All simulations were performed in Matlab 2014b on a personal

computer with a Intel(R) Core(TM) i5-3570 3.4-GHz CPU and 4 GB RAM, running a 64-bit Win-

dows operating system. Given a considerable variation of processor speeds over different platforms,

we found it appropriate to present only two significant figures of the data.

aETD-LF data in this line pertain to the 2nd bulleted item at the end of Sec. 5.1.
bETD-LF data in this line pertain to the more accurate of the two simulations.
cETD-LF data in this line pertain to the less accurate of the two simulations, as its result appear to be as accurate

as in the previous examples.

slower, methods.

Another advantage of the ETD-LF (as well as of the IF-LF) over the SSM is that it can be

straightforwardly applied to any nonlinear term N in Eq. (4). The algorithm in that case is exactly

the same as for the purely cubic nonlinearity. On the contrary, to apply the SSM, one needs to first

work out an analytical expression for the solution in the absence of the Lu-term. (For example,

this had to be done in Sections 5.3 and 6.2.) For many types of N that are more complicated than

those considered in this work (e.g., for the term u(|u|2)x, describing the Raman effect in optical

fibers), such an analytical expression does not exist; this would impede the implementation of the

“nonlinear substep” of the SSM but would not deter the ETD-LF.

Finally, we note that ETD-LF-like methods may be used to speed up simulations of other

types of non-dissipative (or weakly dissipative) equations, such as the Korteweg–de Vries or related

equations, where statistical information about the solution, rather than the solution’s precise value,

is sought (see, e.g., [37]).
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Appendix A: Comparison of high-k NI of IF-LF and SSM

We will first illustrate that the high-k NI of these two methods is the same as long as the spectrum

of the background solution has negligible content in the vicinity of the resonant wavenumbers kπm,

defined in (18). Then we will present a heuristic argument why the NI of the IF-LF appears to be

stronger than that of the SSM when the solution’s spectrum expands to and beyond kπm.

Figure 17 shows a typical spectrum of a soliton initial condition,

u(x, 0) = sech(x) + ξ(x), (47)

whose evolution is computed by the IF-LF (Fig. 17(a)) or ETD-LF (Fig. 17(b)) with a time step

exceeding the NI threshold. The spectrum computed by the SSM is indistinguishable from that

computed by the IF-LF. The white noise ξ(x) of magnitude of order 10−10 is added in (47) to

facilitate controllable observation of NI; in all simulations ξ(x) was the same. The two spikes in the

vicinity of kπ in Fig. 17(a) are the unstable modes. In Table 2 we list the locations and magnitudes

of these spikes for the SSM as one varies ∆t. The corresponding locations for the IF-LF were found

to be exactly the same as for the SSM, while the magnitudes were within ±5%. This demonstrates

the close similarity between the high-k NIs of the two methods.
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Figure 17: Spectra of the numerical solution of (1) with γ = 2, V (x) ≡ 0, and the near-soliton

initial condition (47). The domain length L = 128π and the number of grid points N = 212 are as in

the experiment reported in [23]. Panel (a) shows a typical spectrum obtained at t = 1000 with the

IF-LF with ∆tthresh < ∆t < 2∆tthresh. (For some ∆t, there may be more than two unstable modes

around kπ; see Table 2.) Panel (b) shows the spectrum obtained by the ETD-LF at t = 10, 000

(i.e. 10 times longer than in (a)) with ∆t = 0.05. Stabilization, discussed in Section 4, did not

need to be applied for either the IF- or ETD-LF.

Figure 17(b) shows that the NI remains suppressed in the solution obtained by the ETD-LF

over a very long time even when ∆t exceeds the threshold more than 15-fold. Note that unlike in

Fig. 17(a), here the spikes do not correspond to numerically unstable modes. These spikes occur in

the first few time units of the evolution (probably due to a discretization error) and then remain

almost unchanged over a very long time.
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∆t k1, k2, f1, f2,

etc. etc.

0.0041 27.03, 28.28 −6.1, −6.2

0.0042 26.89, 27.77 −5.1, −5.2

0.0043 26.56, 27.45 −5.3, −6.0

0.0044 26.08, 27.31 −6.3, −6.1

25.80, 27.58 −6.9, −6.8

0.0045 25.88, 26.92 −5.6, −6.0

25.56, 27.22 −7.1, −7.2

Table 2: Locations and magnitudes of the unstable modes for the SSM at t = 1000; other parameters

are listed in the caption to Fig. 17. For reference, ∆tthresh ≈ 0.0031. Notations k1, etc. are explained

in Fig. 17(a). For the last two values of ∆t there are four unstable modes near kπ [23]; the locations

and magnitude for the secondary pair of modes are listed below those for the first pair.

We will now present a heuristic explanation of why the unstable modes in the IF-LF method

appear to grow much faster than in the SSM (see Fig. 1(a)). In Fig. 18 we provide evidence that

this “extra” growth is not exponential. Rather, it occurs only when the spectrum expands so much

that near ±kπm it considerably exceeds the noise floor. Figure 18 shows that the magnitude of

unstable modes near kπ has increased by almost two orders of magnitude precisely at those short

time intervals of duration ∼ 0.1 when the solution’s spectrum has expanded beyond kπ. After the

spectrum has shrunk (Fig. 18(c)), these modes retain their abnormally increased amplitude. They

proceed on growing slowly12 until the next instance of spectrum expansion beyond kπ occurs.
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Figure 18: Spectra (on the log10-scale) of the solution of the pure NLS obtained by the IF-LF with

∆t = 3.2 · 10−4 > ∆tthresh. Parameters are similar to those in Section 5.1, but L = 80π, N = 213.

Shown are successive stages of the spectrum expansion beyond kπ (a,b) and subsequent shrinking

(c).

In contrast, the SSM does not produce such quickly growing modes; numerically unstable modes

in its solution grow at an approximately constant rate and independently of the behavior of the

12In the specific example used in Figs. 1 and 18, the NI growth rate is on the order of 0.01 . . . 0.1, whereas spectrum

expansion occurs with frequency of order once per less than ten time units.
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spectrum. This indicates that a possible reason for the quickly growing modes in the IF-LF is

the presence of two solutions of its three-level difference equation (8)13. Indeed, the SSM, being

a two-level method, has only one solution of its difference scheme. An indirect confirmation of

our conjecture comes from the solution by the ETD-LF, which, like the IF-LF, is a three-level

method but, unlike the IF-LF, has no or a greatly reduced high-k NI. Figure 1 shows that the

ETD-LF solution also develops spectral peaks around |k| = kπm, and these peaks grow only when

the spectrum expands beyond their locations. However, we have been unable to quantitatively

explain the formation of these peaks around |k| = kπm during spectrum expansions.

Appendix B: Reduction of spectral distortions near |k| = kπ and k2π

We have observed that the distortions in questions appeared only near kπm but not, for example,

near kπ/2 (where k
2
π/2∆t = π/2). Therefore, one expects that distortions for |k| ≈ kπ will be reduced

if one somehow could use a twice as small time step, ∆tnew = ∆t/2, to resolve the dynamics of

those specific Fourier modes (because then k2π∆tnew = π/2). This can be done by using, instead of

(8), a formula

eik
2∆t/2 û(tn+1)− e−ik2∆t/2 û(tn) = i∆t sinc (k2∆t/2) N̂ (tn+1/2) , (48a)

where the term on the r.h.s. is found by the standard linear extrapolation:

N̂ (tn+1/2) ≡
3

2
N̂ (tn)−

1

2
N̂ (tn−1). (48b)

For the result shown in Fig. 1(b) with the green solid line, this technique was applied to harmonics

with |k| ∈ [kπ − 12, kπ + 10] (for reference, kπ = 41.8 there).

We have empirically found that this idea does not work if extended to |k| ≈ k2π, where one

would use ∆tnew = ∆t/4. The problem appeared to be in a linear NI that set in when the term

N̂ (tn+3/4), required for an extension of (48a), was computed by an extrapolation analogous to

(48b).

Therefore we used a different idea for |k| ≈ k2π. Those harmonics do not need to be resolved

accurately, because they contribute little to the solution. Rather, one simply needs to arrest their

abnormal growth (see the spectrum with “no corrections” in Fig. 1(b)). A well-known way to gain

stability at the expense of accuracy is to use a linearly implicit method:

û(tn+1)− û(tn) = (−ik2∆t/2)
(
û(tn+1) + û(tn)

)
+ i∆t N̂ (tn+1/2) , (49)

where N̂ (tn+1/2) is computed by (48b). We have empirically found that the best results are obtained

when (49) is applied every third step. The solid green line in Fig. 1(b) shows the result of doing so

for harmonics with |k| ∈ (kπ + 10, k2π + 9].

13Note that approximation (19) is not applicable for modes with those k where the spectrum varies by several

orders of magnitude during its expansion; in particular, this occurs for |k| & kπ. For such modes, the size of the

nonlinear term in (8) may be much greater than that of the terms on the l.h.s. when the spectrum expands.
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