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Abstract

This is the final part of a series of papers where we have studied numerical instability (NI)

of localized solutions of the generalized nonlinear Schrödinger equation (gNLS). It extends our

earlier studies of this topic in two ways. First, it examines differences in the development of

the NI between the case of the purely cubic NLS and the case where the gNLS has an external

bounded potential. Second, it investigates how the NI is affected by the oscillatory dynamics of

the simulated pulse. The latter situation is common when the initial condition is not an exact

stationary soliton. We have found that in this case, the NI may remain weak when the time step

exceeds the threshold quite significantly. This means that the corresponding numerical solution,

while formally numerically unstable, can remain sufficiently accurate over long times, because the

numerical noise will stay small.
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1 Introduction

This work extends our study [1, 2] of numerical instability (NI) that may occur when the cubic

nonlinear Schrödinger equation (NLS) is simulated by the finite-difference split-step method (fd-

SSM). For the reader’s convenience, we will briefly summarize the setup and main conclusions of

[1], while also introducing modifications that will pertain to this work. Then we will explain our

motivation for extending the results of [1].

We consider a generalized NLS of the form

iut − βuxx +
(
γ|u|2 +Π(x)

)
u = 0, (1.1a)

where Π(x) is a real-valued external potential, which in [1] was set to zero. Without loss of generality,

we will assume

β < 0. (1.1b)

The opposite choice, i.e. β > 0 (with the corresponding adjustment of signs of both γ and Π), will not

affect either real or numerical instabilities of the solution, since Eq. (1.1a) is Hamiltonian. We assume

that Π(x) is bounded for all x, which explicitly excludes, e.g., Π(x) ∼ x2, as in the Gross–Pitaevskii

equation. Our analysis will straightforwardly generalize if the term (γ|u|2 +Π(x)) is replaced with

a more general real-valued function G(|u|2, x), as long as G is smooth and bounded for all x and all

finite |u|2. That is the case, for example, for the saturable nonlinearity.

We simulate (1.1) with the fd-SSM:

(Nonlinear step):

u(x) = un(x) exp
[
i(γ|un(x)|2 +Π(x))∆t

]
(1.2a)

(Dispersive step):

i
umn+1 − ūm

∆t
=

β

2

(
um+1
n+1 − 2umn+1 + um−1

n+1

∆x 2
+
ūm+1 − 2ūm + ūm−1

∆x 2

)
. (1.2b)

Here ∆t and ∆x are the time and space discretization steps, umn ≡ u(xm, n∆t), and xm is a point

in the discretized spatial domain of length L: −L/2 < xm < L/2. While this version of the SSM

is not used as widely as the Fourier, or spectral, SSM (s-SSM), it is still a well-known method: see,

e.g., Refs. [8]–[15] in [1] and Ref. [2] in [2]. For convenience of analysis, we assume periodic boundary

conditions everywhere except in Section 6.3:

u(−L/2, t) = u(L/2, t), ux(−L/2, t) = ux(L/2, t). (1.3)

This is consistent with the fact that the pulses whose dynamics we simulate are meant to have

vanishing asymptotics at |x| → ∞. In Section 6.3 we will show that absorbing, instead of periodic,

boundary conditions can significantly affect the NI in certain situations.

In [1] we studied NI that can occur when the initial condition of (1.1) with Π(x) ≡ 0 is the exact

soliton1

u(x, t) = Usol(x) exp[iωsolt], (1.4)

1More precisely, to facilitate repeatable development of NI, we added to that initial condition some white noise whose

amplitude was several orders of magnitude below the soliton’s amplitude. Yet, the noise’s amplitude was large enough

so that its high-wavenumber Fourier harmonics, from which NI could develop, were much larger than the machine

round-off error. In what follows we will still be referring to initial conditions including such small white noise as being

exact solitary waves.
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with

Usol(x) = A
√

2/γ sech (Ax/
√

−β); ωsol = A2. (1.5)

We found that NI sets in when

∆t & ∆tthresh = ∆x/(A
√

−β). (1.6)

Let us make two side notes about this result. First, this NI threshold, ∆tthresh = O(∆x), is much

more relaxed than the NI threshold for the s-SSM, which was found to be O(∆x2) both for the

plane wave solution of (1.1) (with Π(x) ≡ 0) [3] and for the soliton [4]. Thus, the fd-SSM may

be considerably more time-efficient (although having a greater spatial discretization error) than the

s-SSM for simulation of solitary waves. Second, unlike for the s-SSM, for the fd-SSM the NI threshold

is different for the plane wave and for the soliton: it was shown in [3] that for βγ < 0, the plane wave

initial condition is numerically stable for any ∆t.

The analysis of [1] explained the mechanism of the NI and a method2 by which NI in similar

situations can be analyzed. As for the NI threshold (1.6), its significance for practical simulations

may appear to be limited because so is the significance of simulating a well-known exact solution of

(1.1). Therefore, it is of interest to explore how the NI threshold may be modified when an external

potential is included in (1.1) (or, more generally, when (γ|u|2+Π(x)) is replaced by a more complicated

expression). In such a case, a solitary wave of the form (1.4) may be first obtained numerically by

solving the nonlinear eigenvalue problem

−β (Usol)xx +
(
γ|Usol|2 +Π(x)

)
Usol = ωsolUsol (1.7)

by a relaxation method, and then its physical stability can be investigated by simulating (1.1) with

the corresponding initial condition Usol(x). Moreover, one may also want to numerically study the

dynamics (e.g., long-term oscillations) of an initial condition that differs from the exact stationary

solution Usol(x) by a finite amount. In that case, can one expect that the NI threshold will be the

same as found for the initial condition being the exact3 Usol(x)?

The above two questions have motivated us to extend the analysis of [1]. In this work, we will

first consider the situation where Π(x)��≡0 in (1.1) but the initial condition is very close (see above)

to the exact solitary wave Usol(x) of (1.7). We will find a counterpart of the NI threshold (1.6) and

investigate how other properties of the NI change compared to the case of the purely cubic NLS. Then

we will show that the threshold and other properties of the NI may be substantially modified when

the initial condition differs from Usol(x) by a finite (and even moderately small, on the order of 10%)

amount. This latter statement may at first appear counter-intuitive. However, we emphasize, as we

have done and demonstrated in Parts I and II of this study [1, 2], that properties of the NI depend

not only on the numerical method and the underlying equation, but also on the simulated solution.

The fact that changing the initial condition by some 10% can change the NI threshold by 50%

and more, raises the following issue: Why is it meaningful to even estimate that threshold if it may

be so solution-dependent? Our answer, based on extensive simulations, is this. It is not only the NI

threshold, but also the growth rate of the NI, which should be taken into account when choosing the

2The second side note above implies that this method is different from the principle of frozen coefficients based on

the von Neumann analysis.
3see footnote before (1.4)
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time step ∆t for a simulation. If the NI is sufficiently weak, it may not significantly affect the numerical

solution even over a long time. With this in mind, we will propose a (loosely defined) “practical NI

threshold”, which will turn out to be relatively robust to changing the initial condition. Moreover,

we will demonstrate that such a “practical NI threshold” also approximately maintains the functional

dependence of ∆tthresh on ∆x. In fact, this dependence remains close to being ∆tthresh = O(∆x), as

predicted for the exact soliton of the purely cubic NLS (see (1.6)).

In Section 2 we will state the evolution equation for a numerical error of Eq. (1.1) whose initial

condition is the exact solitary wave Usol(x) and derive from it the (approximate) NI threshold. In

Sections 3–5 we will consider three choices of Π(x) and γ in (1.4) that lead to scenarios of NI devel-

opment that are different from the scenario described in [1]. In the cases considered in Sections 3

and 4, those differences will be qualitative and hence quite obvious, while in the case considered in

Section 5, it will be less so. Nonetheless, it is this third scenario of the onset of NI that occurs when

the pulse solution of (1.1) exhibits oscillatory dynamics due to the initial condition being different

from the exact solitary wave by a finite amount. We will numerically study that situation in Section

6.

2 Equation for numerical error, and NI threshold

Properties of NI for the fd-SSM, including its approximate (see below) threshold, can be deduced

from the equation satisfied by the numerical error with high wavenumbers k, which is where the NI

is observed in the Fourier space [1]. Let the numerical solution u(x, tn) be represented as

u(x, tn) = Usol(x) e
iωsoltn + ũ(x, tn), (2.1)

where ũ(x, tn) is the numerical error and Usol and ωsol are defined by (1.7). Below it will suffice for

us to focus on the continuous-time limit, and thereby we will drop the discrete subscript ‘n’ of tn.

Then, repeating the steps of a similar derivation in [1], one finds that a quantity related to the high-k

part of ũ(x, t),

ψ(x, t) ≡ (−1)n e−ikmaxx e−iωsolt ũ(x, t), (2.2)

satisfies:

iψt + δψ − ψχχ/(C|β|) + γ|U2
sol(ϵχ)| (2ψ + ψ∗) + Π(ϵχ)ψ = 0, (2.3a)

where the asterisk denotes complex conjugation. Here we use the notations of [1]:

ϵ = ∆x/2, χ = x/ϵ; (2.3b)

C = (∆t/∆x)2, δ = −ωsol + 1/(C|β|). (2.3c)

Note that in space, ψ can vary on a scale that is much smaller than O(1) but greater than the grid

spacing ∆x [1]. Also, the faster — on the scale O(∆x) — dependence of ũ(x, t) on x is accounted for

by the first factor on the r.h.s. of (2.2).

The evolution equation (2.3a) is reduced to an eigenvalue problem by a standard substitution(
ψ(χ, t), ψ∗(χ, t)

)
=
(
ϕ1(χ), ϕ2(χ)

)
eλt:(

1

C|β|
∂χχ − δ −Π(ϵχ)− γ|U2

sol(ϵχ)|

(
2 1

1 2

))
ϕ⃗ = iλσ3ϕ⃗, (2.4)
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where ϕ⃗ = (ϕ1, ϕ2)
T and σ3 = diag(1,−1). By analogy with the external potential term Π(x), we

will refer to the γ|U2
sol(x)| term as the “internal” potential of this eigenvalue problem. Solutions of

(2.4) occur in quadruplets with eigenvalues (±λ, ±λ∗) [1]; hence the presence of NI corresponds to

Reλ ̸= 0. From here a lower bound for the NI threshold can be deduced as follows. The matrix

operators on both sides of (2.4) are Hermitian, and σ3 on the right-hand side (r.h.s.) is not sign

definite. The eigenvalues are guaranteed to be purely imaginary when the operator on the l.h.s. is

sign definite [5]; otherwise they may be complex. The first term on the l.h.s. is negative definite, and

hence the entire operator is guaranteed to be negative definite when

δ +min
x

Π(x) + min
x, j

(αj γ|U2
sol(x)| ) > 0, (2.5)

where α1 = 1 and α2 = 3 are the eigenvalues of the matrix on the l.h.s. of (2.4). From the last

inequality and (2.3c) one concludes that when

C <
1

|β|
(
ωsol −minx(Π(x))−minx, j(αj γ|U2

sol(x)| )
) , (2.6)

the fd-SSM is guaranteed to be numerically stable. While one cannot generically show that it will

be unstable whenever (2.6) is violated, in practice we have found (as earlier in [1] for Π(x) ≡ 0) that

NI indeed sets in “soon” after C exceeds the threshold value given by the r.h.s. of that inequality.

Therefore, (2.6) gives an approximate NI threshold, which from (2.3c) predicts that ∆tthresh = O(∆x).

In the next three sections we will consider three distinct examples illustrating the above result.

3 External potential with multiple minima

In [1] we found that when Π(x) ≡ 0, numerically unstable modes are localized at the “tails” of the

soliton, with their location depending on C. Here we will show that in the case where γ > 0 and Π(x)

has multiple local minima, unstable modes can be localized only near the locations of those minima.

This will result in “stability windows”, i.e. intervals of C values past the NI threshold where NI does

not occur.

As an example, we considered Eq. (1.1) with

β = −1, γ = 2, Π(x) = 1.5 cos2 x, ωsol = 1. (3.1)

The numerical parameters were L = 14π and N = 210 grid points. The corresponding soliton, found

by the numerical method of [6], is shown in Fig. 1. In simulations, the initial condition was taken as

that soliton plus noise with amplitude on the order of 10−10 (see the footnote before (1.4)). Inequality

(2.6) yields the following approximate NI threshold:

Cthresh ≈ 1

|β| (ωsol −minx(Π(x) + 1 · γ|Usol(x)|2) )
. (3.2)

Later on we will explain why this expression is bound to (slightly) underestimate the actual threshold

value for C.

We have observed no NI until C = 1.04, at which point the unstable mode appeared as curve

A in Fig. 1. Note that the mode is localized near a minimum of Π(x). Given that the “internal”

potential at this x is 2|Usol(x)|2 ≈ 0.01, estimate (3.2) yields a smaller NI threshold: C ≈ 1.01. The
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Figure 1: Dashed line: “Internal” potential γ|Usol|2 (γ = 2), where Usol is the solution of (1.1) and

(3.1). The marked vertical scale pertains to this curve; all other curves are plotted with an arbitrary

vertical scale. Dotted line: External potential Π(x). Solid lines: Absolute value of unstable modes

for various values of C. (Only one side of each mode is shown; in numerical simulations; one observes

such a mode on both sides of the soliton; see Figs. 5(c) and 6 in [1].) A: C ∈ [1.04, 1.05]; B:

C ∈ [1.10, 1.11] (this is the second-order mode, similar to that in Fig. 7(a) in [1]); C: C > 1.15.

discrepancy (i.e., C = 1.01 versus C = 1.04) occurs due to neglecting the contribution of ψχχ. Indeed,

in the derivation of estimate (2.6) we set that contribution to zero, whereas it is strictly negative for

a localized (or, more generally, spatially varying) mode. That negative contribution would decrease

the denominator of (2.6) (and (3.2)) and hence increase Cthresh. This effect is more conspicuous in

the case of the soliton of (1.1), (3.1) than it was for the soliton of the purely cubic NLS considered

in [1] because in the former case, the unstable mode is more localized (compare Fig. 1 and the thin

solid curve in Fig. 5(b) in [1]), leading to a more negative contribution from ∂χχ. From the above

discussion and Eq. (3.2), the contribution of operator ∂χχ to the threshold value of C can be roughly

estimated as:

“∂χχ” ≈ 1

1.04
− 1

1.01
≈ −0.03. (3.3)

Let us clarify that the small absolute value of ∂χχ agrees with the fact that while the mode is seen as

narrow in x-space, it is still very wide in χ-space (recall (2.3b) and the note after (2.3)).

Continuing to increase C, we observed that in an interval C ∈ [1.06, 1.09], NI disappears. This

occurs due to the following. As C increases, the unstable mode “wants” to move towards the soliton’s

center, similarly to the situation with Π(x) ≡ 0; see Fig. 6(b) in [1].4 As it moves away from

x = 3π/2, the value of Π(x) at the mode’s location increases and this, according to (3.2), increases

the NI threshold, leading to NI’s disappearance.

As C continues to increase further, the second-order unstable mode moves from outside the soliton

to the minimum of Π(x) at x = 3π/2, and then NI reappears, being now caused by that second-order

mode; see curve B in Fig. 1. With further increase of C, that mode moves towards the soliton’s center

and away from the minimum of Π(x), and NI disappears again.

4One cannot explain this behavior without an analytical solution of the eigenvalue problem (2.4). Such a solution,

however, is not possible at this time, as was explained for the simpler problem with Π(x) ≡ 0 in [1]. However, the

tendency of the localized mode to shift towards the center of the soliton with the increase of C has been consistently

verified by our numerical solution of (2.6).
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It reappears when the first-order unstable mode moves into the minimum of Π(x) closest to the

soliton’s center; see curve C in Fig. 1. In our numerical simulations this was observed starting at

C ≈ 1.15. On the other hand, estimate (3.2) yields C ≈ 1.11, where we have used that at x ≈ π/2 one

has 2|Usol|2 ≈ 0.1. However, if we add the contribution of ∂χχ to the denominator of (3.2) and use

(3.3), we obtain: C ≈ 1/(1− 0.1− 0.03) ≈ 1.15, which is in excellent agreement with the numerical

result.

4 Bell-shaped potential; γ < 0

We will show that in this case, the unstable mode can appear either at the center or at the “tails” of

the soliton. This should be contrasted with the previous case and with the case of Π(x) ≡ 0, where

such a mode can appear only at the “tails”.

As an example, we considered Eq. (1.1) with

β = −1, γ = −1, Π(x) = 6sech 2x, (4.1)

and used L = 40 and N = 210. Let us note that equations with γ < 0 are not too uncommon;

for instance, the generalized NLS with saturable nonlinearity [7] provides an example of a realistic

physical system with negative effective nonlinearity.

We will first describe how the soliton of (1.7), (4.1) depends on ωsol, as this will explain differ-

ent behaviors of NI observed in this case. By comparing the equation in question with the linear

Schrödinger equation with a sech 2x potential, one can see that its soliton exists for ωsol ∈ (0, 4). At

ωsol = 4− 0, it becomes vanishingly small and has the shape of sech 2x. As ωsol decreases, the soliton

becomes wider and its amplitude grows, so that at ωsol = 1, one has Usol = 2sechx. As ωsol = +0,

the soliton becomes very wide and its amplitude approaches
√
6. Amplitudes of the soliton at three

values of ωsol are shown in Table 1.

The estimate of the the threshold beyond which NI can appear follows from (2.6):

Cthresh ≈ 1

|β| (ωsol −minx(Π(x)− 3 · |γ||Usol(x)|2) )
. (4.2)

The validity of this estimate is supported by the first two lines of Table 1. We would like to stress

three aspects of these results.

First, since for ωsol = 1 and 2, minx(Π−3 · |γ||Usol|2) occurs at x = 0, the unstable mode appears

at the soliton’s center rather than at its “tails”. This mode looks like modes A and C in Fig. 1 except

that it is located at x = 0.

Second, when the unstable mode occurs at the soliton’s center, NI develops very rapidly with

respect to parameter C. That is, lowering C by 0.001 compared to the value listed in the Table will

suppress the NI entirely. At the listed value of Cthresh, magnitude of unstable modes reaches O(1)

within t ∼ 100. This is more than an order of magnitude faster than in the cases reported in Section

3 and [1] when C there exceeds Cthresh by 1%.

Third, the case ωsol = 3 is different from that of ωsol = 1 or 2 in that the unstable mode is predicted

by (4.2) to be at the “tails” of the soliton. In that respect, it is similar to the mode discussed in [1]

for the soliton of the purely cubic NLS. However, we have also observed substantial differences from

the latter case. These new features of the NI are not specific to having γ < 0, and therefore we report

them in a separate section, which follows next.
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5 “Sluggish” NI

We begin by reporting our numerical results for the model (1.1), (4.1) with the initial condition

corresponding to ωsol = 3. For several values of C near the theoretical threshold Cthresh = 1/3, we

ran simulations up to t = 50, 000. At C = 0.345, which is over 3% above the threshold, we have

not observed any sign of NI. At C = 0.350, we have observed an order-of-magnitude growth (from

10−8 to 10−7) of high-k harmonics in the Fourier spectrum. In comparison, for the same relative

increase above the threshold, (C −Cthresh)/Cthresh ≈ 5%, the NI growth rate of the pure NLS soliton

was found in [1] to be about two orders of magnitude greater: see Fig. 3 there. As we continued to

increase C, the NI has gradually become stronger; however, this was not monotonic. For example, the

evolution of |F [u](kmax)| at two values of C is shown in Fig. 2(a), where a stronger NI corresponds

to the smaller C. It is only past C ≈ 0.45, i.e. 35% above the threshold predicted by (4.2), that the

increase of NI’s growth rate with C becomes monotonic.

0 1 2 3 4 5
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−4

     t,   in units of 10,000

lo
g 10

 | 
F

[u
] (

k m
ax

 )
 |

C=0.373

C=0.378

(a)

slow oscillations
of mode’s 
amplitude

t
0 50 100 150 200

lo
g

10
 | 

F
[u

] (
k m

ax
 )

 |

-8

-7

-6
(b)

(1.1) & (4.1)

Eq. (1.1) &
 Π(x)=0

Figure 2: Evolution of the highest Fourier harmonic (see text). (a) For Eq. (1.1), (4.1) with ωsol = 3.

The lines appear thick because of oscillations on the scale of t ∼ 50, which is not resolved in this

figure. Note also slower oscillations with the period of t ∼ 2000. (b) For the pure NLS (Π(x) ≡ 0

in (1.1)), C = 1.1 (Cthresh = 1); for Eq. (1.1), (4.1), C = 0.45 (Cthresh = 1/3).

We have called this NI “sluggish” due to its very slow, compared to the pure NLS case, development

with the increase of C. Through extensive simulations, we have found that it occurs when the external

potential Π(x) is either wider or significantly taller (or both) than the “internal” potential γ|Usol(x)|2.
It is not specific to the particular sign of γ; for example, it also occurs when in (4.1) one takes γ = +1

and the initial condition with, e.g., ωsol = 5, as well as for Eq. (5.6) below. We will now list features

of this “sluggish” NI and then will provide some insight into them.

5.1 Features of “sluggish” NI

Let us emphasize that the characteristics of a “sluggish” unstable mode listed below are generic, i.e.

were observed for several different potentials. More importantly, the same characteristics were also

observed in many more cases, some of which are reported in Section 6, where the initial condition

differed from the exact solitary wave Usol(x) by a finite amount.

(i) The unstable mode could remain “hidden” for some time. This is most conspicuous when

C is close to the threshold value predicted by (4.2) or, more generally, when the NI is weak. For
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example, in the cases shown in Fig. 2(a), NI becomes visible only after t ∼ 15, 000 for C = 0.373 and

t ∼ 25, 000 for C = 0.378. Motivated by this observation, we revisited our earlier simulations for

the soliton of the pure NLS [1]. We have found the same “delayed” NI there as well, except that its

starting time was considerably less; see Fig. 2(b).

(ii) The increase of NI with C is not monotonic; that is, as one increases C, NI may sometimes

get substantially weaker than it was for a smaller value of C. This was illustrated by Fig. 2(a), and

has also been observed in many other cases. (Note that for the two cases shown in Fig. 2(a), the

small noise added to the initial condition Usol(x) was the same.)

(iii) Growth of unstable modes with time is not monotonic, either. A mild example of it is also

shown in Fig. 2(a); in some cases, we even observed oscillations of mode’s amplitude of almost an

order of magnitude.

(iv) Unstable modes in the case of a “sluggish” NI look different from typical unstable modes for

the “non-sluggish” NI case of the pure NLS [1]. A comparison is shown in Fig. 3. In the x-space,

both types of modes are almost zero within the soliton (and the external potential). However, while

the mode in the “non-sluggish” case is localized (Fig. 3(b)), i.e. vanishes also outside the soliton, the

mode in the “sluggish” case is not localized (Fig. 3(d)). In the k-space, the latter circumstance is

reflected by a peak marked in Fig. 3(c), while the steep decay of the mode towards the soliton’s center

is reflected in a broad “plateau”, similarly to what occurred for the unstable mode of the pure-NLS

soliton (Fig. 3(a)). Eventually, as C becomes large enough, the shape of the unstable mode becomes

qualitatively similar to that shown in Fig. 3(a,b).

Let us reiterate from the beginning of Sec. 5 that the defining feature of the “sluggish” NI is

its slow, with respect to the increase of C, variation of the growth rate. In contrast, in the regime

of “non-sluggish” NI, its growth rate increases sharply with C. Now, based on feature (iv), we can

additionally delineate between “sluggish” and “non-sluggish” NIs based on whether the unstable

mode is localized (has width of O(1) or less) in the x-space. While this delineation is defined loosely,

in practice is it quite sharp, as the transition between the two regimes occurs in a relatively narrow

interval of C values.

(v) The fact that the unstable mode may be non-localized in x implies that the growth rate of

“sluggish” NI can be affected by the length L of the computational domain, and this was indeed

observed in our numerics.

(vi) Finally, as one decreases ∆x, the relative range

∆Crel, sluggish ≡ (C − Cthresh, (4.2))/Cthresh, (4.2) (5.1)

where the “sluggish” NI is observed (see next paragraph), decreases. For example, if in the simulations

reported at the beginning of this subsection one takes N = 211 or N = 212 (i.e. decreases ∆x two- and

four-fold), then “sluggish” NI turns into “non-sluggish” one around C = 0.42 and 0.38, respectively.

(Recall that Cthresh, (4.2) ≈ 0.33 in this case.) These values correspond to the ∆Crel, sluggish < 30% and

∆Crel, sluggish ≈ 15%, which should be contrasted with C ≈ 0.47 for N = 210, where ∆Crel, sluggish >

40%.

5.2 Explanation of features of “sluggish” NI

Feature (i) — the “delayed” NI — has been previously reported and explained by us in [2]. Here we
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Figure 3: Fourier spectra of a numerical solution exhibiting “non-sluggish” (a) and “sluggish” (c) NI.

Envelope in x-space of the unstable mode in the “non-sluggish” (b) and “sluggish” (d) cases. The

spectral contents of these modes are contained in the boxes shown on the right of panels (a) and (c),

respectively. The dotted lines in (b) and (d) show |Usol(x)|2 for each case.

will repeat that explanation in rather general terms, so as to make it clear that the “delayed” NI is a

generic scenario along which any slow instability, numerical or not, develops in an evolution equation

with spatially varying coefficients.

Note that when monitoring the Fourier spectrum of the solution (on a logarithmic scale) to detect

an instability, one follows the evolution of a specific harmonic with wavenumber, k0. (Whether this k0

is the edge of the spectral domain, kmax, or the location of the harmonic with the largest amplitude

(i.e., a “peak” as in Fig. 3(c)), is not important for the foregoing.) Since the governing equation for

the evolution of the error is (2.3), then it is natural to expand that harmonic over the eigenfunction

of (2.4):

F [u](k0, t) = F [u](k0, 0)

(
cmost e

λmostt +
∑
l

cl e
λlt

)
. (5.2a)

Here λmost and λl are the eigenvalues of the most unstable mode and all other modes of (2.4), and
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cmost and cl are the corresponding expansion coefficients:

cl =

∣∣∣∣∣
∫ L/2

−L/2
eik0xu∗mode l dx

∣∣∣∣∣ /
√
L

∫ L/2

−L/2
|umode l|2dx, (5.2b)

and similarly for cmost. A point to note is that |cmost| is less than 1 by some finite amount (see

below). For example, for the NLS (1.1) with parameters (4.1) and with ωsol = 3, or with parameters

(5.6) considered below, one has

|cmost| ∼ 0.5. (5.3)

(This statement appears plausible given that the most unstable mode, whose approximate shape is

shown in Fig. 3(d), is quite far from a pure Fourier harmonic.) Over long time, the second term on

the r.h.s. of (5.2a) becomes negligible compared to the first one; whence asymptotically:

F [u](k0, t) ≈ F [u](k0, 0) cmost e
λmostt. (5.4)

Harmonic k0 will become visible above the noise floor when |F [u](k0, t)| > |F [u](k0, 0)|. From

(5.4) we obtain an estimate for the corresponding “delay” time:

tdelay ∼ ln(1/|cmost|)
Reλmost

. (5.5)

Since ln(1/|cmost|) = O(1) (see (5.3)), this time has the order of magnitude of 1/Reλmost ≫ 1. In

other words, the weaker the NI, the longer it takes the NI to become observable. In [2] we also

explained why this time depends on the initial noise.

To provide insight into the remaining features listed in Section 5.1, we will report calculations for

a different set of parameters of the NLS (1.1) than (4.1). By doing so we intend to demonstrate that

a “sluggish” NI occurs not only when the the external potential is much taller than the “internal”

one (as for (4.1) with ωsol = 3), but also when it is wider. In fact, our simulations suggest that a

“sluggish” NI will occur whenever |γU2
sol(x)| ≪ |Π(x)| at the “tails” of the soliton. Thus, below we

report results for the following parameters in (1.1):

β = −1, γ = 2, Π(x) = e−0.3x2
, ωsol = 1. (5.6)

The corresponding external and “internal” potentials are shown in Fig. 5 below. We also verified that

respective results for parameters (4.1) with ωsol = 3 are qualitatively the same. The eigenvalues and

eigenfunctions of (2.4) with parameters (5.6) were computed numerically as explained in [1].

Feature (ii) is immediately explained by Fig. 4(a), which shows that the increase of max Reλ is

not monotonic with C. (Without going into details about the spectrum’s structure, explained in the

caption, one can simply follow the circles in Fig. 4(a), which for almost all values of C correspond

to the eigenvalue with the largest Reλ.) This is most notably seen near C = 1.035, where the NI

growth rate drops by almost an order of magnitude.

Feature (iii) is explained by noticing that below C ≈ 1.07, there are multiple eigenvalues with

very similar Reλ. Their eigenmodes grow at very similar rates and interfere with one another, thus

causing non-monotonic growth of the numerical error with time.

Feature (iv) is supported by Fig. 5(a). It shows the most unstable mode at C = 1.051, which is

essentially nonlocalized and thus looks qualitatively similar to the mode shown in Fig. 3(d). This
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Figure 4: Eigenvalues of (2.4), (5.6) with Reλ > 0. (Note that Cthresh, (4.2) = 1.) The spectrum

corresponding to unstable eigenmodes has the following structure near the NI threshold. First, there

is a purely real eigenvalue, λ ≡ Λ1; for larger C values there may be two or more such real eigenvalues

(Λ2, Λ3, etc.). Second, there is a group of complex eigenvalues λj = λr, j + iλi, j , j = 1, . . . J . (The

number of eigenvalues, J , in a group varies irregularly with C.) For some (typically, larger) C there

may be a second and third group(s) of complex eigenvalues. Panels (a) and (b) show the eigenvalues

of only the first such a group, as λr’s in the other group(s) are smaller. Within each group, as λr, j

decreases, λi, j increases. In (a), circles show purely real eigenvalues, Λ1 etc.. Vertical segments show

the intervals of λr, j (in (a)) and λi, j (in (b)), j = 1, . . . J , for the first group of complex eigenvalues.

It can be seen that around C = 1.077, two purely real eigenvalues merge into a double eigenvalue, as

has been observed earlier for the pure NLS case (see Appendix C in [1]).

should be compared to the localized mode at C = 1.05 for the pure NLS; see Fig. 5 in [1] or Fig. 3(b)

here. Even at C = 1.077, where the two pairs of purely real eigenvalues have almost merged and far

exceed real parts of other eigenvalues, the most unstable mode is still not quite localized (Fig. 5(b)).

Feature (v) is self-explanatory, as has been mentioned earlier. In our numerics we have observed

that in its “sluggish” stage, where the most unstable mode is nonlocalized, NI gets, on average, weaker

as L increases. However, this dependence is not monotonic. As C increases and the most unstable

mode becomes essentially localized, the NI’s growth rate, naturally, ceases to depend on L.

Feature (vi) is supported by Fig. 5(c), where we show that the most unstable mode becomes

localized, and the NI ceases to be “sluggish”, earlier (in terms of C values) for smaller ∆x. A

theoretical explanation of this feature would be based on an analytical solution of the eigenvalue

problem (2.4), which clearly depends on ϵ ∝ ∆x. However, as we have explained in [1] and noted in

footnote 4, such a solution cannot be obtained with available tools.

In the next section we will encounter “sluggish” NI in a different context.

6 NI of oscillating solutions of Eq. (1.1)

In the the previous sections we have analyzed the NI on the background of solutions of the generalized

NLS which have stationary shape. Here we will extend our study to the NI of solutions whose shape

varies in time. As before, we will be concerned with the NI that is weak, i.e. takes a long time to

develop. When the background solution’s shape is changing, the development of weak NI is possible
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(b) N = 210, C = 1.077; (c) N = 211, C = 1.051.

only when those changes are repetitive. Otherwise, factors leading to NI will not be able to accumulate

coherently, and hence NI would not be able to occur (or will be weakened even further). Therefore,

solutions where weak NI could occur must be periodic or near-periodic in time. We will show that

NI on the background of such oscillating pulses is similar to the “sluggish” NI reported in Section 5.

Let us recall that one of the features of “sluggish” NI is that the unstable mode is not localized.

Such a mode is, therefore, sensitive to the type of boundary conditions. In Sections 6.1 and 6.2 we

will continue using periodic boundary conditions (1.3), the reason being that we want to compare

the NI of oscillating pulses with that of exact solitons, considered in Section 5. In Section 6.3 we will

consider absorbing boundary conditions and demonstrate that they eliminate “sluggishness” of the

NI.

In all simulations reported below, we used β = −1 and γ = 2.

6.1 “Sluggish” NI of oscillating pulses

We began by simulating the purely cubic NLS (Π(x) ≡ 0 in (1.1)) with the initial condition and

length of the computational domain given by:

u0(x) = sech (x) · e−(x/3)4 + 0.2 cos(2πx/L) + ξ(x), L = 20. (6.1)

Here the exponential factor was used to ensure zero (to numerical accuracy), and hence periodic,

boundary conditions at this shorter L than in the previous sections5. The role of the second term

was to induce conspicuous oscillations; its specific, cosine, shape is not important and was chosen

only to satisfy periodic boundary conditions. A white noise ξ(x) in (6.1) had amplitude 10−10 and

was included to facilitate controllable development of NI from its high-k Fourier components, as is

explained in footnote 1 above.

At t > 0, the solution evolving from (6.1) resembles, near x = 0, a soliton whose amplitude and

width oscillate in time. Away from the pulse’s center, one observes a “pedestal”, which oscillates

as well. Due to periodic boundary conditions, oscillations of both the pulse and the “pedestal” are

maintained indefinitely, although neither oscillation is exactly or even nearly periodic.

5This shorter L was chosen only for convenience, so that we could also use fewer grid points N and thereby run

simulations faster.

13



We have found empirically that for C around 0.25, one observed a “sluggish” NI with all its

features described in Section 5.1. In particular, we observed a “delayed” NI, whereby the instability

may take a long time to develop. For example, for N = 29 and C = 0.226, it takes t > 10, 000 for

the NI to become barely visible above the noise floor; by t = 50, 000 it grows only by half an order

of magnitude. For C = 0.265, the most unstable Fourier harmonic rises just above the noise floor

around t ∼ 6, 000 and grows by an order of magnitude by t = 20, 000.

We have considered possible reasons that could cause “sluggish” NI in this case. From [1] and the

examples in Sections 3–5 we know that numerically unstable modes can be found at the “tails” of

the pulse. Then, could the “pedestal”, which clearly affects the “tails” of the solution, have caused

the “sluggish” NI? This hypothesis had appeared plausible, given our earlier observation (see Section

5.2) that “sluggish” NI appears when the external potential at the “tails” significantly exceeds the

“internal” potential. (The “pedestal” could be thought as creating some effective external potential

for the pulse.) However, we have answered this hypothesis to the negative by showing that “sluggish”

NI is also observed for solutions that are either exactly or almost exactly periodic in time and do not

have a “pedestal”.

Such solutions were induced, for example, by the following initial conditions:

u0(x) = 2 sech (x) + ξ(x), L = 40, (6.2)

for the pure NLS (Π(x) ≡ 0), and

u0(x) = sech (x) ( 1 + 0.4(1− 2x tanh (x)) ) + ξ(x), L = 40, (6.3)

for the generalized NLS (1.1) with Π(x) = 1.5 exp(−0.2x2). Initial condition (6.2) results in a

well-known, time-periodic, analytical solution of the pure NLS (see Sec. 5.1 in [8]). The solution

corresponding to (6.3) is a sech-like pulse whose amplitude oscillates between 1.08 and 1.44 almost

periodically, with almost no dispersive radiation being emitted outside the pulse. Thus, neither of

these solutions had a “pedestal”, yet “sluggish” NI was observed for both of them (as well as for

the solutions reported in the next subsection). From this we have concluded that it is, probably,

the oscillations of the “tails” of the soliton that cause “sluggish” NI. This is the main conclusion of

this subsection. Unfortunately, we were unable to explicitly relate the origin of the “sluggish” NI for

oscillating pulses with that for stationary solitons in an external potential, as in Section 5.

6.2 Regarding threshold of “sluggish” NI

In the absence of a quantitative model for the “sluggish” NI of oscillating pulses, we have considered

a question that may be posed by a researcher interested in avoiding NI in long-term simulations: For

what relation between ∆x and ∆t does NI not grow above a certain amount (we used ‘by one order of

magnitude’) at a certain simulation time (we used t = 1000)? In other words, what relation between

∆x and ∆t gives some “practical” NI threshold? We address this below. However, we remind the

reader that, as we illustrated in Section 5 and in the first example in Section 6.1, “sluggish” NI may

occur for a rather large range of C values. Therefore, it should be understood that this “practical”

threshold is defined in subjective terms, which may depend on circumstances such as the required

simulation time and the desired accuracy of the solution.
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Our results in [1] and above (see (1.6), (3.2), and (4.2)) show that when the initial condition is

infinitesimally close to an exact solitary wave, then the lower bound for the NI threshold satisfies the

relation:

Cthresh, exact = const ⇔ ∆t = O(∆x). (6.4a)

This should be contrasted with a recent result of [9] (see Eq. (2.9) there), whose authors showed (by

a method completely different from ours) that the lower bound for the NI must be

Cthresh, exact = O(∆x 2) ⇔ ∆t ≤ O(∆x 2). (6.4b)

The analysis of [9], unlike ours, does not require the initial condition u(x, 0) to be infinitesimally

close to the soliton6. Given the apparent discrepancy between the lower bounds (6.4a) and (6.4b), it

is reasonable to ask: Which of the two bounds is the “practical” NI threshold closer to? Let us stress

that a resolution of this question will have no implication to the issue of which of the two results is

correct, because these results are analytical, while the “practical” NI threshold is empirical (and, as

we have pointed out, can vary depending on requirements of a particular simulation). However, it

will indicate which of the bounds (6.4a) and (6.4b) may be more “practical”.

We have answered the above question by numerically simulating initial conditions (6.1)–(6.3) and

several others, among which we report here the following two:

u0(x) = 2.5 sech (x) · e−1.2(x/4)4 + ξ(x), L = 15, (6.5)

and

u0(x) = sech (x) ( 1 + ε(1− 2x tanh (x)) ) + ξ(x), ε = 0.2, L = 40. (6.6)

Both of these were simulated for the pure NLS (Π(x) ≡ 0). Since the amplitude of the sech-like

pulse in (6.5) is half-integer, that initial condition results in a dynamics that is most dissimilar to

an N -soliton solution (for an integer N ) [8]; the short length of the computational domain enhances

that dissimilarity. Thus, such a solution represents a rather generic quasi-periodic (in time), pulse-like

solution of the NLS. On the other hand, initial condition (6.6) was chosen because for ε≪ 1, it results

in the soliton of amplitude 1 + ε2 plus a packet of dispersive radiation of order O(ε), which oscillates

near the soliton for a long time but eventually propagates away [10]. Note that the ε-term in (6.6) only

minimally shifts the parameters of the original soliton [11]. The long-term quasi-periodic dynamics

here is supported by the dispersive radiation repeatedly re-entering the computational domain due to

periodic boundary conditions. We had to choose ε to be not too small since otherwise the “practical”

threshold occurred almost exactly at the theoretical threshold C = 1 for the pure soliton, as found in

[1].

For initial conditions (6.1)–(6.3), (6.5), (6.6) the dependence of the “practical” threshold, as

defined above, on ∆x is shown in Fig. 6. It is seen to be much closer to the dependence (6.4a),

predicted in this work, than to (6.4b), predicted in [9]. The fact that it does not follow (6.4a) exactly

agrees with feature (vi)7 discussed in Section 5. Let us emphasize, again, that all features of the

“sluggish” NI listed there were also observed for all the cases of the initial conditions considered in

this section.

6However, it makes an assumption that ũ(x) ≡ u(x, 0)− Usol(x) must be an even function: ũ(−x) = ũ(x).
7It stated that the range of C values where “sluggish” NI is observed decreases with ∆x.
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pertain to initial conditions (6.2), (6.3), respectively. Dotted line: the slope predicted by (6.4b). The

smallest N in each case was dictated by ensuring a sufficiently small discretization error, whereas the

largest, N = 212, was used to constrain the computational time.

6.3 Absorbing boundary conditions

As we have seen earlier (in Figs. 3(d) and 5(a)), the unstable modes in the “sluggish” stage of the

NI are not localized. Therefore, they are expected to be modified if boundary conditions are not

periodic. For solutions that are either exactly or almost periodic, like those generated by initial

conditions (6.2) and (6.3), the natural boundary conditions are those which absorb the small amount

of dispersive radiation (which may be caused, in particular, by the numerical discretization error)

that leave the computational domain. The same type of boundary conditions are appropriate if one

studies oscillations of a pulse near the center of a potential well or oscillations of two interacting

pulses. Therefore, below we consider such absorbing boundary conditions. They can be implemented

by multiplying the solution at each time step by a profile which equals unity in the bulk of the

computational domain but gradually decreases towards the edges. This decrease does not have to

occur all the way to zero, because repeated multiplication by such a profile will cause the solution to

still vanish at the edges. We will report results for the absorbing profile

absbc(x) =

 1, |x| ≤ 0.35L

exp

[
−0.04

(
|x|/L−0.35

0.15

)2]
, |x| ∈ (0.35L, 0.5L];

(6.7)

similar results were obtained when its parameters had been varied so as to still satisfy the general

description given above. The resulting solution of (1.1) with the absorbing boundaries (6.7) gradually

approaches zero for |x| ∈ (0.35L, 0.5L].

Among the initial conditions listed above we chose (6.2), leading to the exactly time-periodic and

localized solution of the pure NLS. (Note that absorbing boundary conditions would have qualitatively

changed dynamics of solutions induced by initial conditions (6.1), (6.5), and (6.6), because their quasi-

periodic motion is supported by repeated re-entrance of dispersive radiation through the periodic
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boundaries.) We used L = 60 and N = 3 ·211; this larger (than in Section 6.1) computational domain

allowed us to neglect the effect of the absorbing boundaries on the solution.

As a benchmark, we simulated this case without the absorber. The growth rate of the most

unstable mode observed in the range C ∈ [0.065, 0.080] is plotted in Fig. 7(a) with the dashed line.

The growth rate corresponds to Re(λ), with λ being defined before (2.4), and is estimated as

Re (λ)|est =
ln (maxk |F [u](k, t2)|)− ln (maxk |F [u](k, t1)|)

t2 − t1
. (6.8)

Here maxk is taken over wavenumbers lying outside the solution’s spectrum that lies above the noise

floor, and times t1,2 are taken on the approximately linear part of the evolution of the logarithm of

the unstable mode’s amplitude (as illustrated in Fig. 2). The slow and non-monotonic variation of

this rate with C < 0.078 suggests that the NI is “sluggish” there, while it ceases to be “sluggigh”

around C = 0.078. In the same figure we also plot (with the solid line) the growth rate of the NI

that occurs in the presence of absorber (6.7). As one can see, the absorbing boundary conditions

eliminate the “sluggishness” of the NI. On the other hand, for C > 0.078, where the unstable mode

becomes increasingly localized, the type of boundary conditions no longer affects the NI growth rate.

In Fig. 7(b) we show the unstable mode obtained with the absorber very near the NI threshold. It

looks similar to the nonlocalized mode shown in Fig. 3(d), except that it gradually decays in the

near-edge region where absbc(x) < 1.
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Figure 7: (a) Estimated growth rates of the NI with (solid line) and without (dashed line) the

absorber. The symbols represent the actual data points, while the lines are guide for the eye. Note

that there is no NI in the case with the absorber for C ≤ 0.0775, which we verified by extending our

simulations to t = 25, 000. (b) The envelope of the unstable mode in the case with the absorber for

C = 0.0777.

7 Summary of results

We have extended our earlier study [1] of NI of a soliton of the NLS in two directions.

First, we considered changes that inclusion of an external potential and switching the sign of

nonlinearity can cause to properties of the NI, while the initial condition is taken infinitesimally

close to the stationary soliton (as in [1]). In Section 3 we found that for a potential with multiple
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local minima outside the soliton’s center, there may exist “stability windows” past the NI threshold.

That is, for ∆t ∈ (a, b) with a > ∆tthresh, the soliton can be numerically stable. This occurs due to

an interplay of two effects. On one hand, for ∆t exceeding the NI threshold by a sufficiently small

amount, numerically unstable modes can exist only near the minima of the potential. On the other

hand, the location of the modes, xunst, depends on the parameter C = (∆t/∆x)2. Thus, it is only

when xunst(C) nearly coincide with the potential’s minima that NI can occur.

When (effective) nonlinearity of the generalized NLS is defocusing, as in the example in Section

4, unstable modes can (but not always do) exist at the center of the soliton rather than at its “tails”,

as in [1]. In that case, the NI growth rate is much greater than when the unstable modes occur at

the “tails”. Equivalently, the numerical solution obtained for ∆t > ∆tthresh becomes invalid after a

much shorter time when numerically unstable modes are localized at the soliton’s center than at its

“tails”.

When the external potential at its “tails” is much greater than the internal one there, as in

Section 5, we have observed “sluggish” NI. Its hallmark is that this NI remains weak for a range of

C values exceeding the NI threshold by several tens percent; hence the name. The corresponding

unstable modes differ from those of a “non-sluggish” NI, considered in [1] and Sections 3 and 4, in that

they are delocalized, i.e. occupy the entire computational domain (except for the soliton’s center).

Eventually, i.e. for sufficiently large C, those modes become localized at the soliton’s “tails”, which

is accompanied by a considerable increase in the NI growth rate.

Let us also mention that in all of the above scenarios with an external potential, the soliton

promptly disintegrates once the numerical noise reaches magnitude of order one. This should be con-

trasted with the behavior of a numerically unstable soliton in the NLS without an external potential

[1], where the soliton would drift for a long time before eventually disintegrating due to accumulation

of dispersive radiation.

The second direction in which we have extended the study in [1] was the consideration of an

NI of an oscillating solution. Such solutions often occur when the initial condition differs from the

exact stationary soliton by a finite amount; examples are given in Section 6. We were unable to

make any analytical progress in this case, but have empirically found that NI there is also “sluggish”.

In practical terms, this means that one can simulate the solution with a time step exceeding the

NI threshold by several tens percent and still not notice a decrease in accuracy, as the numerical

noise can remain sufficiently small. This motivated us to consider a “practical” NI threshold, defined

as a ∆t for which the magnitude of the most unstable mode does not grow by more than a given

factor over a given time. We have shown that this “practical” threshold approximately follows the

dependence ∆tthresh, practical = O(∆x), which we have earlier derived [1] as the lower bound of the

exact NI threshold for the soliton initial condition of the NLS. Finally, we have demonstrated that

imposition of absorbing, instead of periodic, boundary conditions eliminates “sluggishness” of the NI.
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ωsol max |Usol| min
(
Π− 3γ|Usol|2

)
mode’s Cthresh, (4.2) Cthresh, numer

location

1 2 −6 center 0.144 0.145

2 1.657 −2.237 center 0.237 0.241

3 1.187 0 “tail” 0.334 see Sec. 5

Table 1: NI of the soliton of Eq. (1.7), (4.1); see text for details. The last two columns list theoretical

and numerically observed values for the NI threshold.
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