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ABSTRACT

A potential resolution for the generation of coherent radioemission in pulsar plasma

is the existence of relativistic charged solitons, which are solutions of nonlinear

Schrödinger equation. In an earlier study, Melikidze et al.(2000) investigated the

nature of these charged solitons; however, their analysis ignored the effect of nonlin-

ear Landau damping, which is inherent in the derivation of the nonlinear Schödinger

equation in the pulsar pair plasma. In this paper we include the effect of Landau

damping and obtain solutions of the nonlinear Schödinger equation by applying a

suitable numerical scheme. We find that for reasonable parameters for the nonlinear-

ity and Landau damping, there exists soliton-like solutions that remain stable over

a time during which they are capable of exciting the coherentcurvature radiation in

pulsars.

Key words: pulsars:general, MHD — plasmas — pulsars: general, radiation mech-

anism: nonthermal

1 INTRODUCTION

The region around a strongly magnetized (B ∼ 1012 G) and fast-spinning neutron star generates

enormous electric fieldsE and cannot be maintained as vacuum (Goldreich & Julian 1969). The

problem of solving for the charge distribution around the magnetosphere is nontrivial and is a
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matter of intense research (see e.g.Spitkovsky 2011; Pétri 2016). Most theories follow the idea

that the region around the neutron star is a charge-separated magnetosphere which is force free,

meaning that the electromagnetic energy is significantly larger than all other inertial, pressure and

dissipative forces. The magnetosphere is initially charge-starved, and a supply of charged particles

can come from the neutron star or due to pair creation in strong magnetic fields. To maintain co-

rotation in the magnetosphere, the conditionE.B = 0 should be satisfied, and this corresponds to a

charge number density equal to the Goldreich–Julian density nGJ = Ω.B/2πce, whereΩ = 2π/P

andP is there rotational period of the pulsar,c is the velocity of light ande is the electron charge.

In the presence of sufficient supply of charges the magnetosphere can have two distinct regions:

the closed dipolar magnetic field line region where charges co-rotate with the neutron star and the

open dipolar magnetic field line region where a outflowing relativistic pulsar wind can exist.

Radio emission from pulsar is thought to arise from the development of plasma instabilities

in the electron–positron plasma streaming relativistically along open dipolar magnetic field lines

in the pulsar magnetosphere. However, identifying the physical process that can explain the radio

radiation properties in pulsars is a challenging problem inastrophysics. The key issues here are:

(i) to explain the problem of coherency, which manifests itself as observed pulsar radio emission

with unrealistically high brightness temperatures∼ 1028 . . . 1030K; and (ii) to explain the range

of pulsar phenomena, such as micropulses, subpulse drift, nulling/moding, pulsar profile stabil-

ity, polarization properties, etc.. Generally, the coherent pulsar radio emission can be generated

by means of either a maser or a coherent curvature mechanism (e.g.,Ginzburg & Zhelezniakov

1975; Ruderman & Sutherland 1975; Melikidze & Pataraya 1980; Melikidze & Pataraya 1984;

Kazbegi et al. 1991; Melikidze et al. 2000) emitted in strongly magnetized electron—positron

plasma well inside the light cylinder. However, as we will discuss in section2 (see alsoMitra

(2017) for a recent review), a large body of observations appear tosuggest that the pulsar ra-

dio emission is excited via a mechanism of coherent curvature radiation. This radiation emerges

from regions of about 500 km above the neutron star surface. The high brightness temperature of

this coherent radiation can be explained only if it is excited by charge bunches containing a very

large number of charged particles rather than by a single charge. The physics of how these charge

bunches are formed and how they emit coherent radio emissionis still poorly understood. In this

work we will focus on the problem of formation of charge bunches and their stability, and will also

address the problem of coherency in pulsar radio emission.

There are several suggestion in the literature as to where and how the electron–positron pair

production can happen in the pulsar magnetosphere, and amongst them the polar-cap models are
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the ones where the pair production occurs just above the polar cap. These models can best explain

the coherent radio emission properties of pulsars.Ruderman & Sutherland 1975(hereafter RS75)

were amongst the first to propose such a model, which attempted to explain the overall aspect of

the pulsar emission, i.e., both coherency and radio pulsar observational phenomenology. In their

model, there exists an inner acceleration region close to the polar cap, where a relativistic non-

stationary flow of the electron–positron pair plasma can be established. To address the problem

of coherent radio emission, RS75 suggested that charged bunches could be formed due to devel-

opment of a two-stream instability that results from the fast-moving and slow-moving particles of

the non-stationary plasma. This instability leads to the formation of linear electrostatic Langmuir

waves with its frequency being the plasma frequency. As the wave propagates along the magnetic

field, each type of particle is subject to the sinusoidal electric field, where for half of its period the

field bunches charges of one sign, while for the next half-period it bunches charges of the opposite

sign. RS75 proposed that these charge bunches can excite the coherent radio emission.

However, the explanation of coherent emission as occurringfrom such charge bunches has the

following fundamental difficulty, as was pointed out byLominadze et al. 1986andMelikidze et al.

2000. On one hand, the spatial dimensionΛb of an emitting bunch (along the magnetic field lines)

should be smaller than the period of the coherently emitted waveλc:

λc > Λb. (1a)

Indeed, ifλc < Λb, then different regions of the bunch would emit independently and hence in-

coherently. As described above, the bunching is caused by linear Langmuir waves (having wave-

lengthλl), and the size of a bunch is about half of the wave’s period; i.e., Λb ≈ λl/2. Since

Langmuir waves have an approximately vacuum dispersion relation,ω = 2πc/λ, the condition

(1a) that the emission be coherent amounts to

ωc < 2ωl, (1b)

whereωc andωl the characteristic frequency of the emitted waves and the Langmuir waves,

respectively. On the other hand, the temporal period of the emitted wave, i.e.Tc = 2π/ωc, cannot

exceed the time window over which the emitting bunch exists;this time window is half of the

period of the Langmuir wave, i.e.Tb = π/ωl. Indeed, if the condition

Tc < Tb (2a)

does not hold, the charge bunch would disperse away before ithas the chance to emit a radio wave.

Equivalently to (2a), one must have

ωc > 2ωl, (2b)
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Clearly, the above two conditions: (1b) (coherency of the emission) and (2b) (non-dispersal of the

charge bunch) are in contradiction with each other.

In the last few decades, significant refinement of the basic physical ideas that was postulated by

RS75 has been achieved both theoretically and observationally (e.g.,Melikidze et al. 2000(here-

after MGP00);Gil et al. 2004; Mitra et al. 2009; Melikidze et al. 2014). To circumvent the fun-

damental difficulty described in the previous paragraph, MGP00 accounted for nonlinear effects

due to sufficiently strong two-stream instability in the relativistic plasma. Their theory led to the

nonlinear Schrödinger equation (NLSE) with a nonlinear Landau damping term, which describes

propagation of theslow envelopeof Langmuir waves. MGP00 neglected the Landau damping

term, assuming it to be small, and showed that for reasonablepulsar parameters, the solution of

the NLSE leads to formation of a nonlinear solitary wave, i.e., a soliton, and that these solitons

carry an effective charge. Unlike the “half-period" chargebunches in the linear RS75 theory, the

charged solitons can exist for times much longer thanπ/ωl. Thus, sinceTb is no longer related to

π/ωl, condition (2b) can no longer be deduced from condition (2a). (Let us note, in passing, that

for solitons, condition (1b) also does not follow from condition (1a), because the soliton’s length

is much greater than the period of the carrier Langmuir wave.) Hence, the bunch non-dispersal

condition (1b) no longer contradicts the coherency condition (1a), and therefore charged solitons,

at least in principle, can excite coherent radio emission inthe plasma.

Yet, an explanation of the coherent emission relying on solitons of the “pure" nonlinear Schrödinger

equation without a Landau damping term has a shortcoming of its own. A stably propagating soli-

ton (or a few solitons) is known to emerge only from a certain class of initial conditions — a

localized one. However, there is no reason to assume that such an initial state actually occurs in a

magnetospheric plasma; rather, the initial condition there is likely to be a nonlocalized Langmuir

wave with a randomly (but slowly) modulated envelope. A solution developing from such an ini-

tial condition is known to be a disordered ensemble of solitons and linear waves; in this disordered

state, solitons continuously appear and disappear as a result of their interaction with one another

and with linear waves. Consequently, such “flickering" solitons do not exist for times long enough

that would let conditions (2a) and (1a) hold simultaneously. Thus, a mechanism that would pre-

serve a soliton’s individuality for a sufficiently long time, is required for the MGP00 theory to

become a strong contender in explaining the pulsar coherentradio emission.

In this paper we demonstrate that taking into account the effect of Landau damping in the

MGP00 theory provides such a soliton-stabilizing mechanism. The main part of this paper is or-

ganized as follows. In section2 we briefly describe the observational evidence from radio pulsars
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that motivates invoking the charged soliton model. In section 3 we briefly outline the generation

mechanism and features of the radio emitting plasma based onthe polar-cap RS75 class of mod-

els. In section4 we introduce the concept of the NLSE in pulsar plasma, and in section 5 we

discuss the range of parameters which are reasonable to expect in charged bunches of plasma near

a pulsar. In section6 we present the main results: a numerical observation of an intense long-living

electrostatic pulse with an internal structure, which is formed in the NLSE model in the presence

of Landau damping. In section7 we summarize the results. Appendix A contains a descriptionof

the numerical method, and Appendix B lists definitions of notations used in this work.

2 OBSERVATIONAL EVIDENCE OF COHERENT CURVATURE RADIATION OF

PULSARS

Radio pulsar phenomenological studies performed over the years provide a sound basis for un-

derstanding some general properties of the pulsar radio emission (see, e.g.,Mitra (2017)). Pulsars

emit periodic signals ranging from about 1 msec to 8.5 sec, and the pulsed emission is restricted

to an emission window which is typically 10% of the pulse period. In this study we will focus on

properties of so-called normal-pulsars, whose periods,P , are longer than∼50 msec and whose

surface dipolar magnetic field is about∼ 1012 G. In normal-pulsars the average pulse profile,

which is obtained by averaging a large number of single pulses, is seen to be highly structured and

can consists of one to several Gaussian-like components.

Pulsars are also highly linearly polarized, and the polarization position angle (PPA) across the

pulsar profile shows a characteristic S-shaped swing. This has been interpreted by the rotating

vector model (Radhakrishnan & Cooke 1969) as a signature of emission arising due to curvature

radiation from charged bunches moving along the open dipolar magnetic field lines. The steepest

gradient (SG) point of the PPA traverse corresponds to the fiducial magnetic plane which contains

the rotation and magnetic axes.

Pulsar profile along with linear polarization information is used in a statistical sense to infer

that the pulsar radio emission beam is composed of a central core emission surrounded by nested

conal emission. The components in the single pulses are moredynamic in their location inside

the pulse window, which leads to such phenomena as: (i) subpulse drifting, where in subsequent

single pulses the emission components are seen to systematically move across the pulse window;

(ii) the small-scale quasiperiodic temporal structures seen in components of single pulses called

"micro-structures"; and (iii) nulling and moding, where the average or radio emission either

MNRAS 000, 000–000 (0000)



6 Lakoba, Mitra & Melikidze

switches off completely or changes its pattern for a certainduration, and then returns back to

its original state. All these phenomena can be considered asnon-stationary effects in the pulsar

magnetospheric plasma.

In the following three subsections we will briefly summarizethe basic outcome from pulsar ra-

dio observations and point out the constraints they providein formulation of the theory of coherent

radio emission from pulsar.

2.1 Emission height

There are three different techniques that can be used to determine the location where the radio

emission detaches from the pulsar magnetosphere. Two of these techniques, namely the geometri-

cal method and the aberration and retardation (A/R) method, rely on the fact that pulsar emission

arises in the region of open dipolar diverging magnetic fieldlines; merits, drawbacks, and usage

of these height estimation methods can be found inMitra & Li (2004) andDyks (2008). Between

these two methods, the A/R method, proposed byBlaskiewicz et al.(1991), is known to give more

robust estimates for radio emission locations in normal pulsars.1 Moreover, the A/R method re-

vealed that emission heights can be estimated independently of pulsar’s geometry (seeDyks et al.

2004). The A/R effect is seen as a shift between the center of the total intensity profile and the

fiducial plane containing the magnetic and spin axes, which is often identified as the steepest gra-

dient point of the PPA traverse or the peak of the core emission. The A/R methods suggest that

the core and conal emission, i.e. the overall emission across the pulsar beam, arises from approx-

imately the same height (Mitra et al. 2016). A few notable studies dedicated to finding emission

heights using the A/R method are:Blaskiewicz et al.(1991), von Hoensbroech & Xilouris(1997),

Mitra & Li (2004), Mitra & Rankin (2011), Weltevrede & Johnston(2008). These studies suggest

that the radio emission arises from about∼500 km above the neutron star’s surface (see also Fig. 3

of Mitra 2017) The third method for finding emission heights is based on using pulsar scintillation.

In this method, one uses the fact that the emission from the compact emission region of the pulsar

passes through the interstellar medium which can act as a varying lens, thus modulating the pulsar

signal. The nature of this modulation depends on the spatialtransverse extent of the source, which

can be recovered by performing extremely high spatial resolution interferometry. The method has

1 The geometrical method involves estimation of emission heightsby solving for the the geometry of the pulsar beam, which in turninvolves

fitting the rotating vector model to the PPA traverse to estimate the angle between the rotation axis and magnetic axis and theangle between the

magnetic axis and the observer’s line of sight. These estimated parameters turn out to be highly correlated (see e.g.Everett & Weisberg(2001)),

and hence robust estimates of actual height using this method are not possible.
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been applied successfully on a few pulsars, and accurate results are only available for the Vela

pulsar which imply that the spatial transverse extent of theemission source is about 4 km and the

corresponding radio emission altitude is estimated to be about 340 km, in agreement with the other

methods (Johnson et al. 2012).

The pulsar radio emission heightRem ∼ 500 km is a very significant input to the pulsar radio

emission mechanism problem. The only plasma instability that can develop at these heights (where

the magnetic field is very strong and the plasma is constrained to move along the magnetic field

lines) is the two–stream instability. Hence, resonance-type instabilities like the cyclotron maser

instability (which can develop only near the light cylinder, where the magnetic field is weak), can

be ruled out.

2.2 Evidence for curvature radiation

The estimated emission heightsRem is the location where the emission detaches from the pulsar

magnetosphere. It is quite possible that the pulsar emission is generated in the emitting plasma at a

certain heightRg < Rem, and then emerges out of the plasma atRem. There is, however, no direct

way to probe this effect, and one has to resort to wave propagation properties in electron–positron

plasma at such strong magnetic fields. Once the radiation is generated in the plasma, it naturally

splits as ordinary, or O-mode (polarized in the plane of the wave vectork and the magnetic field

B plane) and the extraordinary, X-mode (polarized perpendicularly to thek andB plane). The

O-mode can strongly interact with the plasma and can be damped or ducted away, while the X-

mode can escape the plasma atRg ∼ Rem as if it were in vacuum (seeMitra et al. 2009and

Melikidze et al. 2014for details).

It turns out that there is multiple observational evidence that allows determination of the orien-

tation of the emerging polarization direction with respectto the dipolar magnetic field planes. The

most direct evidence comes from the x-ray image of the Vela pulsar wind nebula and fiducial or

the SG point of the absolute PPA, which can be used to establish that the electric vector emanating

out of the pulsar is orthogonal to the magnetic field planes, and hence represents the extraordinary

(X) mode.Lai et al. (2001) also showed that the proper motion direction (PM) of the pulsar is

aligned with the rotation axis.Johnston et al.(2005) andRankin(2007) produced a distribution

of the quantity|PM − absolute PPA| for a few pulsars and found a bimodal distribution around

zero and 90◦. Assuming that the pulsar’s PMs are parallel to the rotationaxis, the bimodality could

be explained as occurring due to the emerging radiation being either parallel or perpendicular to
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the magnetic field planes, since pulsars are known to have orthogonal polarization modes. Alter-

natively, PMs of pulsars can also be parallel or perpendicular to the rotation axis. While both the

above explanations are possible, it is clear that the electric vectors of the waves which detach from

the pulsar magnetosphere to reach the observer follow the magnetic field planes.

These observations can hence be interpreted as suggesting that the observed emission is as-

sociated with curvature radiation mechanism, since this isthe only known emission mechanism

that can distinguish the magnetic field planes. Further evidence of curvature radiation can also be

obtained from single pulse polarization, whereMitra et al.(2009) demonstrated that the instanta-

neous polarization of components of single pulses closely follow the average PPA.

2.3 Evidence for non-dipolar surface magnetic field

At a distance ofRem where the pulsar radio emission originates, the magnetic field is significantly

dipolar. However, the magnetic field at the surface of the neutron star needs to be significantly

non-dipolar, so that a sufficient amount of the electron–positron pair plasma can be generated

to explain the observed pulsar radiation. Pulsars are knownto slow down at a certain ratėP ,

and this slow-down can be used to estimate only the surface dipolar magnetic field component

to beBd ∼ 6 × 1019
√

PṖ G; hereP is the pulsar rotation period (in seconds) andṖ is non-

dimensional. There is, however, observational evidence that suggests the presence of a surface

non-dipolar magnetic field. The strongest piece of such evidence, from which the existence of

non-dipolar magnetic field can be inferred, comes from the discovery of a long-period (P =

8.5 sec) pulsar PSR J2144−3933 (Young et al. 1999). Gil & Mitra (2001) argued that significant

acceleration of pair plasma in this pulsar, which is essential for producing the radio emission, can

only happen if the radius of curvature of the surface magnetic field isρ ∼ 105 cm, which is about

an order of magnitude smaller thanρ values in normal pulsars withP ∼ 1. The smaller value of

ρc in PSR J2144−3933 implies that the magnitude of the surface non-dipolar magnetic field there

is about 1014 G, which is about 100 times higher than the dipolar magnetic field. Furthermore, in

some radio pulsars, soft x-ray blackbody radiation is seen from hot polar caps, and the estimated

area of the polar cap is often found to be smaller than the dipolar area, suggesting the presence

of a strong non-dipolar field on the neutron star surface (see, e.g., Table 1 ofGeppert(2017) and

references therein).

Thus, in summary, the basic input to the pulsar emission models from observations is that

coherent radio emission is excited in a non-stationary plasma flowing away from a pulsar and
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detaches from it at a height of about a few hundred km above thepulsar’s surface, in a region

of open dipolar magnetic field lines. The magnetic field on theneutron star surface, however, is

significantly non-dipolar.

3 PLASMA CONDITION IN THE MAGNETOSPHERE AND MECHANISM FOR

RADIO EMISSION IN PULSARS

As we have described in the Introduction, the RS75 class of thepolar cap models provide a frame-

work whereby the observed coherent curvature radiation is attributed to the emission of radio

waves by charge bunches in the plasma. In this section we willsummarize subsequent stages of

creation of this radio emission. We will refer to a a pulsar, i.e., a neutron star, having the following

parameters: radiusRs, pulsar periodP (measured in seconds), pulsar slow-down rateṖ , surface

magnetic fieldBs, and dipolar magnetic fieldBd (see the beginning of section2.3). For future

use we also introduce the ratiob = Bs/Bd, a non-dimensional parameterṖ−15 = Ṗ /(10−15),

which is assumed to be of order one, and the vector of angular velocity of the rotating star, whose

magnitude isΩ = 2π/P .

3.1 Gap formation

RS75 suggested that if the conditionΩ.Bs < 0 holds above the pulsar polar cap, then the polar

cap is positively charged. They envisaged a situation whereinitially there is only a limited supply

of stray positive charges above the polar cap, which is relativistically flowing away from the pulsar

along open magnetic field lines as a pulsar wind. Consequently, if the binding energy of the ions

in the neutron star surface are sufficiently strong, then theregion above the polar cap will be

deficient in positive charges, and a vacuum gap can be created, where an enormously high electric

field exists. Photons of energy> 2mec
2, whereme is the mass of electron, are split inside the

vacuum gap into electron–positron pairs, and the electric field in the gap separates these two types

of charges. They are then further accelerated along the curved magnetic field lines (hence the

term ‘curvature radiation’) and can annihilate again, generating a secondary pair of high-energy

photons, which, in their turn, after traveling some mean free path can produce another electron–

positron pair. In terms of pulsar parameters, the potentialdrop∆V across the gap and the gap’s

heighth can be expressed as

∆V ∼ 2× 1012b−1/7P−3/14Ṗ
−1/14
−15 ρ

4/7
6 V, (3)
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h ∼ 5× 103b−4/7P 1/7Ṗ
−2/7
−15 ρ

2/7
6 cm & 104 cm . (4)

Hereρ6 ≡ ρ (cm) × 10−6, whereρ is the curvature radius of magnetic field lines in the gap region.

In obtaining the numeric estimate in (4), we used the valuesρ6 ∼ P ∼ Ṗ−15 ∼ 1 andb ∼ 10.

3.2 Spark formation

A number of such localized discharges can form in the gap, andeach such a discharge undergoes

a pair-creation cascade. The electric field in the gap accelerates the electrons towards the stellar

surface, while the positrons are accelerated away from the surface. At the top of the gap these

positrons acquire Lorentz factors ofγb such that

γb ≈ e∆V/mec
2 ∼ 2× 106. (5)

As these particles move away from the gap to the region whereE.B = 0, they continue to

create high energy photons, which further create pairs, andthis cascade leads to the generation

of a cloud of secondary electron–positron plasma, which hasa significantly lower Lorentz factor

with a mean value ofγp. If there arenb pairs in the primary beam, then the number of pairs in the

secondary plasma can be estimated asnp ∼ (0.5γb/γp)nb, and thus the density of the secondary

plasma increases by a factorκ = np/nb. In this work we will use the valueκ ∼ 104 Sturrock

(1971). The burst of pair production process increases the chargedensity along the gap discharge

stream and screens the potential in the gap. This process occurs exponentially, and after a certain

from the star, which is estimated to be∼ 30− 40h ∼ 500 m (RS75), the charge density becomes

close tonGJ , and the particle acceleration process stops. During this time the discharge spreads in

the lateral direction thus acquiring a width of∼ h. We will call this fully formed discharge a spark,

and each spark is associated with a secondary plasma cloud. According to the above description,

such a cloud has the shape of a column with a longitudinal dimension of∼ 500 m and a diameter

of & 10 m near the pulsar’s surface. As the cloud moves away from the star to a distanceR from

its center, the cloud’s diameter grows proportionally to(R/Rs)
1.5 due to the divergence of dipolar

magnetic field lines.

The charge number density of the primary plasma beam,nb = nGJ , can be expressed in terms

of pulsar parameters as

nGJ ∼ 6× 105
(
Ṗ−15/P

)0.5

R−3
50 cm

−3, (6)

whereR50 = R/(50Rs); and a value ofRs = 10 km will be used for subsequent calculations in
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this paper. Here and below we normalize the distance to50Rs since the coherent radio emission

occurs around that altitude (see next subsection); henceR50 ∼ 1. The charge number density of

the secondary plasma isnp = κnGJ , and hence the mean Lorentz factor of the secondary plasma

can be estimated to be

γp ≈ γb/(2κ) ∼ 100 . (7)

The plasma frequencyωp is given by

ωp ∼ 4× 109R−1.5
50 κ0.5

4 (Ṗ−15/P )0.25 Hz, (8)

whereκ4 = κ/104 ∼ 1.

For later use in the next subsection, we will also mention that once the spark-associated plasma

column leaves the polar cap and the secondary plasma cloud isscreened from the gap’s potential,

the next discharge can be initiated. Thus, the distance between two consecutive plasma clouds is

estimated to be∼ h.

3.3 Development of linear two-stream instability in secondary plasma

The overall sparking process leads to a non-stationary flow of successive plasma clouds flowing

along a bundle of magnetic dipolar field lines. Indeed, sincethe magnetic field is strong and the

ratio of the plasma frequency to cyclotron frequencyωp/ωB ≪ 1 at the radio emission heights,

the charges are confined to move tightly along the magnetic field lines. Therefore, we will hence

restrict ourselves to discussing the plasma properties in aone-dimensional flow.

Within each plasma cloud, there is a spread of velocities of charged particles and hence a

spread of their Lorentz factorsγp. RS75 showed that due to this spread of velocities and a spatial

overlap between the electron and positron species within the same cloud, a two-stream instability

can develop. However, later,Asseo & Melikidze(1998) showed that a much stronger two-stream

instability develops due to an overlap of the slow- and fast-moving particles of twosuccessive

clouds.Asseo & Melikidze 1998showed that this two-stream instability provides a sufficiently

strong Langmuir turbulence in the plasma, with the frequency of Langmuir wavesωl being

ωl ≈ γpωp ∼ 4× 1011R−1.5
50 . (9)

Moreover, disturbances of the envelope of these slowly modulated Langmuir waves, obeying the

NLSE (MGP00), propagate with the group velocity that can coincide with the velocity of some

portion of the charged particles. This occurs because of theaforementioned spread of particle

velocities, both within one species and well as between the two species. This synchronism is

behind the mechanism of the nonlinear Landau damping, first derived for this situation by MGP00.
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To quantify that effect, as well as the size of nonlinear and dispersive terms in the NLSE in the next

section, we will need to refer to the velocity distribution function of electrons and positrons in the

secondary plasma. They can be approximated by a Gaussian function centered around momentum

pα and having a spread ofpT :

fα ∝ exp[−((p− pα)/pT )
2] ∼ exp[−((γ − γs, α)/γT )

2]. (10)

Hereα = + or −, corresponding to positron or electron species of the plasma, andγs, α andγT

are the Lorentz factors corresponding to the momentapα andpT . It is important to notice that

f+ 6= f−. Namely, it was shown byCheng & Ruderman(1979) that due to the flow of plasma

along the curved magnetic field lines, there is a change in thedistribution function, and one can

show (Asseo & Melikidze 1998) that:

|γs,+ − γs,−|/γp ≡ ∆γ/γp ≈ ∆σγ3
p/γb , (11)

where the value of parameter∆σ depends on whether the surface magnetic field at polar cap

region is assumed to be strictly dipolar or to have a multipolar structure (MGP00); see section 2.3.

Importantly for the estimate of the Landau damping parameter is section 5 below, it was shown in

MGP00 that∆γ/γp is in the range0.5 . . . 2.

Finally, an important parameter when solving the NLSE in subsequent sections is the distance

from the pulsar’s surface where the two-stream instabilitydevelops, thereby leading to strong

Lamgmuir turbulence and hence strong radio emission. Simple kinematic estimates performed by

MGP00 show that the distance at which this instability can set in is ∼ 2γ2
ph & 200 km. In terms

of pulsar parameters, this can be written as,

Ronset ∼ 20Rs × γ2
2ρ

2/7
6 b−4/7B

−4/7
12 P 3/7 , (12a)

whereB12 = Bd/10
12 G andγ2 = γp/10

2. The longitudinal dimension of the instability region is

limited by the divergence of the magnetic field lines, which leads to a decrease of the plasma charge

density in proportion to(R/Rs)
1.5. As suggested inAsseo & Melikidze(1998), the dimension of

this region is

∆R ∼ 500 km. (12b)

Therefore, we can estimate that most of the radiation comes from the middle (or the second half)

of this region, where, on one hand, the Langmuir turbulence is alreadystrong because the two-

stream instability has had sufficient time to develop, and, on the other hand, isstill strong enough,

having not been weakened by the divergence of the magnetic field lines. Thus, the location of the
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radiating region can be estimated to be:

Rem ∼ (Ronset +∆R/2) ∼ 500 km (12c)

from the star. Equivalently, one hasR50 ∼ 1 in this region. This is the value we used in (8) to

obtain the estimate (9). Let us note that estimate (12c) is in good agreement with observations, as

discussed in section 2.1.

In the next two sections we will discuss the nonlinear equation satisfied by the envelope of the

Langmuir waves and the range of parameters for which it should be solved. Then, in section 6, we

will demonstrate that the solution of that equation is capable of explaining features of the observed

coherent radiation from pulsars.

4 NONLINEAR PROCESS AND CREATION OF RELATIVISTIC CHARGED

SOLITON

In the Introduction we described a difficulty which the (linear) RS75 model, presented above,

has explaining the origin of the coherent radio emission by plasma clouds. To address that diffi-

culty, MGP00 proposed a nonlinear model for pulsar radio emission, whereby they included three

new effects. First, they argued that due to a (relatively small) spread of particle velocities in the

plasma, frequencies of the Langmuir waves have a corresponding spread∆ω ≪ ωl. Since the

dispersion relation of Langmuir waves is not exactly linear, the group velocity dispersion needed

to be included. Second, the nonlinearity of plasma’s electric susceptibility was also included. As

is well-known from the theory of nonlinear waves, an interplay between the nonlinearity and dis-

persion leads to modulational instability of the slowly changing envelope of the Langmuir waves,

which in turn may lead to formation of localized pulses (solitons) out of suitable, localized initial

conditions. Third, a resonant interaction between plasma particles propagating with speed that co-

incides with the (mean) group velocity of Langmuir wavepackets, results in the nonlinear Landau

damping. Thus, the MGP00 model is described by the non linearSchrödinger equation (NLSE)

with nonlinear Landau damping. Ichikawa & Taniuti (1973) derived the NLSE taking into account

the effect of Landau damping for the non-relativistic case and applied it to an electron–ion plasma.

Pataraya & Melikidze (1982) derived the NLSE for the relativistic case, and MGP00 applied it to

the pulsar system in detail.

Let us now present the NLSE derived by MGP00:

i
∂E‖

∂τ
+G

∂2E‖

∂χ2
+ qE‖

(∣∣E‖

∣∣2 + s

πq
−
∫ |E‖(χ

′, τ)|2 dχ′

χ− χ′

)
= 0. (13)

In this equation,E‖ is the amplitude of the electric field which is parallel to theexternal magnetic
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14 Lakoba, Mitra & Melikidze

field, andχ andτ are the dimensional space and time coordinates in the movingframe of reference

(MFR). They are related to the coordinatesχ◦ andτ◦ in the observer frame of reference (OFR)

by: χ = γ◦(χ◦ − vgτ◦) andτ = γ◦(τ◦ − (vg/c
2)χ◦), wherevg is the group velocity of Langmuir

waves andγ◦ ≈ γp is the corresponding Lorentz factor. In particular, any length and time intervals

in the OFR are related to such intervals in the MFR by:δχ◦ = δχ/γp andδτ◦ = δτ/γp. The

coefficientsG, q ands in Eq. (13) correspond to the dispersion, nonlinearity and Landau damping

terms, respectively. These coefficients depend on the distribution functionsfα(p) (see section 3.3)

and other parameters of the plasma and are given by Eq. (A20) in MGP00:

G =
1

4

γ2
pc

2

ωp

Gd , (14)

q =

(
e2

mec

)2
1

γ2
pωp

qd , (15)

s =

(
e2

mec

)2
1

γ2
pωp

sd , (16)

whereGd, qd andsd depend only on the distribution functions of the plasma. MGP00 solved the

NLSE ignoring the effect of Landau damping. This, however, is justified only when the Landau

damping term,∝ s, is so small compared to the nonlinear term,∝ q, that it does not have the

chance to affect the evolution of the Langmuir wave’s envelope over typical times considered.

However, we will show below for reasonable parameters of pulsar plasma, this assumption does

not necessarily hold; hence the effect of Landau damping over such sufficiently long times cannot

be neglected. With this motivation, we will now proceed to solving the NLSE (13) with nonlinear

Landau damping numerically.

5 NONDIMENSIONALIZATION OF EQ. (13)

We begin by nondimensionalizing the space variable in the MFR:

χ = l θ x, (17a)

wherex is the nondimensional space variable, factorθ is to be defined shortly, and the character-

istic scalel is defined as:

l = c/ωp = λp/(2π) , (17b)

with λp being the period of Langmuir waves in the MFR, and the plasma frequencyωp is given by

Eq. (8). The parameter2π l is of the same order of magnitude as the Langmuir spatial period λp

(in the MFR) at some intermediate location of the plasma cloud(see section3). Therefore, factor

θ/(2π) in (17a) characterizes the ratio of scales of the Langmuir wave envelope to the Langmuir
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periodλp.2 In what follows we will consider this ratio to be on the order of 102 . . . 103, whence

θ = 103 . . . 104.

We would like to stress that the above assumption about the range forθ does not impact the

main conclusion of our study, for two reasons. First, as we will show below, a value ofθ results

merely in a ball-park estimate of the maximum nondimensional simulation time, while the free-

dom to adjust the nonlinearity coefficient in the nondimensional equation will still allow us to

observe the important changes in the electric field’s evolution. Second, it is realistic to assume that

there exists a wider range ofθ values than what we assumed above; this simply corresponds to

the envelope of the initial electric field having a wider range of spatial scales. Then, for a given

amplitude of the electric field’s envelope (i.e., for a givensize of nonlinear terms in Eq. (13)), only

those of its fluctuations whose wavelength fall into a narrow(er) range of values will exhibit the

phenomenon of pulse formation described below. In other words, the fluctuations with the spatial

scale of interest to us will be selected by the governing Eq. (13) and not by our assumption of the

range ofθ (as long as that range is sufficiently broad).

In addition to an uncertainty in the value range of our nondimensional parameters that occur

due to an uncertainty of the scaling parameterθ, there is also a (much smaller) uncertainty due

to these parameters’ dependence on the heightR above the pulsar surface where the coherent

radiation is emitted. In (12c) we estimated that this occurs around 500 km above the surface.

Correspondingly,R50 ∼ 1, as defined after Eq. (6), and this value is to be used to estimate the

plasma frequencyωp in (8) and hence the parameterl in (17b). For other values ofR50, one has

l ∝ R1.5
50 . We will use this fact in section 6.1 below.

Next, we normalizeE‖ to a typical magnitude of the electric field,E0, at a location where the

two-stream instability sets in in the cloud of secondary plasma (see (12a)):

E‖ = E0 u; (18)

thusu is the nondimensional electric field. Note that by this definition,u = O(1) initially.

Finally, we introduce the nondimensional time,t, via

τ =
(lθ)2

G
t =

4θ2

γ2
pωp Gd

t, (19)

where we have used formula (17b) and the relation (14). Then, upon dividing through byG/(lθ)2,

Eq. (13) attains the form:

i
∂u

∂t
+

∂2u

∂x2
+Qu

(
|u|2 + s

πq
−
∫ |u(x′, t)|2 dx′

x− x′

)
= 0. (20)

2 In other words,x = O(1) corresponds to the dimensional scale ofO
(
θ/(2π)

)
of Langmuir periods in the MFR.
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16 Lakoba, Mitra & Melikidze

where using Eqs. (14) and (15) we have:Q = qE2
0(l θ)

2/G =
(
2E0θ e

2/(γ2
pmecωp)

)2
qd/Gd. The

initial condition to this equation has, by design, the nondimensional magnitude and spatial scale

of order one:|u| ∼ 1 and|u|/|ux| ∼ 1.

Let us now estimate the maximum nondimensional simulation time. First, the dimensional

prototype of that time,τmax, is that needed for a Langmuir wave packet to travel, within the cloud

of secondary plasma, a length∆R, where the Langmuir turbulence is sufficiently strong (i.e.the

nonlinear and dispersive terms in (13) significantly affect the wave packet’s evolution). As esti-

mated in Eq. (12b), ∆R ∼ 500 km. Since that length is referenced in the OFR whileτ is measured

in the MFR, the Lorentz factorγp ∼ 102 (see Eq (7)) needs to be accounted for; thus

τmax ≈
∆R

c γp
∼ 10−5s. (21a)

Using now relation (19), whereGd ∼ 1 (see Fig.1), and an estimateωp ∼ 4× 109 Hz for a typical

pulsar withP ∼ Ṗ−15 ∼ κ4 ∼ R50 ∼ 1 (see Eq. (8))), one obtains that:

tmax ∼ 108/θ2 ∼ 1 . . . 102. (21b)

Here the last estimate follows from our earlier assumptionθ = 103 . . . 104.

Now, as we will demonstrate in the next section, the hallmarkof the evolution of a Langmuir

wave packet governed by Eq. (13) is the formation, out of an initially disordered state, of an in-

tense pulse with an internal structure. In light of this, we should consider such values of nonlinear

parametersQ and(s/q) in the nondimensional Eq. (20) that result in such formation over the times

estimated in (21b). As for parameter(s/q), which characterizes the strength of Landau damping

relative to the purely cubic nonlinearity (and does not depend on details of nondimensionaliza-

tion; see (15) and (16)), its size was estimated following the procedure described in MGP00 (see

MGP00 Appendix A). Correcting an arithmetic error in that paper, we re-calculated the parameters

Gd andsd/qd for ∆γ/γp = 0.5 and 1; the result is plotted as a function of the thermal spread of the

plasma,γT/γp, in Fig.1. For moderately large values of the thermal spread,γT/γp ∼ 1 . . . 2, one

finds the size of the Landau damping term relative to the size of the purely cubic nonlinear term

fall in the range

s/q = sd/qd = 0.05 . . . 0.2. (22)

On the other hand, it is not possible to estimate the correct order of magnitude of the nondi-

mensional parameterQ in (20) based on physical grounds, because one does not have an estimate

for the unknown electric fieldE0. Therefore, we simply had to use trial and error to find a range
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Figure 1. ParametersGd andsd/qd in (15) and (16) as functions of the thermal spread of the plasmaγT /γp, plotted for two representative values
of the relative shift∆γ/γp = 0.5, 1 between the centers of the electron and positron distributions; see (11). The ellipse indicates grouping of the
two sd/qd-curves, to distinguish them from theGd-curve.

of values ofQ such that, for(s/q) being in the range (22), the times of intense pulse formation are

in the range (21b). As we will demonstrate in the next section, suchQ have the magnitudeO(1).

6 NUMERICAL SIMULATIONS OF EQ. (20)

In order to solve Eq. (20), we used a numerical method recently proposed inLakoba(2016). This

method combines the leap-frog (LF) solver with the idea of the integrating factor (IF) method and

hence will be referred to as IF-LF. For the reader’s convenience we present its details in Appendix

A. The non-physical parameters of the simulations, such as time step∆t and mesh size∆x, are

also listed there.

The initial conditionu(x, 0) for the envelope of the Langmuir wave is taken in the form of a

mixture of a constant and a random field. In the simulations wevary both the ratior of these two

parts in the mixture and the correlation lengthlcorr of the random part, since the actual range of

these physical parameters in the plasma is not known. Thus:

u(x, 0) = (1− r) + r

∫
exp[−0.5(k/kcorr)

2 − ikx]√√
π kcorr

ŵ(k) dk; (23a)

wherekcorr = 2π/lcorr andŵ is a white noise in Fourier space:

〈ŵ∗(k1)ŵ(k2)〉 = 2δ(k1 − k2), 〈ŵ(k1)ŵ(k2)〉 = 0; (23b)

here〈· · · 〉 stand for the ensemble averaging andδ, for the delta-function.

As we have announced in the previous section, we will be interested in an evolution that leads

to the emergence of an intense pulse from an initially disordered state (23). Due to Landau damp-

ing, spectral components of the evolving electric field’s envelope shift off-center during the evolu-

tion, which causes the forming pulse to move (with non-zero acceleration) in the reference frame

of Eq. (20). Modeling realistically such a moving pulse would requirea very large spatial com-
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putational domain, which is out of reach for our computational resources. We therefore resorted

to a common numerical trick: We impose periodic boundary conditions on a finite-length domain,

thereby modeling repeated passing of a pulse (or some disordered field) through this domain. We

restricted our consideration to the nondimensional valueL = 40π ≈ 126.

Thus, in our simulations we have four physical parameters that we varied: ratior of the random

and constant components in the initial state of the field (23); correlation lengthlcorr of the random

component there; Landau damping coefficient(s/q), and the nonlinearity coefficientQ in (20).

6.1 Main results

6.1.1 Formation of an intense pulse due to Landau damping

We will now present the first of the two key findings of this study: the formation, due to Landau

damping, of an intense pulse from a disordered initial field.A typical evolution of the field and

its Fourier spectrum, representative of such a process, is illustrated in Fig.2. At first, there is a

transitional time interval (approximately untilt = 40 in the case shown in Fig.2), during which

the field and its spectrum remain statistically similar to the initial ones. Some moderately intense

field fluctuations routinely occur during that time, but theykeep on quickly dissolving. This is a

typical evolution of a disordered field in the NLSE: see, e.g., Solli et al. 2007; Fedele et al. 2010;

Lakoba 2015. Then, anew phenomenonappears due to Landau damping: Within a short period

(somewhere in40 . t < 45 in the case of Fig.2 (b)), an intense pulse begins to form and, most

importantly,no longer dissolves back into a disordered state. As the pulse keeps on becoming taller

and narrower, its spectrum develops a secondary peak (circled in Fig.2), which begins to shift

exceedingly fast away from the original central wavenumberof the field. This shift of the field’s

spectral components occurs due to Landau damping, whereby energy from Fourier harmonics with

k > 0 is transferred to those withk < 0 (for (s/q) > 0 in Eq. (20)). This stage, where the pulse

“matures", takes a relatively short time (approximately corresponding to45 < t < 55 in the case

of Fig. 2), after which the growth and narrowing of the pulse in physical space slow down and

then cease. Then, the only result of its evolution remain theaccelerated moving (in the reference

frame of Eq. (20)) in the physical space and the moving of the secondary peak in the Fourier space.

For the parameters used in this simulation, one is able to reliably observe this “mature" stage of

the pulse evolution only for a relatively short time. The reason is that byt ∼ 65, the secondary

peak has already moved too close to the left edge of the computational spectral domain, so that

spectral components of the solution neark ≈ −kmax have increased considerably above the initial
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Figure 2. (Color online) Field (a) and spectrum (b) of the solution of Eq. (20) with the initial condition (23) for Q = 0.25, r = 1, lcorr = π, and
s/q = 0.05. (Only part of the spectral domain is shown for better visibility of details.) The arrows mark the times at which the solutionis plotted.
The circles in panel (b) mark the “solitonic" part of the pulse, corresponding to the intense peak, as discussed in the text.

noise level. To prevent those components from invalidatingthe numerical solution, we stopped

simulations when the Fourier amplitude of those componentswould reach (an arbitrarily chosen)

value10−4. A detailed observation and examination of the “mature" stage of the pulse evolution

is possible either for a wider computational spectral domain (see below) or for smaller values of

Q or (s/q). However, the latter would increase the time needed for the pulse formation to several

hundred units, which is beyond the physically relevant range (21b), and therefore is not presented

here.

The unbounded widening of the solution’s spectrum presentsan issue for the validity of that

solution not only from the numerical, but also from a physical perspective. Indeed, one of the

key assumptions under which the governing equation (13) is valid is that the characteristic scale

of the initial perturbation in the plasma must be much greater than the Langmuir wavelength.

After Eqs. (17), we assumed that the ratio of these two spatial scales, denoted there asθ/(2π),

is on the order of102 . . . 103. When the solution’s spectrum widensM times, its characteristic

spatial scale decreases by the same factor. Therefore, the governing model remains valid only as

long asθ/(2πM) ≫ 1, whence one must require that the spectrum widening factor be limited by

M < 102. If the initial (nondimensional) spectral half-width of the solution isk ∼ 2, as in Fig.2,

then the solution will remainphysicallyvalid as long as the separation between the secondary and

primary spectral peaks does not exceed∼ 100 units.

A closer examination of the solution’s Fourier spectrum reveals that while the remnants of the

original spectral peak remain “noisy" (i.e., jagged in Fig.2), the secondary, “breakaway" peak, cor-

responding to the intense pulse, is smooth and has clearly seen exponentially decaying tails. This

leads us to hypothesize that the created pulse is a soliton ofthe perturbed nonlinear Schrödinger
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equation (20). Creation of along-living intense pulse out of a disordered initial condition has been

reported before (Jordan & Josserand 2001; Genty et al. 2010) for the generalized NLSE. However,

in those cases, the size of the perturbation, interpreted asthe difference between the given NLSE

and the purely cubic one, was not small. Namely, either the nonlinearity wasconsiderablydifferent

from cubic (Jordan & Josserand(2001) and references therein) or a higher-order dispersion term

in the cubic NLSE was of order one (Genty et al. 2010). Moreover, there are two differences in our

observation of the pulse’s emergence compared to such observations in those earlier studies. First,

our Eq. (20) contains only asmallperturbation to the NLSE:(s/q) . 0.1.3 This makes the second

difference even more surprising: in strongly non-cubic generalized NLSE considered earlier by

Jordan & Josserand(2001), the time that it took an intense pulse to emerge was about two to three

orders of magnitudegreaterthan in theslightlyperturbed NLSE (20). A theoretical explanation of

these differences, as well as of the very fact that a small Landau damping causes the emergence of

an intense pulse from a disordered state, remains an open problem.

Thus, to summarize our first key finding: A small Landau damping leads to two qualitative

changes of a disordered initial field. First, unexpectedly,it causes formation of an intense pulse

that exists over a long time (at least as long as the model (13) remains physically and numerically

valid). Second, expectedly, it leads to an (accelerated) shift of that pulse in the spectral domain

towards lower wavenumbers (for(s/q) > 0).

6.1.2 Internal structure of the pulse, and features of radiation

Our second key finding concerns thewavelengthof the radiation emitted by the plasma where

an intense pulse has formed due to the mechanism described above. The intense pulse creates a

ponderomotive force which prevents the charged bunch from collapsing. The ponderomotive force

is∝ ∇|E‖|2, which, when used in conjunction with the Poisson equation and restricted to the one-

dimensional motion along magnetic field lines (see section 1), gives the charge density across the

pulse to be proportional to∂2|E‖|2/∂x2 (see MGP00). The charge density, in turn, is a coherent

structure bounded by the width of the intense pulse, which moves along curved magnetic field lines

to produce coherent curvature radiation. To illustrate that finding, in Figs.3 and4 we compare the

quantity∂2|u|2/∂x2 (recallu is the nondimensional electric field given by Eq.(18)), in the initial

state (Fig.3) and in a state where a pulse has formed (Fig.4). The simulation was run for the same

3 We observed pulse formation even for values of(s/q) < 0.01, but it occurs over proportionally longer times, which are outside the physically

relevant range (21b).
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Figure 3. Quantities proportional to the intensities of the electricfield (a) and radiation (b) in the initial state (t = 0). Simulation parameters are
the same as in Fig.2, except that the computational spectrum is three times broader. Only part of the spatial computational domain is shown for
clarity.

parameters as in Fig.2, except that, in order to resolve a high-wavenumber ripple in Fig. 4, we

used a three-time wider spectral window and a correspondingly smaller time step (see Appendix

A). Since the time of formation of an intense pulse is sensitive to the initial condition (and hence

the computational spectrum), in Figs.3 and 4 it is different from that in Fig.2.

A comparison of Fig.3(b) and Fig.4(c) shows a more than three-order of magnitude increase

of the radiation’s intensity. It is important to note that this increase occurs due to two separate

reasons: first, formation of a pulse whose amplitude, i.e.max |u|, is an order of magnitude greater

than that of the initial field (compare Fig.3(a) to Fig.4(a)), and second, existence of a highly

oscillatory ripple “on top" of the pulse (see Fig.4(b)). The spatial period of this ripple is about an

order of magnitude smaller than unity, which adds approximately two orders of magnitude to the

size of the second derivative of|u|2 (see Fig.4(c)).

The wavelength of the rippleδxripple “on top" of the intense pulse is explained by the spectrum

of the field: see Fig.4(d). Specifically, the “bulk" of the pulse corresponds to the“solitonic" spec-

tral peak located atk ≈ −80 in that figure. On the other hand, “remnants" of the initial field have

k ≈ 0. Thus, the intensity of the superposition of these two partsof the field, i.e.

|u|2 ≈
∣∣A1e

−i80x + A2e
i0x

∣∣2 = (|A1|2 + |A2|2) + 2|A1||A2| cos(80x+ φ), (24)

has the approximate wavelength of the ripple as,δxripple = (2π)/80 ≈ 0.07. (In (24), A1, A2,

andφ are some constants.) This wavelength is the smallest scale of a coherent structure inside the

intense solitonic pulse and is clearly visible in Fig.4(b) and4(c). In section 7 we will demonstrate

that while this structure is “short-lived" compared to the pulse itself, it still can be a source of

coherent emission.

Thus, we have found two types of structures that emerge from an initially disordered state of
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Figure 4. Same simulation as in Fig.3, but att = 66, after an intense pulse has formed and “matured". Panel (a) is acounterpart of that in Fig.3.
Panel (b) is a close-up of (a) focusing on the vicinity of the pulse. Panel (c) is a counterpart of Fig.3(b). Panel (d) shows part of the Fourier spectrum
of the numerical solution.

electric field in the pulsar plasma: (i) an intense pulse of the envelope of Langmuir waves and

(ii) a “ripple" on top of this pulse. We will conclude this subsection with an estimation of their

characteristic spatial scales and the corresponding frequencies that they can emit. We will begin

with the intense pulse and use the parameters reported for, and shown in, Fig.4. In dimensional

units, the width of the pulse,δχpulse, ◦ , in the OFR can be estimated as follows. First, since the

nondimensional time that it takes the intense pulse to form is t ≈ 60 ∼ 100, then (21b) implies

thatθ ∼ 103. Using this value andωp ∼ 4 × 109 Hz in Eqs. (17) and a valueγp ∼ 102 to convert

between the OFR and MFR variables, one obtains:

δχpulse, ◦ = δχ/γp = lθδxpulse/γp ∼ 3×108 m · s−1/(4×109 s−1) ·103 ·1/102 ∼ 70 cm. (25a)

This corresponds to the radiation’s frequency of aboutc/δχpulse, ◦ ∼ 400 MHz and thus falls in

the mid-range of the spectrum of observed pulsar coherent radio emission, which extends from

several tens of MHz to a few GHz. Let us note that this estimatecan go down by a factor of two or

so if one allows for the possibility that the radiation is emitted from altitudesRem that are lower
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P
P
P
P
P

P
(s/q)

Q 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

0.05 40 30 20 12 6.1 5.8 4.0 3.0 3.4 2.9 2.0 1.8 1.5
0.10 21 11 7.5 5.5 4.4 3.5 3.0 3.5 2.8 2.1 2.0 1.6 1.5

Table 1.Evolution timest4× that it takes the pulse’s amplitude to exceed four times the average amplitude of the initial state. The initial condition
(23) has parametersr = 0.9 andlcorr = π. All simulations use the same seed of the random number generator, leading to the same initial pulse
profile. Since details of the pulse evolution depend on the (randomly chosen) initial profile, the timest4× are listed only to two significant figures,
which suffices to illustrate the general trend.

than the value of500 km assumed in (12c); see the paragraph before Eq. (18). Similarly, since the

nondimensional wavelengthδxripple of the ripple on top of the pulse is seen to be about an order

of magnitude smaller, then

δχripple, ◦ ∼ 7 cm, (25b)

and the corresponding frequency is about 4 GHz. In the next subsection we will show that both

frequencies following from estimates (25) may go down by about an order of magnitude if one

assumes a higher value of the nonlinearity coefficient. In section 7 we will further discuss the

relevance of our numerical observations to the problem of coherent emission by change bunches

in plasma.

Having presented our main findings, we now describe how the formation of an intense pulse is

affected by the physical parameters of the governing equation (20).

6.2 Dependence of pulse formation onQ

Predictably, as one increasesQ without changing other parameters in (20), the field evolution

due to nonlinear terms (both pure cubic and Landau damping ones) occurs faster, and the time

required for the pulse formation decreases. This is illustrated in Table1, where we list the times

t4× that it takes the pulse’s amplitude,maxx |u|, to exceed an arbitrarily set threshold of 4, which

is four times the average amplitude of the initial state (23). These times are seen to decrease with

the increase ofQ, as expected. At the same time, we found that the spatial scale of the intense

pulse is not significantly affected byQ. This fact will play a role in the forthcoming estimate of

the dimensional wavelength and frequency of the coherent radio emission that such a pulse can

generate.

Namely, we can accept that the distance∆R that it takes for the instability in the secondary

plasma cloud to lead to formation of an intense pulse is givenby (12b); then thedimensionaltime

of pulse formation continues to be given by (21a). In such a case, the decrease in thenondimen-

sional time, seen in Table1 asQ increases, implies thatθ takes on values from the upper part

of its range, e.g.,θ ∼ 104: see (21b). Now, for a greaterθ, a given nondimensional spatial scale
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corresponds to a greater dimensional scale: see (17). Thus, asQ increases, the dimensional scale

of both the solitonic pulse and the fine structure on top of it can go up by an order of magnitude

compared to (25). Consequently, the frequencies of the coherent emission can be found in the

range from several tens to several hundreds of MHz for the pulse and the “ripple", respectively.

We should be careful to note that this is only one interpretation of the observed decrease oft4×

with Q; other interpretations may be possible. For example, one can assume that the increase of

Q implies that the Langmuir turbulence in the plasma cloud is so strong that the formation of an

intense pulse occurs not over 500 km, as in (12b), but much sooner, say, over 100 km. In this case,

both θ in (21b) andR50 in (8) would change compared to their values in (25). However, a more

detailed analysis of such a possibility is outside the scopeof this study.

Coming back to Table1, we note that for the two different values of the Landau damping

coefficient(s/q), the most pronounced decrease oft4× occurs for a higher range ofQ values for

the smaller(s/q): for Q ∈ (0.4, 1.0) for (s/q) = 0.05, and forQ ∈ (0.3, 0.5) for (s/q) = 0.10.

For both values of(s/q), the decrease oft4× significantly slows down forQ values above those

respective ranges.

In the next subsection we will discuss other changes in the pulse evolution that occur with

changing the Landau damping coefficient(s/q).

6.3 Dependence of pulse formation on(s/q)

The expected effect of varying the Landau damping coefficient is that the formation time of an

intense pulse decreases as(s/q) increases. However, and perhaps less expectedly, an increase of

Landau damping beyond a certain point begins to have less effect on the speed of the pulse for-

mation. This can be seen from the data reported for larger values of(s/q) in Table2. Moreover, at

least four other changes occur with the increase of Landau damping. First, the shape of the pulse

becomes visibly asymmetric, with a “tail" forming behind the pulse; see Fig.5(a). Second, this

change in the shape is accompanied by a decrease of the amplitude of the “matured" pulse; com-

pare Fig.5(a) to Figs.4(a,b). Third, the intensity of the radiation emitted by the pulse decreases,

whereas its wavelength increases: compare Fig.5(b) to Fig.4(c) and note that respective horizontal

and vertical scales are different. These effects are manifested in the Fourier space as follows: (i)

the spectral peak corresponding to the intense pulse is now much less prominent over a spectral

“plateau" that is observed immediately on its right side, and (ii) “remnants" of the initial field

with spectral components neark = 0 have been considerably reduced for the larger value of(s/q).
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❳
❳
❳
❳

❳
❳
❳
❳

(Q; lcorr)
(s/q) 0.01 0.02 0.04 0.06 0.08 0.10 0.13 0.16 0.20

(1; π) 14 8.0 4.5 4.1 3.5 3.4 3.1 3.0 2.6
(1; 1) > 100 65 32 27 16 12 12 9.2 9.4
(2; 1) 30 14 11 7.0 6.1 4.6 3.5 2.5 4.4

Table 2.Dependence of the timest4× on the Landau damping coefficient. The initial condition for each simulation is the same and hasr = 0.9.
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Figure 5. Same simulation parameters as for Fig.4, but for a larger value of Landau damping(s/q) = 0.15. Solution at two times are shown to
illustrate slow evolution of the field’s spectrum for largervalues of(s/q). The two times are chosen so that the locations of the intense pulse would
nearly coincide, to facilitate visual comparison of the two pulses. Only part of spatial and spectral domains is shown for better visibility.

Thus, the spectrum of the field is considerably narrower for the larger values of Landau damping.

Finally, and perhaps unexpectedly, the shift of the spectrum occurs much slower for larger values

of (s/q). Specifically, the pulse shown in Fig.5 for (s/q) = 0.15 forms aroundt = 25, whereas

that shown in Fig.4 for (s/q) = 0.05 forms aroundt = 50. The spectrum of the latter pulse

approaches the left edge of the computational domain (i.e.,−kmax ≈ −600 in this case) already

for t = 75, by which time the numerical solution becomes invalid (see the beginning of section6).

On the contrary, the spectrum of the pulse for(s/q) = 0.15 is seen not to reach even one half of

the computational spectral window byt = 100.

For completeness, we also verified that as(s/q) increases to become of order one, a pulse no

longer forms. Instead, a “step" with an oscillatory “tail" is formed. The spectrum of this solution

is approximately flat at the top, with the top’s width increasing with time.

6.4 Dependence of pulse formation onlcorr

The effect of the spatial scale of the initial condition on the field evolution is predictable, at least

withing some range. Namely, aslcorr decreases, the effect of the dispersive termuxx in Eq. (20)

increases compared to that of the nonlinear term. Thus, having a smallerlcorr in the initial condi-

tion is, essentially, similar to having a smallerQ: it delays pulse formation. This is confirmed by

comparing the first and second lines in Table2, which show the effect of decreasinglcorr. In com-

parison, the third and second lines of the same Table show that a similar effect of pulse formation

delay occurs whenQ is decreased, as has already been noted in section 6.2.
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Figure 6. (a) Typical dependence of the pulse formation time on the shareof the random component in the initial field. Parameters are:lcorr = 1
and(s/q) = 0.05. To generate the random part of the initial condition, we used the same seed of the random number generator for allr. (b)
(Color online) Fourier spectra illustrating the evolutionof an initial random state (r = 1.0) into an intense pulse, as explained in the text;Q = 1.
Only part of the spectral domain is shown for better visibility of details.

6.5 Dependence of pulse formation onr

Finally, we investigated how the “degree of randomness" of the initial state affects the pulse for-

mation. Initially, we expected that the formation times would increase with the share of the random

component in the initial state. However, in numerical experiments we observed that while those

times indeed initially increase withr, they reach a maximum aroundr = 0.5 and then begin to

decrease. Representative results are shown in Fig.6(a). We observed qualitatively the same results

for several other values of parametersQ and(s/q) than reported in Fig.6, as well as for a differ-

ent initial random state (controlled by the seed of the random number generator in the numerical

code).

In Fig. 6(b) we show different stages of the field evolution, which were found to be similar for

all r & 0.4. Initially, Landau damping leads mostly to a (rather slow) shift of the field’s Fourier

spectrum, with only minor changes of the spectrum’s shape; compare the curves fort = 0 and

t = 10. In physical space, the field appears disordered during thatstage. Then, the spectrum be-

gins to become noticeably narrower and asymmetric; it is shown att = 17, which is shortly before

the formation of an intense pulse. (Incidentally, the spectral narrowing corresponds to the increase

of the correlation length of the field, and, according to the previous subsection, this facilitates the

pulse formation.) Finally, an intense pulse forms within a relatively short time interval;4 see the

curve fort = 19 in Fig. 6(b). In the spectrum, the formation of a pulse corresponds tothe emer-

gence of a secondary peak aroundk ≈ −30, marked with a circle; compare it with Figs.2(b) and

4 In other simulations we observed that the duration of this timeinterval scales inversely proportional toQ, but seems to be rather insensitive to

(s/q) for sufficiently small values of that parameter.
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4(d). Once the pulse is formed, its height and width remain almost unchanged, until the numerical

solution loses its validity due to a significant part of the spectrum shifting near the left edge of the

spectral window (see section 6.1.1).

7 SUMMARY AND DISCUSSION

We have addressed the open problem of explaining a mechanismof coherent curvature radio emis-

sion by the electron–positron plasma in pulsar magnetosphere. As the mathematical model of this

phenomenon we considered the generalized nonlinear Schrödinger equation (NLSE) proposed by

Melikidze et al.(2000) (MGP00), which includes effects of group velocity dispersion, nonlinearity

of electric susceptibility, and resonant interaction between Langmuir waves and plasma particles

(Landau damping). In the absence of Landau damping, the (pure) NLSE can, in principle, sup-

port solitons, which in the plasma would be manifested as charge bunches that propagate stably

and therefore are capable of emitting coherent radiation. However, formation of solitons in the

pure NLSE requires that initially, the Langmuir wave have the envelope that is either localized or

has several well-separated localized “bumps". It is only then that charge solitons could form and

maintain their shape for a sufficiently long time to radiate coherently. There is no reason to expect

that such a special initial condition of Langmuir waves would exist in a disordered pulsar plasma.

Then, it is known that evolution of adisordered initial statein the pure NLSE leads to an ensemble

of strongly interacting pulses, which constantly appear, disappear, and change their shape due to

the interaction. Such a disordered, in both time and space, ensemble of pulses cannot be expected

to emit coherently.

Motivated by this failure of the pure NLSE to identify a candidate mechanism of coherent

emission, we numerically solved the NLSEwith the nonlinear Landau dampingterm, as derived by

MGP00. We found that for a range of realistic values of pulsarparameters, the presence of Landau

damping leads to the formation of an intense, soliton-like pulse out of an initially disordered

Langmuir wave. Such a stable pulse can emit coherently and thus is a reasonable candidate as a

source of coherent radio emission.

Moreover, two important notes about this pulse formation are in order. First, the Landau damp-

ing coefficient has to fall in a certain range (namely, the lower part of (22)). If it is too high, then

the intensity of the emerging pulse is lower, or a stable pulse may even not form at all; see section

6.3. On the other hand, if the Landau damping is too low, the pulse may not have the time to form
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during the stage when the charge density in the plasma cloud is sufficiently large to produce strong

radiation; see section 5.

Second, the intense pulse, formed for appropriate values ofthe Landau damping coefficient,

has an internal structure whose spatial scale can be about anorder of magnitude smaller than

the spatial extent of the pulse itself; see Fig.4(b). In this work we did not undertake an actual

calculation of the coherent emission by charged stable pulses; this clearly requires a separate

study. Without such a calculation, one cannot tell to what extent each of these structures: the

“bulk" solitonic pulse itself and the finer “ripple" on top ofit, contribute to the coherent emission.

It appears intuitively plausible that frequencies in the lower end of the observed spectrum (tens to

hundreds of MHz) are generated by the pulse as a whole, while frequencies from the higher end

(up to several GHz) are generated by the “ripple". This is because the spatial scale of the pulse is

about an order of magnitude greater than that of the “ripple";see sections 6.1.2 and 6.2. However,

a calculationof the spectrum emitted by such atwo-scalestructure of charges remains an open

problem.

Let us now demonstrate that while the “ripple" on top of the solitonic pulse keeps changing

its shape on a time scale that is small compared to the time scale where such a pulse exists,

those changes are still “slow enough" to allow the “ripple" to emit coherently in the range of

frequencies estimated in section 6.1.2 (several GHz), and even at lower frequencies. To that end,

note that in order for the “ripple" to be a source of coherent radiation, it must exist long enough

to guarantee condition (2a). Namely, the timeTb over which the shape of this “ripple" remains

mostly unchanged must be much greater than the periodTc of the coherent radio emission. Let

us demonstrate, using the illustrating example of Fig.4, that this is indeed the case. In Fig.7 we

show that the profiles of both the electric field’s intensity|u|2 and the ponderomotive force|u|2xx
are mostly preserved overt ≈ 0.01. Now, if t ∼ 100 corresponds to500 km (see section 5),

thenTb ∼ 0.01 corresponds to about50 m. Then, condition (2a) implies that the lower limit of

frequenciesωc is aboutc/(50 m) ∼ 10 MHz. This is consistent (within a two-order of magnitude

margin) with the value of several GHz mentioned after estimate (25b).

Note that since the solitonic pulse itself stably propagates overt > O(10) nondimensional

units, there is, for practical purposes, no lower limit fromcondition (2a) on the frequencies that it,

as a whole, can emit coherently.

Finally, let us note that since we had to use periodic boundary conditions in our numerical

simulations (see the preamble to section 6), we always observed that only one intense pulse forms

as a result of many collisions with smaller pulses. In an actual plasma cloud, where the pulse
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Figure 7. (Color online) Same quantities as in Fig.4(b),(c), respectively, but fort = 66.00, 66.01, 66.02. Line colors and styles are as shown in
the legend in panel (a). Thex-window is smaller than in Fig.4(b),(c) in order to make the details appear more clearly. In both panels, the centers of
the pulses at the different times are manually superimposed in order to clearly show the changes of the profile. (If a pulse moves without changing
its shape, its does not affect its ability to emit coherently.) We also observed that att = 66.10 the profile of the “ripple" has changed completely
relatively to that att = 66.00; the corresponding curves are not shown in order not to clutter the picture.

passes through it only once rather than repeatedly, many well-separated and long-living solitonic

pulses may form. Then, taking into account emission by this ensemble of stable charge bunches,

as opposed to by a single charge bunch, is yet another open problem.
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APPENDIX A: NUMERICAL METHOD FOR SOLVING EQ. (20)

We will present this method for equations of the form

iut + Lu+N = 0, (26)

whereL is a linear operator with spatially constant coefficients and N includes all other terms.

The generalized NLS (20) is a special case of (26), with L = ∂2/∂x2 andN being the entire

nonlinear term. Below we will label the Fourier transform of any quantity with an over-hat:

û(k, t) =
1√
2π

∫ ∞

−∞

u(x, t) e−ikxdx, u(x, t) =
1√
2π

∫ ∞

−∞

û(k, t) eikxdx.
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Similarly, L̂ ≡ L̂(k) and N̂ ≡ N̂ (k) will denote the Fourier symbols of operatorsL andN ,

respectively. For example, in (20), L̂ = −k2. Taking the Fourier tranform of (26) yields

iût + L̂û+ N̂ = 0. (27)

Solving this fromt1 to t2 as a linear inhomogeneous equation yields:

e−iL̂t2 û(t2)− e−iL̂t1 û(t1) =

∫ t2

t1

e−iL̂t′ iN̂ (t′) dt′, (28)

where we have suppressed the obviousk-dependence of variables. Thus, the linear term in (26) is

accounted for exactly by (28).

In Lakoba(2016) it was proposed to use the leap-frog scheme to discretize the integral on the

r.h.s. of Eq. (28) and thereby turn that equation into a numerical method. Theleap-frog scheme

is well-known to quasi-preserve5 theL2-norm of the numerical solution. Choosing it is, therefore,

appropriate for the wide class of equations (26) where this norm is conserved; the generalized NLS

(20) with Landau damping belongs to that class. It should also benoted that the leap-frog scheme

is explicit and hence easy to implement.

Within the leap-frog scheme, two versions of the discretization of the integral in (28) are still

possible. As discussed inLakoba(2016), one of them significantly distorts the solution’s spectrum

at the edges of the spectral computational window, while theother does not. For our purposes of

modeling Landau damping, which constitutes a transfer of energy from higher- to lower-k Fourier

harmonics (for(s/q) > 0), it is essential to have the spectrum undistorted at the edges. Therefore,

in this study we used the latter method, which was called IF-LF (integrating factor–leap-frog) in

Lakoba(2016).6 The form of the IF-LF method isLakoba(2016):

e−iL̂tn+1 û(tn+1)− e−iL̂tn−1 û(tn−1) = 2∆t e−iL̂tn iN̂ (tn) , (29a)

where∆t is the time discretization step. For the generalized NLS (20) this simplifies to:

eik
2∆t û(tn+1)− e−ik2∆t û(tn−1) = 2i∆t N̂ (tn) . (29b)

This method has accuracyO(∆t2) in time; the discrete Fourier transform yields an exponential

accuracy in space, provided that the solution with all its derivatives is continuous.

An extra step is now required to turn method (29) into a useful tool. Namely, if implemented

just as above, the method will become numerically unstable over a timetinst, which is on the

order of a hundred time units forQ = O(1). This numerical instability occurs for low-k Fourier

harmonics and is caused by a so-called “parasitic" solution, which is well-known to be engendered

5 i.e., possibly allow to fluctuate about the initial value, but not shift systematically
6 Let us note, in passing, that the other method, which distortsthe spectrum at the edges, has advantages over the IF-LF in numerical stability.
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by the leap-frog scheme. As discussed inLakoba(2016), for Q < 0 this instability is essentially a

linear, modulational-type instability. On the other hand,for Q > 0, the instability is nonlinear and,

to our knowledge, was first analyzed inBriggs et al.(1983); Sloan & Mitchell(1986). A method to

suppress the instability caused by the “parasitic" solution was demonstrated and extensively tested

in Lakoba(2016). It consists of averaging the solution everytstab time units, with∆t ≪ tstab ≪
tinstab, in a way that distorts the solution by a negligible amount. In this study, we usedtstab = 1.

We will now describe the aforementioned averaging procedure which we used to stabilize the

numerical solution.

Denotev̂n = ûne
ik2 tn ≡ ûne

ik2 n∆t. Note that (29b) is then rewritten as:

v̂n+1 − v̂n−1 = 2i∆t eik
2 tn N̂ (tn) , (30)

whereN̂ (tn) depends on̂vn. Suppose one has computed the solution up to timetn+3 inclusively.

Using the solution computed in the last eight time steps, do the following. First, find the average

at t = tn:

v̂n =
11

64
v̂n +

15

64
(v̂n−1 + v̂n+1)−

3

32
(v̂n−2 + v̂n+2) +

1

64
(v̂n−3 + v̂n+3). (31a)

One can verify that|v̂n − v̂n| = O(∆t6). Next, repeat this fort = tn−1:

v̂n−1 =
11

64
v̂n−1 +

15

64
(v̂n−2 + v̂n)−

3

32
(v̂n−3 + v̂n+1) +

1

64
(v̂n−4 + v̂n+2). (31b)

Finally, usev̂n and v̂n−1 to restart the IF-LF method (30) by replacing, on the l.h.s.,̂vn−1 with

v̂n−1 and, on the r.h.s.,̂vn with v̂n. As demonstrated inLakoba(2016), this procedure suppresses

the numerical instability while introducing only negligible dissipation to the solution. A logical

flow-chart for implementing this stabilizing averaging in Matlab is found at:

http://www.cems.uvm.edu/~tlakoba/recent_publications/stabilization_step_Eq28

_logical_flowchart.txt.

The IF-LF method with a stabilization step based on (31) needs to use a time step∆t satisfying

∆t < ∆x2/π ≡ π/k2
max (32)

in order to guarantee numerical stability of high-k Fourier harmonicsLakoba(2016). In simula-

tions reported in this study, we used the spatial domain of lengthL = 40π andN = 213 equally

spaced grid points; this corresponds to∆x ≈ 0.0153 andkmax ≈ 205. According to (32), the

threshold for high-k numerical stability is∆tthresh = 7.5 × 10−5, and we used∆t = 5 × 10−5 in

all simulations.
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APPENDIX B: LIST OF NOTATIONS AND ACRONYMS USED THROUGHOUT THE

TEXT

α = (+) or (−): labels positrons or electrons, respectively, in secondary plasma.

Bd: dipolar component of magnetic field.

Bs: magnetic field on surface of pulsar.

b = Bs/Bd.

c: speed of light in vacuum.

∆γ = |γs, (+) − γs, (−)|: difference between mean Lorentz factors of positrons and electrons in

secondary plasma.

∆R: distance along magnetic field lines where Langmuir turbulence is thought to be strong

enough to lead to formation of coherent structures in chargedensity.

∆V : potential drop across vacuum gap.

E‖: envelope of Langmuir wave.

E0: typical magnitude ofE‖ at a distanceRonset.

e: charge of electron (e > 0).

fα: momentum distribution function of typeα particles in secondary plasma.

γb ∼ 2× 106: average Lorentz factor of primary plasma beam particles.

γp ∼ 102: average Lorentz factor of electrons and positrons in secondary plasma;γ2 = γp/10
2.

γα, γT : mean and standard deviation of Lorentz factorγ in the secondary plasma of typeα

particles.

h & 103 cm: height of the vacuum gap above the polar cap.

G: group velocity dispersion coefficient in NLSE (13).

Gd: related toG by (14).

κ = np/nb ∼ 104; κ4 = κ/104.

λl: Langmuir wavelength in OFR.

λp: Langmuir wavelength in MFR at some reference location (aroundR ∼ 50Rs).

L: nondimensional length of the computational domain used insection 6.

l = c/ωp: characteristic scale of Lamgmuir waves in MFR, used for normalization in section

5.

lcorr: nondimensional correlation length of random field in initial condition (23a) for Langmuir

wave.

me: mass of electron.
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MFR: moving frame of reference.

nGJ : Goldreich–Julian density.

nb, np: density of electron-positron pairs in primary and secondary plasma, respectively.

NLSE: nonlinear Schrödinger equation.

Ω = 2π/P : angular frequency of pulsar (nondimensional).

ωl ∼ 4× 1011 Hz: Langmuir frequency (in OFR).

ωp ≈ ωl/γp ∼ 4× 109 Hz: Langmuir frequency (in MFR) at some reference location (around

R ∼ 50Rs).

OFR: observer frame of reference.

P ∼ 1: period of pulsar rotation (in seconds).

Ṗ : rate of pulsar slow-down (nondimensional);Ṗ−15 = Ṗ /10−15.

pα, pT : mean and standard deviation of the momentum distribution functionfα in the sec-

ondary plasma.

q: dimensional nonlinearity coefficient in NLSE (13).

qd: related toq by (15).

Q: nondimensional nonlinearity coefficient in NLSE (20).

ρ ∼ 106 cm: curvature radius of magnetic field lines in the vacuum gap; ρ6 = ρ/(106 cm).

Rs: radius of pulsar (assumed to be 10 km in this paper).

R: distance from pulsar;R50 = R/(50Rs) ∼ 1.

Rem: distance from the pulsar where coherent radio emission takes place.

Ronset ∼ 200 km: distance from the pulsar where Langmuir turbulence is thought to begin to

develop.

r: relative part of random field in initial condition (23a) for Langmuir wave.

s: coefficient of nonlinear Landau damping in NLSE (13).

(s/q): magnitude of nonlinear Landau damping relative to pure cubic nonlinearity in NLSE.

sd: related tos by (16).

θ: ratio of the characteristic scales of the envelope and carrier of the Langmuir wave, defined

after (17); θ ∼ 103 . . . 104.

τ, τ◦: dimensional time variables in MFR and OFR, respectively; their relation is given after

(13).

t: nondimensional time in MFR, related toτ by (19).

t4×: time that it takes amplitude of intense pulse to exceed fourtimes average amplitude of

initial state; see section 6.2.
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u: nondimensional envelope of Langmuir wave; see (18).

χ, χ◦: dimensional spatial variables along magnetic field lines in MFR and OFR, respectively;

their relation is given after (13).

x: nondimensional space variable in MFR, related toχ by (17).
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