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Abstract

Stability properties of the well-known Fourier split-step method used to simulate a soliton and

similar solutions of the nonlinear Dirac equations, known as the Gross–Neveu model, are studied

numerically and analytically. Three distinct types of numerical instability that can occur in this

case, are revealed and explained. While one of these types can be viewed as being related to the

numerical instability occurring in simulations of the nonlinear Schrödinger equation, the other two

types have not been studied or identified before, to the best of our knowledge. These two types

of instability are unconditional, i.e. occur for arbitrarily small values of the time step. They also

persist in the continuum limit, i.e. for arbitrarily fine spatial discretization. Moreover, one of them

persists in the limit of an infinitely large computational domain. It is further demonstrated that

similar instabilities also occur for other numerical methods applied to the Gross–Neveu soliton, as

well as to certain solitons of another relativistic field theory model, the massive Thirring.
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1 Introduction

The split-step, or operator-splitting, method (SSM) is one of the most widely used numerical tools

to model evolution of linear and nonlinear waves. It is explicit (hence straightforward to code),

has a number of desirable structure-preserving properties (e.g., preserves the L2-norm exactly in

Hamiltonian systems and is symplectic), is easy to implement with the 2nd-order accuracy in time

[1], and allows algorithmic extensions for higher-order accurate implementations [2–5]. The idea of

the SSM for wave equations is to account for linear terms with spatial derivatives, on one hand,

and for all other terms, on the other hand, in separate substeps, where each of these substeps can

be performed more efficiently than a step corresponding to the full evolution. A popular method

to implement the substep accounting for linear terms with spatial derivatives is via (fast) discrete

Fourier transform and its inverse; hence the name ‘Fourier’ (or ‘spectral’) in the corresponding

version of the SSM. A vast body of literature exists on just the Fourier version of the SSM, not to

mention its other (e.g., finite-difference) versions. In what follows we will consider only the Fourier

SSM and therefore will omit the modifier ‘Fourier’ unless a different version of the SSM will be

referred to. A (far from complete) list of application of this numerical method, focusing only on

nonlinear Hamiltonian systems, includes: the nonlinear Schrödinger equation (NLS) [6, 7]

iut + uxx + |u|2u = 0 ; (1)

Gross–Pitaevskii equation (i.e., NLS with a potential term) with a magnetic field term [8]; Vlasov–

Poisson equations [9]; nonlinear Dirac equations in one spatial dimension [10]

ψ1, t + ψ2, x = i (|ψ1|2 − |ψ2|2 − 1)ψ1,

ψ2, t + ψ1, x = −i (|ψ1|2 − |ψ2|2 − 1)ψ2 ;
(2)

generalized Zakharov equations [11, 12]; and Korteweg–de Vries equation [6].

Since the SSM is an explicit method, it can be only conditionally stable. Its numerical (in)stability

was extensively studied for the NLS in one spatial dimension. In [13], the von Neumann analysis

was applied to the SSM simulating a solution close to the plane wave, and the (in)stability threshold

and the instability growth rates were found. Specifically, the instability threshold in this case is:

∆tthresh = ∆x2 / π, (3)

where ∆t and ∆x are discretization steps in time and space. The quadratic dependence in (3) is a

consequence of the “resonance”, or “phase matching”, condition

ω∆t = πn, n ∈ N, (4a)

and the dispersion relation of the linear part of the NLS:

ω = k2, (4b)

where ω is the frequency and k ∈ [−kmax, kmax) is the wavenumber;

kmax = π/∆x. (4c)
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Long-term behavior of the solution obtained by the SSM for the NLS with small and localized

initial data was studied in [14] by the modulated Fourier expansion and in [15] by the Birkhoff

normal form analysis. In [16], stability of the near-soliton (i.e., localized, not small-norm) solution

was considered by a modified equation technique. While the instability threshold for the near-

soliton solution is still given by (3), the instability growth rate was found to be significantly smaller

than that for the plane-wave case.

Given the wide popularity of the SSM for NLS-type models, it is not surprising that it was also

used extensively in studying solutions of the Gross–Neveu model (2). In numerical simulations of

[17–19], SSM’s performance for this model was favorably compared to that of other methods. In

recent studies [20, 21], it was shown that the SSM is capable of resolving distinctly different scales,

i.e., of efficiently obtaining highly-oscillatory solutions, that occur in the non-relativistic regime of

(2). This method was also studied in [22] for the massive Thirring model, which is closely related

to (2). In Section 7 we will show that there are close similarities not only in the analytical, but also

in the numerical, solution of the two models. The equations of Bragg solitons in nonlinear fiber

optics, which are an extension of the Thirring model and thus are also mathematically related to the

Gross–Neveu model, have been also often simulated by the SSM (see, e.g., [23–26]). It is relevant

to note that this method is also widely used in simulations of linear Dirac–Maxwell systems; see

the original paper [27] and a recent study [28].

Despite this significant activity, stability of the SSM for the Gross–Neveu (or any other nonlinear

spinor) model was studied analytically only in [10]. However, the instability threshold obtained

therein appears to contradict both our analysis and numerical evidence, presented in Sections 4

and 3.1, respectively. On the other hand, in [17–19] it was stated without a proof that the SSM is

unconditionally stable for the Gross–Neveu model. While this may be correct for some small-norm

solutions, it is not correct for essentially nonlinear solutions, such as the soliton.

In this work, we show analytically and verify by extensive numerical simulations that the 2nd-

order SSM applied to the soliton of nonlinear spinor models, including the Gross–Neveu model (2),

can exhibit unconditional numerical instability (NI) via two distinctly different mechanisms. Not

only does this NI persist as ∆t → 0, but it is also not suppressed by taking ∆x → 0. Thus, no

matter how fine a discretization in both space and time one uses, the numerical solution of (2)

by the SSM will eventually become invalid. Moreover, for one of the two mechanisms, the NI is

also not suppressed by taking an increasingly large computational window. For a certain range of

the soliton parameters, this NI is strong enough to destroy the solution even over moderately (as

opposed to very) long times. We will also show that this NI can occur for other nonlinear spinor

models, as well as for other numerical methods applied to such models.

It should be noted that numerical instabilities of the Gross–Neveu soliton have previously been

reported [29, 30] by methods other than the SSM. The main differences between our work and

those studies are in that: (i) we reveal the mechanisms (i.e., the forms of coupling between

different Fourier modes) via which NI can occur, and (ii) we systematically study the dependence

3



of NI’s characteristics on the computational parameters, such as ∆t, ∆x, and the computational

domain length L. Further differences will be discussed in Section 8.

Our analysis of the unconditional NI mechanisms for the Gross–Neveu solitons will be semi-

numerical. That is, while we will be able to identify how coupling among different Fourier modes

can drive them towards NI, the corresponding equations will turn out to be too complicated to

allow analytical treatment and therefore have to be solved numerically. We believe that this is still

valuable for at least two reasons other than the conceptual reason of understanding NI mechanisms,

which can also appear in other models and numerical methods. First, our analysis allows us to

obtain the dependence of the most important NI parameter — its growth rate — on the parameters

of the simulated solution and of the numerical scheme in a matter of seconds or at most minutes,

whereas direct numerical simulations by the SSM may take hours (when one considers limits such

as ∆t→ 0, ∆x→ 0, or L→∞). Second, knowing for what Fourier modes the NI arises, and how

its growth rate depends on the problem parameters, may help one to tell a NI from a true physical

instability. The latter does not occur for the soliton of (2) [31], but does occur in models with

nonlinearity higher than cubic (see, e.g., [29, 30]).

The main part of this paper is organized as follows. In Section 2 we will summarize relevant

facts about the soliton solution of the Gross–Neveu model. In Section 3 we will present simulation

results which illustrate manifestations of NI and thus will provide motivation for the analyses in

later sections. We will begin, in Section 4, by analyzing the possibility of a conditional NI, not

mentioned above. For that, we will derive a counterpart of an instability threshold (3) for the

Gross–Neveu model. However, unlike the NLS case, here we will show that even when the time

step exceeds such a “threshold”, high-k Fourier modes near the corresponding “resonant” value kπ

will not grow exponentially unless the soliton is subject to a low-k instability (whether physical or

numerical).

In Section 5, we will analyze the unconditional NI that occurs near the edges of the computa-

tional spectral window. In Section 6 we will analyze a different kind of unconditional NI, whereby

all modes sufficiently remote from the spectral window’s edges and from k ≈ 0 become exponen-

tially unstable. In order to carry out the analyses in these two sections, we have to assume that the

background solution is a single soliton, perturbed infinitesimally. In Section 7 we will demonstrate

that the unconditional NIs occur in a significantly wider variety of applications than the specific

problem analyzed in those sections. Namely, we will show that these NIs can be observed when

the background solution is of a more general form than a single soliton, when the SSM is applied

to models similar to, but other than, the Gross–Neveu, and that they are also observed in other

popular numerical methods applied to such models. We also briefly discuss how such NIs can be

suppressed. In Section 8 we present conclusions of this study and discuss the relation of its findings

with those of [29, 30]. The reader who is not interested in technical details, may read only Sections

2, 3, and 8.

Since our numerical results pertaining to unconditional NIs of the SSM may appear counter-
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intuitive to the reader, in Appendix A we present a short Matlab code that can be used to reproduce

all of the reported results for the SSM and the Gross–Neveu soliton. In Appendix B we discuss in

some detail the issue of “fragility” of the Gross–Neveu soliton, introduced in Section 2. Appendices

C and D contain technical results related to the analysis in Sections 5 and 6, respectively.

2 Soliton solution of the Gross–Neveu model and its stability

The standing soliton solution of the Gross–Neveu model (2) is [33]:

ψ1 = Ψ1(x) e−iΩt, ψ2 = Ψ2(x) e−iΩt, Ω ∈ (0, 1); (5a)

Ψ1(x) =

√
2(1− Ω) cosh(βx)

cosh2(βx)− µ2 sinh2(βx)
; Ψ2(x) = iµ tanh(βx) Ψ1(x); (5b)

with β =
√

1− Ω2 and µ =
√

(1− Ω)/(1 + Ω). Representative members of this family for different

values of Ω are shown in Fig. 1.
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Figure 1: Components Ψ1 (a) and Ψ2 (b) of soliton (5). By symmetry, Ψ1(−x) = Ψ1(x) and

Ψ2(−x) = −Ψ2(x).

A soliton moving with velocity V ∈ (−1, 1) is obtained from (5) by a Lorentz transformation

(see, e.g., [34]):(
Ψ1,mov(x, t)

Ψ2,mov(x, t)

)
=

1√
2

( √
Γ + 1

√
Γ− 1

√
Γ− 1

√
Γ + 1

)(
Ψ1(xmov, tmov)

Ψ2(xmov, tmov)

)
, (6a)

where

Γ = 1/
√

1− V 2, xmov = Γ (x− x0 − V t), tmov = Γ (t− V (x− x0)) . (6b)

For future reference we present the Gross–Neveu equations linearized on the background of the

soliton (5). They are obtained by substitution of

ψ1,2 =
(

Ψ1,2(x) + ψ̃1,2(x, t)
)
e−iΩt,

∣∣∣ψ̃1,2

∣∣∣� 1 (7)
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into Eqs. (2) and discarding terms nonlinear in ψ̃1,2. Defining a vector ψ̃ = (ψ̃1, ψ̃2)T , one can

write the linearized Eqs. (4) in the form:

ψ̃t − iΩ ψ̃ + σ1ψ̃x = iP (x)ψ̃ + iQ(x)ψ̃∗ (8a)

where Pauli matrices are:

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
, (8b)

and P ≡
∑3

j=0 σjPj , Q ≡
∑3

j=0 σj Qj with:

P0 =
1

2

(
|Ψ1|2 + |Ψ2|2

)
, P1 = 0, P2 = Im (Ψ1Ψ∗2) , P3 =

3

2

(
|Ψ1|2 − |Ψ2|2

)
− 1 ; (8c)

Q0 =
1

2

(
Ψ2

1 + Ψ2
2

)
, Q1 = −Ψ1Ψ2, Q2 = 0, Q3 =

1

2

(
Ψ2

1 −Ψ2
2

)
. (8d)

In (8c) we have used the fact that Re(Ψ∗1Ψ2) = 0. Equation (8a) can be rewritten in another form

which will be convenient to refer to in what follows:(
ψ̃

ψ̃∗

)
t

= L

(
ψ̃

ψ̃∗

)
, L =

(
iσ0Ω− σ1∂x 0

0 −iσ0Ω− σ1∂x

)
+

(
iP (x) iQ(x)

−iQ∗(x) −iP ∗(x)

)
.

(9)

Let us note that in Eqs. (8) and (9) and everywhere below, a lower-case and upper-case boldface

letters indicate (2× 1) vectors and (2× 2) matrices, respectively.

An important issue for the study of the stability of the numerical method, which we will un-

dertake in subsequent sections, is the physical (as opposed to numerical) stability of the soliton

(5). By this we mean stability of the soliton of the original partial differential equation (2) (i.e.,

regardless of any numerical scheme) to small perturbations of its initial profile. This is often re-

ferred to as linear, or spectral, stability. To that end, we note that, on one hand, the soliton was

semi-analytically proved to be spectrally stable [31]. On the other hand, numerical simulations

by various methods detected a slow instability of an unknown origin [29] for Ω . 0.56 in (5). In

[32] we numerically demonstrated, by a non-Fourier SSM, that the Gross–Neveu soliton is linearly

stable, as predicted semi-analytically in [31], for Ω ≥ 0.01 (and we had no evidence to suspect

that it could be unstable for smaller Ω). However, we also confirmed the observation of [29, 30]

that for sufficiently small Ω the soliton gets increasingly (as Ω decreases) “fragile” with respect to

small perturbations. According to numerical evidence, such a perturbation may be either due to

a permanently active driving source, such as the discretization error of the numerical scheme, or

due to the initial condition not being the exact soliton. (In the latter case, the soliton “sheds” the

excess field into dispersive radiation, which affects the soliton by passing through it.) The origin of

this empirically observed fragility is not presently understood. In Appendix B we present cursory

evidence that it is related to some instability of certain low-k Fourier harmonics, which may occur

due to the finite size of the computational domain. In this work we do not further discuss this

issue. However, two clarifications are in order.
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First, we will refer to solitons that exhibit such a fragile behavior as fragile, as opposed to

unstable. The latter term may trigger a confusion with linear instability, which would be incorrect,

given that the soliton is linearly stable (see above). The term ‘fragile’ is, admittedly, not con-

ventional in the mathematical literature, but it does accurately describe the empirically observed

soliton’s behavior. Namely, a fragile soliton may be destroyed relatively quickly by the presence of

a perturbation that is several orders of magnitude smaller than the soliton.

Second, it should be noted that the value Ω ≈ 0.56 reported in [29] is not to be regarded as

a sharp threshold between fragile and non-fragile behaviors. In Appendix B we present numerical

evidence that weakly fragile behavior occurs for the soliton with Ω = 0.75. We believe that there

is no sharp boundary between non-fragile and fragile behaviors, and whether one observes signs of

the latter depends on Ω, L, and the computational time. We therefore arbitrarily set Ω = 0.6 as

a mark separating the two types of behavior. For Ω = 0.6, one does not observe distinct signs of

fragile behavior for L & 100 and t . 10, 000, and thus we refer to the corresponding solitons as

non-fragile. Solitons with Ω < 0.6 will then be referred to as fragile.

3 Numerical examples motivating subsequent analysis

In the three subsections of this section we will provide results of numerical simulations that demon-

strate three different types of behavior of the SSM applied to the Gross–Neveu soliton (5) which

have not been observed for the NLS soliton.

In all simulations reported below we used the 2nd-order SSM, for which the evolution over one

time step has the form:(
ψ1

ψ2

)
(x, t+ ∆t) = exp

[
i(∆t/2)D

]
exp

[
i∆tN

]
exp

[
i(∆t/2)D

] ( ψ1

ψ2

)
(x, t), (10)

where D is the spatial-derivative operator on the left-hand side (l.h.s.) of (2) and N is the operator

on the r.h.s. of that system. As stated in the Introduction, here D is implemented via discrete

Fourier transform (15). The initial condition is taken as the soliton plus a white noise of size

∼ 10−12 in the x-domain.

3.1 Linear numerical instability is not inevitable for ∆t > “∆tthresh”

To put the forthcoming results in context, we note that the same logic that led one from Eqs. (4)

to (3), along with the asymptotically (for large k) linear dispersion relation

ω = ±k (11)

of (2), suggests that the NI threshold for the Gross–Neveu model should be

∆tthresh = ∆x . (12)

Below we will show that this is not always the case.
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In Fig. 2 we report simulation results for a non-fragile soliton with Ω = 0.75 (see Fig. 1). Other

parameters are: domain length L = 20π; number of grid points N = 216, so that ∆x ≈ 9.6 · 10−4;

and simulation time tmax = 10, 000. (An explanation for using such a small ∆x is found in the next

paragraph.) Figure 2(a) shows that when ∆t < ∆x, no sign of NI is observed. When we increase

∆t to fall in the interval (n∆tthresh, (n+ 1)∆tthresh), where ∆tthresh is defined by (12) and n ∈ N,

we observe (see Figs. 2(b)–(d)) 2n spectral peaks around wavenumbers ±kπ, . . . ,±knπ, where

knπ = nπ/∆t; (13)

see Section 4 for a derivation. However, these peaks grow not exponentially in time, but only

linearly. We verified this fact for several different sets of (Ω, L,∆x,∆t). We were unable to explain

the origin of these peaks and therefore will not discuss them below. However, we emphasize that

due to their linear, as opposed to exponential, growth, they do not present a real problem for any

but extremely long-time (on the order of many million time units) simulations.
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Figure 2: Numerical solution’s spectrum for the initial soliton with Ω = 0.75 (non-fragile).

Simulation parameters are listed in the text, and: (a) ∆t = 0.9∆tthresh ≡ 0.9∆x; (b)

∆t = 0.005 & 5∆tthresh; (c) ∆t = 0.2 & 200∆tthresh. Panel (d) is a magnified view of (c),

presented in order to show details of the spectrum near the soliton’s spectral location. In (a) only,

the red curve shows the spectrum of the initial condition. In all figures in Section 3.1 we do not

show results for the ψ2-component because they are similar to those for the ψ1-component.

The purpose of Fig. 2(c) is to present evidence that the stability threshold ∆tthresh = O(
√

∆x),
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stated in Corollary 3.5 of [10], is likely incorrect. Indeed, for ∆t = 0.2 used to obtain Fig. 2(c),

∆t/
√

∆x ≈ 6.5, but no trace of exponentially growing harmonics is seen. (It is this ability to

have the ratio ∆t/
√

∆x to significantly exceed 1 that made us choose ∆x to be as small as above.

Had one not needed to ensure that ∆t/
√

∆x > 1, then a much greater ∆x would have sufficed

to make the approximation error of the discrete Fourier transform in (10) negligible compared to

the splitting error O(∆t2) of the 2nd-order SSM.) While the numeric constant in front of ∆t/
√

∆x

was not specified in [10], it appears to be unlikely that it would be greater than 6.5, as in the case

reported in Fig. 2(c).

We will now show that NI near knπ does occur for ∆t > ∆tthresh if the background soliton is

fragile. We illustrate this in Fig. 3 for the soliton with Ω = 0.35 (see Fig. 1). In Fig. 3(a), where

∆t < ∆tthresh, the resonant wavenumber kπ is outside the computational domain, and hence no NI

can exist near it. The modes which appear at kmax (and which we verified to grow exponentially

in time) occur there for any ∆t, no matter how small, and hence are not related to the condition

∆t < ∆tthresh. We will discuss them in more detail in Section 3.2. In Fig. 3(b), where ∆t > ∆tthresh

and hence kπ < kmax, one observes two groups of modes on both sides of kπ which grow exponentially

in time: see Fig. 3(c). We discuss their relation to (weak) fragility of solitons in Appendix B.
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Figure 3: (a,b): Numerical solution’s spectrum for the initial soliton with Ω = 0.35 (fragile). (Only

the k > 0 part of the spectrum is shown for better visibility of details; the spectrum is symmetric

about k = 0.) Simulation parameters are: L = 40π; N = 212, so that ∆x ≈ 0.031; tmax = 1, 500;

and: (a) ∆t = 0.9∆tthresh ≡ 0.9∆x; (b) ∆t = 1.25∆tthresh. (c) Evolution of the amplitude of the

largest mode in the group circled in panel (b).

3.2 Unconditionally unstable modes near edges of spectral domain

As we mentioned in the previous paragraph, the modes referred to in the title of this subsection

can be observed when the soliton is fragile. We have verified that, for the parameters of Fig. 3(a),

such modes exist for ∆t as small as 10−4, i.e. ∆t < ∆x/300. In the analysis in Section 5 we will

show that, indeed, such modes persist for ∆t→ 0. As Ω increases, the growth rate of these modes

decreases, and vice versa. This is illustrated in Fig. 4(a); note the different simulation times.

Applying gentle absorbing boundary conditions, as described in [32], was found to suppress

these unstable modes for Ω = 0.35 and 0.50, but not for 0.20. This observation is explained by

Fig. 4(b), which shows that this mode becomes localized (albeit with slowly decaying ‘tails’) as Ω
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Figure 4: (a) Close-up on the spectrum near kmax. Note that simulation times were different, as

follows: t = 150 for Ω = 0.2; t = 1500 for Ω = 0.35, and t = 5000 for Ω = 0.5. Other simulation

parameters are: L = 40π, N = 212 (∆x ≈ 0.031), and ∆t = 0.01. (b) The shape of the unstable

modes in the x-domain, extracted from the results reported in (a) with a high-pass filter that

extends from k = 80 to k = kmax. The modes’ amplitudes are normalized to one. The notation

‖ · · · ‖ stands for the `2-norm of the corresponding two-component vector.

decreases. Clearly, absorbing boundary conditions can have only a relatively small effect on such a

localized mode.

Similarly to the NI for the NLS soliton [16], relatively small variations of L lead to substantial

changes of the modes’ growth rate. Moreover, they also lead to another unexpected behavior, which,

along with the changes mentioned in the previous sentence, is described in the next subsection.

3.3 Unconditionally unstable “noise floor”

The spectrum of the numerical solution in Figs. 2 and 3 away from the soliton looks like a “floor”.

It appears approximately level because so is the spectrum of the white noise, which is added to

the initial condition in all our simulations. Thus, we will refer to this part of the spectrum as the

“noise floor”. In this subsection we present numerical evidence that the “noise floor” as a whole

can also become unconditionally unstable.

In Fig. 5(a) we show part of the spectrum of the numerical solution for parameters that are

similar to those in Fig. 4: Ω = 0.35, N = 212, ∆t = 0.01 (< ∆tthresh/3), t = 1500, and four values

of L in the vicinity of 40π. These results demonstrate that relatively small variation of L can

suppress the growth of unstable modes near ±kmax and/or make the “noise floor” unstable. This

NI is unconditional: reducing ∆t to 0.001 left the results shown in Fig. 5 essentially unchanged. It

is also not affected by varying N (for the same L).

In Fig. 5(b) we demonstrate that the “noise floor” NI is exponential. For the purposes of

analysis in Section 6 we also show the growth of the same Fourier mode when instead of adding to

the initial condition a small white noise, one adds a small constant of the same order of magnitude

to each Fourier mode. The analysis forthcoming in Section 6 will explain the observed staircase

structure of the dashed curve in Fig. 5(b).
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Figure 5: (a) Part of the numerical solution’s spectrum focusing on the “noise floor”. Simulation

parameters are listed in the text, and the length of the computational domain is L = 40π + δL,

with the value of δL labeling the corresponding curve. Four possible combinations, with the “noise

floor” and the modes near kmax being (almost) stable or unstable, are shown. (b) Evolution of

the amplitude of the Fourier modes near k = 60 for the curve labeled with ‘4.2’ in panel (a). Solid

and dashed lines correspond to a small white noise or a constant, respectively, being added to each

Fourier mode in the initial condition.

4 Setup of analysis, and dynamics of Fourier modes near kmπ

The main results of this section are Eqs. (25) and (26). They govern the evolution of the Fourier

harmonics of a small and spectrally localized perturbation of the soliton with wavenumbers being

far from (Eqs. (25)) and near (Eqs. (26)) the resonant wavenumbers (13). Equations (26) explain

the numerical observations reported in Section 3.1. Moreover, the derivation steps carried out in

this section are later used in the analyses of Sections 5 and 6 for different types of perturbations.

Stability of the second-order SSM (10) is the same as that of the first-order one,(
ψ1

ψ2

)
(x, t+ ∆t) = exp

[
i(∆t)D

]
exp

[
i∆tN

] ( ψ1

ψ2

)
(x, t), (14)

because in the bulk of the calculation, the first and last D ∆t/2-substeps in (10) merge into one D
∆t-substep in (14). Therefore, below we study stability of the SSM (14). Stability of a higher-order

SSM can differ from that of the first- and second-order SSM [16]; however, this issue is outside the

scope of this study.

We will require the definition of an N -point discrete Fourier transform and its inverse:

F [f(x)] ≡ f̂(kl) =

N/2−1∑
j=−N/2

f(xj) e
−iklxj ; F−1[f̂(k)] ≡ f(xj) =

1

N

N/2−1∑
l=−N/2

f̂(kl) e
iklxj , (15)

with kl = l∆k ≡ 2πl/L. Following [16], we consider stability of a numerical perturbation whose

spectral content is localized near wavenumbers ±k0 for some k0 � 1, k0��≈ kmax. Thus, the solution

has the form (7), where the vector ψ̃{n}(x) ≡ ψ̃(x, n∆t), defined after that equation, is sought in

the form:

ψ̃{n}(x) = α{n}(x)eik0x + β{n}(x)e−ik0x. (16)
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Here we assume that the spectral width of α and β is of order one and hence is much smaller than

k0; therefore, the two terms in (16) are well separated in the Fourier space. Note that here and

everywhere below, the subscript in curly brackets, such as {n}, denotes the time level n∆t, whereas

subscripts without curly brackets denote either indices of Fourier harmonics, as in (15), or partial

differentiation, as in (1) or (2), depending on the context.

Substitution of (7) and (16) into (14), subsequent linearization, and taking the Fourier transform

result in:

|k−k0| = O(1) : F
[
α{n+1} e

ik0x
]
e−iΩ∆t = e−iσ1k∆tF

[
α{n}e

ik0x + i∆t
(
Pα{n} +Qβ∗{n}

)
eik0x

]
,

(17a)

|k+k0| = O(1) : F
[
β{n+1} e

−ik0x
]
e−iΩ∆t = e−iσ1k∆tF

[
β{n}e

−ik0x + i∆t
(
Pβ{n} +Qα∗{n}

)
e−ik0x

]
,

(17b)

where P and Q are defined in (8), and

e−iσ1k∆t ≡ σ0 cos(k∆t)− iσ1 sin(k∆t). (18)

Next, in (17a), one writes exp[−iσ1k∆t] = exp[−iσ1k0∆t] exp[−iσ1(k − k0)∆t] and takes the

inverse Fourier transform to obtain:

α{n+1} e
−iΩ∆t = e−iσ1k0∆t

(
α{n} −∆tσ1α{n}, x + i∆t(Pα{n} +Qβ∗{n})

)
+O(∆t2). (19a)

Indeed, since |k−k0|∆t� 1, we have approximated F−1
[

exp[−iσ1(k−k0)∆t]F
[
α{n} exp[ik0x]

] ]
by

F−1
[
(σ0 − iσ1(k − k0)∆t)F

[
α{n}e

ik0x
] ]

= α{n}e
ik0x−σ1(∂x−ik0)

(
α{n}e

ik0x
)

=
(
α{n} − σ1α{n}, x

)
eik0x

and ∆t exp[−iσ1(k − k0)∆t] by ∆t with accuracy O(∆t). Similarly, and omitting O(∆t2) terms,

one obtains from (17b):

β{n+1} e
−iΩ∆t = eiσ1k0∆t

(
β{n} −∆tσ1β{n}, x + i∆t(Pβ{n} +Qα∗{n})

)
. (19b)

Since k0 � 1, the factors exp[∓iσ1k0∆t] dominate the evolutions of αn and βn. Accordingly,

we use the standard perturbation theory approach and seek solutions of (19) in the form:

α{n} = e−inσ1k0∆t
(
a

(0)
{n} + a

(1)
{n}

)
, β{n} = einσ1k0∆t

(
b

(0)
{n} + b

(1)
{n}

)
, (20a)

where a
(0)
{n}, b

(0)
{n} vary with n slowly compared to exp[∓inσ1k0∆t], and{∣∣a(1)

{n}
∣∣, ∣∣b(1)

{n}
∣∣} = O

(
∆t ·

{∣∣a(0)
{n}
∣∣, ∣∣b(0)

{n}
∣∣}) ∀n . (20b)

Substituting (20) into (19a), multiplying both sides by exp[i(n+ 1)σ1k0∆t], and again discarding

O(∆t2) terms, one has:

a
(0)
{n+1}(1− iΩ∆t) + a

(1)
{n+1} = a

(0)
{n} −∆tσ1a

(0)
{n}, x + a

(1)
{n} + (21)

i∆t
[ (
P01 + e2i(n+1)σ1k0∆tP23

)
a

(0)
{n} +

(
Q01 + e2i(n+1)σ1k0∆tQ23

)
(b

(0)
{n})

∗
]
.
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Here Pjl ≡ σjPj + σlPl and similarly for Qjl, and we have used the identity

eiσ1s σj e
−iσ1s = e2iσ1s σj , j = 2, 3, (22)

which follows from the anti-commutation of σ1 with σ2,3. A similar equation holds for b(0),(1).

Subsequent analysis of these equations depends on whether k0 ≈ kmπ for some m ∈ N. To set

up analyses in Sections 5 and 6, we first consider the case where k0 6= kmπ (i.e., |k0 − kmπ| � 1).

Then terms in (21) which are proportional to a(0) and (b(0))∗ split into two groups: fast-oscillating

(proportional to exp[2i(n+ 1)σ1k0∆t]) and those varying slowly with n. If the latter terms do not

all cancel out, they will drive the a
(1)
{n}-term, which therefore will grow, and condition (20b) will

eventually be violated. To prevent this from occurring, one requires that all these slowly varying

terms cancel out, yielding:

a
(0)
{n+1}(1− iΩ∆t) = (σ0 −∆tσ1∂x)a

(0)
{n} + i∆t

(
P01a

(0)
{n} +Q01(b

(0)
{n})

∗
)
. (23a)

The remaining terms provide an equation for a(1):

a
(1)
{n+1} − a

(1)
{n} = ∆t e2i(n+1)σ1k0∆tc{n}, c{n} ≡ P23a

(0)
{n} +Q23(b

(0)
{n})

∗; (23b)

note that c{n} varies slowly with n. Due to this fact and the presence of a fast-varying exponential

on the r.h.s. of (23b), the solution of that equation does not grow with n, and hence condition

(20b) holds. Thus, since the terms a(1), b(1) remain small compared to a(0), b(0) at all times, we

will no longer consider the former terms and will focus on the latter. Taking into account the slow

dependence of a
(0)
{n} on n, we approximate

a
(0)
{n+1} = a

(0)
{n} + ∆t(∂ta

(0)){n} +O(∆t2). (24)

Finally, substituting (24) into (23a) and omitting (∆t2) terms, we obtain:

at + σ1ax − iΩa = iP01a+ iQ01b
∗. (25a)

Here and below we will omit the superscipt (0) of a and b. Similar calculations yield the equation

for b:

bt + σ1bx − iΩb = iQ01a
∗ + iP01b. (25b)

We will return to the derivation in this paragraph in Sections 5 and 6.

Now, in the case k0 = kmπ, since 2k0∆t = 2mπ, all terms in (21) vary slowly with n. (This

also holds for |k0 − kmπ| = O(1), since we can use the freedom in (16), which requires only that α

and β vary in x on the scale of order one.) Following the derivation in the previous paragraph, one

obtains, instead of (25), equations:

at + σ1ax − iΩa = iPa+ iQb∗. (26a)

bt + σ1bx − iΩb = iQa∗ + iPb. (26b)

13



Thus, vector (aT , (b∗)T )T , representing a perturbation that is spectrally localized near kmπ,

satisfies the same equation (9) that governs the evolution of a low-k perturbation to the soliton.

Therefore, modes near kmπ have the same stability properties as the low-wavenumber modes. In

other words, NI near kmπ occurs if and only if low-k perturbations of the soliton grow exponentially.

Thus, the above analysis has explained the numerical observations of Section 3.1 and Appendix B.

5 Unconditional numerical instability near |k| = kmax

In this section we will present a theory explaining the numerical results of Section 3.2. This will

be accomplished by numerically solving the eigenvalue problem (33).

A numerical perturbation whose spectral content is concentrated near the edges of the com-

putational domain is sought in the form (16), where now k0 = kmax and, in addition, the Fourier

transform of α(x) (of β(x)) contains harmonics with only negative (respectively, nonnegative)

wavenumbers:

α(x) =

M∑
l=1

α̂l e
−iklx, β(x) = e−i∆kx

M∑
l=1

β̂l e
iklx, (27)

where 1 � M � N/2. The last strong inequality holds because the spectral content of the

perturbation is concentrated near the edges of the spectral domain. Recall that the computational

spectral window is kl ∈ [−kmax, kmax −∆k], where kmax is defined in (4c) and kl, ∆k are defined

after (15).

When we substitute Eqs. (16) with (27) into (14), then, similarly to the r.h.s. of (17), we

obtain terms like Pα exp[ikmaxx] etc.. Note, however, that the coefficient P (x)α(x) had Fourier

harmonics with wavenumbers of both signs, due to P (x) having such harmonics. Therefore, such

terms are to be split into two groups:

Pα ≡ [Pα](<0) + [Pα](≥0) , (28a)

where the superscript indicates what Fourier harmonics the term has. When multiplied by exp[ikmaxx],

the former group of terms on the r.h.s. of (28a) will have the spectral content near the right edge

of the spectral domain, while the latter group’s spectral content will “spill over” to the left edge

due to aliasing. Thus,

Pα eikmaxx = [Pα](<0) eikmaxx + [Pα](≥0) e−ikmaxx. (28b)

With this observation in mind, the counterparts of Eqs. (17) near the edges of the spectral domain

become:

α̂{n+1} e
iσ1(kmax+δk(<0))∆t−iΩ∆t = α̂{n} + i∆tF

[[
P
(
α{n} + β{n}

)
+Q

(
α∗{n} + β∗{n}

)](<0)
]
,

(29a)

β̂{n+1} e
iσ1(−kmax+δk(≥0))∆t−iΩ∆t = β̂{n} + i∆tF

[[
P
(
α{n} + β{n}

)
+Q

(
α∗{n} + β∗{n}

)](≥0)
]
,

(29b)
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where

δk(<0) = k − kmax < 0, δk(≥0) = k + kmax ≥ 0.

Note that all Fourier transforms in (29a) (in (29b)) are evaluated at δk(<0) (respectively, at δk(≥0)).

In Section 4 we were able to take the inverse Fourier transform of Eqs. (17), which are coun-

terparts of Eqs. (29), and proceed with the analysis in the x-space. In the case of Eqs. (29), this

would result not in differential equations, such as (25) or (26), but in integro-differential ones,

due to the separation of positive and negative wavenumbers on the r.h.s. of (29). Quantitative

analysis of such integro-differential equations would be more difficult than analysis of the original

Fourier-space equations (29). Therefore, below we will proceed with the latter analysis.

Following the derivation of Eqs. (25), except for not taking the inverse Fourier transform, one

obtains from (29):

ât = i
(
σ0Ω− σ1δk

(<0)
)
â+ iF

[
[P01a+ P23b+Q23a

∗ +Q01b
∗](<0)

]
, (30a)

b̂t = i
(
σ0Ω− σ1δk

(≥0)
)
b̂+ iF

[
[P23a+ P01b+Q01a

∗ +Q23b
∗](≥0)

]
. (30b)

Using the same justification as in (25), we have neglected small terms â(1), b̂(1) and omitted the

superscript (0). System (30) determines stability of a 8M -dimensional vector: M harmonics in

each of the two-component vectors â and b̂ are coupled with as many harmonics of their complex

conjugates. It is possible to halve the size of the involved vectors (i.e., from 8M to 4M) by means

of the following substitution:

â = â(+)e(+) + â(−)e(−), b̂ = b̂(+)e(+) + b̂(−)e(−), e(±) ≡

(
1

±1

)
; (31)

the same decomposition also holds for a and b. Vectors e(±) satisfy the following relations:

σ0e(±) = e(±), σ1e(±) = ±e(±), σ2e(±) = ∓ie(∓), σ3e(±) = e(∓). (32)

The resulting equations, which couple harmonics â(+), b̂(−), â
∗
(−), b̂

∗
(+), are found in Appendix

C. Here we present only their matrix form, which is needed for a stability analysis. Defining M -

dimensional column vectors, e.g.: â(+) =
[
(â(+))1, . . . , (â(+))M

]T
, etc., where the numeric subscript

denotes the harmonic’s number (see (27)) and ‘T ’ denotes the transpose, one can write system (C.1)

as:

s t = i (D+C) s , (33a)

where:

D =


∆kM + Ω I 0 0 0

0 ∆k(M− I) + Ω I 0 0

0 0 ∆kM− Ω I 0

0 0 0 ∆k(M− I)− Ω I

 , (33b)
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s =


â(+)

b̂(−)

â∗(−)

b̂
∗
(+)

 , C =
1

N


C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C33 C34

C41 C42 C43 C44

 , (33c)

N is the total number of grid points in the computational domain (see (15)); I is the M ×M
identity matrix; M = diag [1 : M ] is the M ×M diagonal matrix with integer entries; and the

M ×M blocks Cjm, which appear from the convolution-like terms on the r.h.s. of (30), are written

out explicitly in Appendix C. Each of these blocks has a logically clear structure and can be easily

programmed.

The stability analysis of system (33) is straightforward: one seeks s proportional to exp[λt],

whence the system becomes a 4M × 4M eigenvalue problem. For M ∼ 100, it is solved by Matlab

in about 1 second. Eigenvalues with Reλ > 0 correspond to numerically unstable modes, which,

by design, occur near the edges of the computational spectrum. In Fig. 6 we show the unstable

eigenvectors of that system corresponding to the solitons with the three values of Ω for which

graphs are shown in Fig. 4(a). One can see a good agreement between the spectral profiles of the

unstable modes in that figure and their counterparts in Fig. 6(d)–(f). Furthermore, in Fig. 7 we

show the NI growth rate (i.e., max Reλ) versus the length L of the computational domain for

the same three values of Ω. The values obtained from the preceding analysis match closely the

corresponding values measured in direct numerical simulations, thus validating our analysis.
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Figure 6: (Color online) Shapes of the most unstable eigenvectors of (33),
∣∣â(±)

∣∣ vs. δk(<0) and∣∣̂b(±)

∣∣ vs. δk(≥0), for the solitons with the same values of Ω as shown in Fig. 4(a). Panels (a)–(c):

linear scale; panels (d)–(f): logarithmic scale. All eigenvectors are normalized to max
∣∣â(+)

∣∣. In

(a)–(c), the dotted green line shows P̂0(k), normalized to 1, for comparison.
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Figure 7: Growth rate of the most unstable mode of eigenvalue problem (33) as the function of

length L of the computational domain. Note that the vertical scales are drastically different in all

three panels. Solid lines correspond to the solution of (33), while circles are the result of simulations

by the SSM.

Two clarifications about Fig. 7 are in order. First, the dependence of the eigensolutions of

problem (33) on L occur only via ∆k = 2π/L. Second, the growth rate deduced from direct

numerical simulations was computed as follows. For a given Ω, the simulations were run up to the

respective time indicated in the caption to Fig. 4. The temporal evolution of the logarithm of the

maximum amplitude of Fourier harmonics in some vicinity of k = kmax was plotted, as in Fig. 3(c).

The growth rate was deduced from the slope of the linear part of that graph.

In Fig. 8(a) we show the NI growth rate as a function of L of a non-fragile soliton with Ω = 0.75.

Again, a good agreement between our analysis and direct numerics is seen. Thus, the SSM can be

unconditionally unstable even for non-fragile solitons; it is just that in that case, the instability is

so weak that it will not affect simulations for most realistic simulation times.
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Figure 8: Growth rate of the most unstable mode at the spectral edges as the function of length L of

the computational domain. Note that both vertical and horizontal scales are drastically different in

panels (a) and (b). Solid line: solution of (33). Symbols: simulations by the SSM with ∆t = ∆x/5.

Panel (a): Ω = 0.75, N = 212, and t = 50, 000. Because of the large simulation time, which in

turn is due to a very small growth rate, simulations were run only for the major “peaks” and for

the midpoints of the intervals where the theory predicts zero growth rate. Panel (b): Ω = 0.2

and 0.1. Simulations by the SSM were run to t = 300 (circles) and 150 (triangles), respectively.

Number of grid points was adjusted as N = 212 L/(40π).
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Finally, in Fig. 8(b) we expand on the trend which may already be noticed from Fig. 7(a).

Namely, for sufficiently small Ω, the growth rate of the unstable modes near ±kmax is nearly

independent of the length of the computational domain. We will discuss this further in Section 8.

6 Unconditional instability of the “noise floor”

The main result of this section is based on Eq. (44), which describes the evolution of the “noise

floor” amplitude. The growth rate of the “noise floor” is found from the spectral radius of the

corresponding fundamental solution, defined in (45b).

To study the “noise floor” NI, described in Section 3.3 and illustrated in Fig. 5, one cannot

use ansatz (16). Indeed, a perturbation described by the “noise floor” is not spectrally narrow and

hence is not a slowly-modulated plane wave in the x-space; see the sentence after (16). Instead, we

will consider the most general form of a perturbation:

ψ̃{n}(x) =
∑
j

α̂j, {n}e
ikjx + β̂j, {n}e

−ikjx, (34a)

where the double subscript in (34) stands for a Fourier harmonic at wavenumber kj and time level

n∆t; a similar notation will be employed below in this section. The summation here is assumed

over the harmonics of the “noise floor”, i.e. those with

kj � 1 and (kmax − kj)� 1. (34b)

The first inequality in (34b) ensures that the harmonics are outside the spectrum of the back-

ground soliton, whereas the second one ensures that they are sufficiently far from the edges of the

spectral domain. While the derivation of the equations predicting unstable dynamics of α̂j and

β̂j will generally follow the derivation of Section 4, we will specifically emphasize places where key

differences occur.

Substituting (7) and (34) into (14) and linearizing, one obtains equations analogous to (17):

α̂j, {n+1}e
−iΩ∆t = e−ikjσ1∆t

(
α̂j, {n} +

i∆t

N

∑
l

P̂lα̂j−l, {n} + Q̂l(β̂j−l, {n})
∗

)
, (35a)

β̂j, {n+1}e
−iΩ∆t = eikjσ1∆t

(
β̂j, {n} +

i∆t

N

∑
l

Q̂l(α̂j+l, {n})
∗ + P̂lβ̂j+l, {n}

)
. (35b)

The sums on the r.h.s. of these equations were obtained similarly to those in (C.2) and (C.4);

however, for a reason that will become clear soon, the indices were switched between the P̂ , Q̂

and the α̂, β̂ terms in (35) compared to those in (C.2) and (C.4). Since the spectral width

of the background soliton is O(1), the sum in (35) contains only O(1)/∆k � N terms that are

significantly different from zero.

Similarly to (20), one seeks

α̂j,{n} = e−inσ1kj∆t
(
â

(0)
j,{n} + â

(1)
j,{n}

)
, β̂j,{n} = einσ1kj∆t

(
b̂

(0)
j,{n} + b̂

(1)
j,{n}

)
, (36)
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where the quantities with superscript ‘(0)’ vary slowly in time and those with superscript ‘(1)’ are

small. Note, however, that the time dependence explicitly stated in (36) is different from that in

(20). In the latter case, since the perturbation ψ̃(x) was spectrally localized near some wavenumber

k0, it was appropriate to assume that in the main order, all harmonics evolved proportionally to

the same factor, either exp[−inσ1k0∆t] or exp[inσ1k0∆t]. On the other hand, since the pertur-

bation (34), considered in this section, is not spectrally localized, then the principal evolution of

each Fourier harmonic followed its individual exponential, exp[∓inσ1kj∆t]. A consequence of this

difference will appear in the subsequent derivation.

When one substitutes (36) into (35), one obtains, similarly to (21), two distinct groups of

oscillating terms. For example, the P̂lα̂j−l, {n} term yields:

einσ1kjn∆t P̂l α̂j−l, {n} =
(
P̂01 l e

inσ1kln∆t + P̂23 l e
inσ1(kl−2kj)n∆t

)(
â

(0)
j−l, {n} + â

(1)
j−l, {n}

)
. (37)

The terms in the first group on the r.h.s. vary on the time scale of orderO(1) (see the second sentence

after (35)), while the terms in the second group vary much faster due to the first inequality in (34b).1

Then, arguing as in the paragraph surrounding Eqs. (23), one shows that the rapidly oscillating

terms affect only the small corrections â
(1)
j,{n}, b̂

(1)
j,{n}, but in the main order do not contribute to

the evolution of the principal terms â
(0)
j,{n}, b̂

(0)
j,{n}. Therefore, in what follows we omit those rapidly

oscillating terms and will also omit the superscript (0), as done after (24). Following the above steps

and also approximating the finite differences in time with time derivatives, as done in obtaining

(30) from (29), we find:

(âj)t = iΩâj +
i

N

∑
l

P̂01 l e
iσ1klt âj−l + Q̂01 l e

iσ1klt (b̂j−l)
∗ , (38a)

(b̂j)
∗
t = −iΩ(b̂j)

∗ − i

N

∑
l

Q̂01
∗
l e
−iσ1klt âj+l + P̂01

∗
l e
−iσ1klt (b̂j+l)

∗ , (38b)

where t ≡ n∆t.

Exact solution of system (38) would be possible only by direct numerical simulations. Not

only would such an approach not be illuminating in any respect, but it would also be considerably

more difficult than solving (30) (or, equivalently, (33)), despite the latter equation appearing to

have more terms. Indeed, (38), unlike (30), has time-dependent terms on the r.h.s., which is the

consequence of the difference between (36) and (20), emphasized after (36). Even more importantly,

the system in (38) couples, by virtue of (34b), a much greater number of Fourier harmonics, . N/2

instead of M � N/2. For these reasons, below we will use a simplified approach. It will still require

a numerical solution, but only of a 2× 2 system. More importantly, it will allow us to explain the

mechanism by which harmonics of the “noise floor” can become unstable.

The simplification occurs from an observation that none of the coefficients of terms â and b̂ on

the r.h.s. of (38) depends on the harmonic’s index j. Therefore, these equations will be satisfied

1Note that since we intend to investigate an unconditional numerical instability, one can consider the limit ∆t→ 0,

and thus there can be no resonances like (13), because of which any of the terms from the second group may become

slowly varying.
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by a j-independent ansatz:

âj ≡ â, âj ≡ b̂ for all j satisfying (34b). (39)

We will come back to interpretation of this ansatz later in this Section. We now expand â and

b̂ using (31), substitute the result into (38) and collect the scalar coefficients of vectors e(±). For

example, the coefficients at e(+) yield:

(â(+))t = iΩâ(+) +
i

N

∑
l

P̂0 l e
iklt â(+) +

(
Q̂0 l + Q̂1 l

)
eiklt (̂b(+))

∗ , (40a)

(̂b(+))
∗
t = −iΩ(̂b(+))

∗ − i

N

∑
l

(
Q̂0
∗
l + Q̂1

∗
l

)
e−iklt â(+) + P̂0

∗
l e
−iklt (̂b(+))

∗ , (40b)

where we have used that P1 ≡ 0. In deriving (40) we have also used the first two of identities (32)

as well as the identity

eiσ1klt e(±) = e±iklt e(±) , (41)

which follows from (18) and (32). Note that unlike in (33), terms â(+), b̂(+) are not coupled with

â(−), b̂(−) due to the absence of matrices σ2, σ3 in (38).

Here comes the next key step in this analysis: we recognize the sums in (40) as the inverse

Fourier transform (15) (but in t, not in x), upon which we rewrite Eqs. (40) and their counterparts

obtained for â(−), b̂(−) as: (
c (±)

)
t

= R(±) c (±), (42a)

where:

c (±) =

(
â(±)

(̂b(±))
∗

)
, R(±) = iσ3

(
Ωσ0 +

(
P0(±t) Q0(±t)±Q1(±t)

Q∗0(±t)±Q∗1(±t) P ∗0 (±t)

))
.

(42b)

Two remarks about the entries of the last matrix in (42b) are in order, both of which are consequence

of the difference emphasized after Eqs. (36). First, while P0 etc. were defined in (8) as functions of

x, in the above system they are functions of time. Second, due to the periodicity of discrete Fourier

transform, these entries are periodic, with the period being L, the length of the computational

domain. Thus, although in (42a), t ∈ [0, ∞), one also requires that

P0(t+ L) = P0(t), Q0,1(t+ L) = Q0,1(t) ∀ t . (42c)

Before we discuss the solution of (42), let us point out that we need to solve only one, not two,

systems. This follows from the parity properties implied by (8) and (5):

P0(−t) = P0(t), Q0(−t) = Q0(t), Q1(−t) = −Q1(t), (43)

whenceR(−) = R(+). Therefore, below we will omit the subscripts ‘(±)’ of c andR. As yet another

simplification, we note that P ∗0 = P0, Q∗0 = Q0, while Q∗1 = −Q1. Finally, using the explicit form

20



(8)(c,d) of P0, Q0, Q1, we can rewrite (42) as:

ct = iσ3

(
Ωσ0 +

1

2

(
Ψ2

1 −Ψ2
2 (Ψ1 + Ψ2)2

(Ψ1 −Ψ2)2 Ψ2
1 −Ψ2

2

))
c . (44)

Recall that here, Ψ1,2 are L-periodic functions of time. Then,

‖c(t)‖ ≤ ‖Φ(L)‖t/L ‖c(0)‖ , t = integer · L, (45a)

where ‖ · · · ‖ denotes the `2-norm, and the fundamental solution Φ(L) of (44) satisfies

c(L) = Φ(L) c(0) . (45b)

We are now ready to interpret the meaning of ansatz (39). A perturbation (34) where amplitudes

of the harmonics satisfy (39) is approximately2 the sum of two delta functions in space, where the

‘two’ occurs due to (31) having two contributions, from e(+) and e(−). By virtue of (36), these two

spikes move with speed 1 in opposite directions. Due to the periodicity of the boundary conditions,

they repeatedly leave and re-enter the computational domain. Their amplitudes are changed when

they pass through the soliton and remain constant far from the soliton; this follows from (44). If

those amplitude changes from consecutive passages are accumulated, the amplitude of the “noise

floor” increases; see the dashed line in Fig. 5(b) and Fig. 9(a). When the initial “noise floor” consists

of white noise as opposed to the simplified ansatz (39), the above interpretation no longer applies

in the exact sense. However, the mechanism of the instability of the “noise floor” is the same: the

perturbation (34) repeatedly passes through the soliton, and when L is such that changes of its

amplitude over consecutive passages accumulate, the perturbation grows on average exponentially.

When they do not, “noise floor”’s amplitude oscillates in time (Figs. 9(b,c)). The fact that the

evolution of the “simplified” perturbation (34), (39) is predictive of that of the generic perturbation

is seen in Figs. 5(b) and 9.
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Figure 9: Evolution of the amplitude of harmonics of the “noise floor”, similar to that shown in

Fig. 5(b), but for Ω = 0.50 and the three values of L indicated in the panels. Solid and dashed lines

correspond to a small white noise or a constant, respectively, being added to each Fourier mode in

the initial condition.

2This would have been exact if the summation had extended for all j ∈ [1, N/2].
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In Fig. 10 we plot the growth rate of the “noise floor” versus L. The theoretical values are

inferred from the spectral radius of Φ(L), which was found by the above analysis, via the relation

(see (45a)):

growth rate =
(

ln ρ(Φ(L))
)
/L . (46)

The agreement between our analysis and direct numerics is seen to be quite good.
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Figure 10: Growth rate of the “noise floor” as the function of length L of the computational domain

for the same three values of Ω as in Fig. 7. Note different vertical scales in the three panels. Solid

lines correspond to the analytical solution of (44), (46). Circles are the result of SSM simulation,

where we measured the amplitude of the Fourier harmonic at k = kmax/2 and followed the procedure

described at the end of Section 5. The simulation times for panels (b) and (c) are the same as those

in Figs. 6(b,c) and 7(b,c): t = 1500 and t = 5000. For panel (a), the simulation time is t = 1000.

This larger time than in Figs. 6(a) and 7(a) had to be used to decrease the effect of the transient

behavior (see Figs. 9(b,c)) on the computed growth rate (see text). Moreover, since for Ω = 0.2,

the NI at k ≈ ±kmax is so strong that it would destroy the numerical solution at t = 1000 (see

Fig. 7(a)), we had to filter out harmonics near the edges of the computational spectral domain.

The numerical solution of system (44) leaves it unclear why ρ(Φ(L)) depends on L. Moreover,

such a dependence may even seem counter-intuitive given that the amplitude of the perturbation

(34) changes only in the vicinity of the soliton (which does not depend on L) and remains intact

in the rest of the computational domain. In Appendix D we show that while ‖Φ(L)‖ does not

depend on L, ρ(Φ(L)) varies with L periodically, the period being 2π/(2Ω), which is confirmed by

Fig. 10. Note that these different dependences of ‖Φ(L)‖ and ρ(Φ(L)) on L are consistent with

the well-known (see, e.g., [35]) result:

ρ(Φ(L)) ≤ ‖Φ(L)‖ = σmax(Φ(L)) , (47)

where σmax denotes the largest singular value.

To conclude this section, we note that while the “noise floor” NI decreases when Ω increases, it

is still present even for a non-fragile soliton with Ω = 0.75. In that case, Eqs. (44) and (46) predict

that the NI growth rate peaks to about 2.9 · 10−4, i.e., slightly lower than the spectral edge NI,

near L = 40π + 3.1. Simulations by the SSM support this analytical result. Moreover, they reveal

a feature of this NI that was not observed for Ω ≤ 0.5. Namely, for certain L values, only part of
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the “noise floor” would become unstable. Analysis of this phenomenon would be more complicated

than that based on the k-independent ansatz (39) and therefore is not considered here.

7 Generalizations

Here we will show that the two types of NI considered in Sections 5 and 6 occur in more general

situations than in simulations of a single Gross–Neveu soliton. Thus, these types of NI appear

to be engendered not by a specific model, its solution, or even the numerical method, but by a

combination of various factors. Namely, we will first show that the same phenomena occur for more

general solutions of the same model. Second, we will show that one of them occurs for the soliton of

a different, well-known model in the relativistic field theory. Third, we will explain why, and show

that, the same types of NI occur in other popular numerical methods applied to the Gross–Neveu

model. Finally, we will show that by changing the boundary conditions of the numerical method,

one can strongly diminish both types of NI.

7.1 More general solutions of the Gross–Neveu model

In Fig. 11 we show the result of simulation of two colliding solitons (6). The parameters of the

solitons are: Ω1 = 0.25, V1 = 0, (x0)1 = 0; Ω2 = 0.15, V2 = 0.1, (x0)2 = −8π. Other simulation

parameters are: L = 160π, N = 214, ∆t = ∆x/5, where the computational domain was chosen

to be larger than that in the rest of this paper to minimize the effect of radiation re-entering the

domain and possibly corrupting the solution. The NI at the edges of the spectral domain is clearly

visible. Moreover, one can see that the spectral support of unstable modes greatly expands between

t = 175 and t = 200, which is when the moving soliton comes in close proximity with the standing

one.
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Figure 11: Colliding solitons described in Section 7.1. Panel (a): Dotted (green), dashed, and solid

lines correspond to the solution at t = 0, 175, and 200. Only part of the computational domain

is shown for better visibility. Panel (b): Spectra (for k ≥ 0) of the numerical solution at t = 175

(dashed) and t = 200 (solid).

We also considered the evolution of an initial pulse both of whose components are 20% greater
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than those of the standing soliton (5) with Ω = 0.2. The NI at the edges of the computational

domain destroys the resulting near-soliton solution by t & 300. It should be noted that some other

combinations of the components of the initial pulse, — e.g., where one is 20% greater and the other

is 20% smaller than those of the soliton, — do not lead to a strong NI. This occurs because such

an initial pulse evolves towards a soliton with a greater value of Ω, for which the NI is considerably

weaker.

7.2 Numerical instability for the massive Thirring soliton

The massive Thirring model in laboratory coordinates:

ut + ux = i(v + u|v|2), vt − vx = i(u+ v|u|2), (48)

has the one-soliton solution [33, 36, 37] which, for zero velocity, can be written as:

Usol =
sinQ exp[−it cosQ]

cosh(x sinQ− iQ/2)
, Vsol =

− sinQ exp[−it cosQ]

cosh(x sinQ+ iQ/2)
, Q ∈ [0, π] . (49)

It may be noted that the Gross–Neveu and massive Thirring models both belong to the more general

class of fermionic (nonlinear Dirac) field-theoretic models, corresponding to the cases of scalar–

scalar and vector–vector interactions, respectively [33]. The massive Thirring model is integrable

by the Inverse Scattering Transform [38, 39], a consequence of which is that the soliton solution

(49) is physically stable [40]. Incidentally, a model similar to (48) occurs in a different field —

that of nonlinear light propagation in optical fibers with a periodic refractive index [41]. However,

its soliton (known as the Bragg, or gap, soliton) is physically unstable in a certain range of its

parameters [42]. Therefore, we chose to consider only the stable soliton (49) of model (48) to avoid

any issue of possible coexistence of physical and numerical instabilities.

To apply the SSM to (48), one first solves the linear part of those equations in the Fourier

domain: (
û

v̂

)
lin

=
1

1 + δ2

(
eiγ∆t + δ2 e−iγ∆t δ

(
eiγ∆t − e−iγ∆t

)
δ
(
eiγ∆t − e−iγ∆t

)
δ2 eiγ∆t + e−iγ∆t

) (
û

v̂

)
n

, (50a)

where γ =
√
k2 + 1, δ = k + γ. Then the nonlinear substep is:(

û

v̂

)
n+1

=

(
ulin exp[i|vlin|2∆t]

vlin exp[i|ulin|2∆t]

)
. (50b)

Using the SSM (50) to simulate (48) with the initial condition consisting of the soliton (49) with

Q = 0.35π and white noise of magnitude on the order of 10−12, we have observed the numerically

unstable modes at the edges of the spectrum grew by 7 orders of magnitude in t = 1000. The

simulation parameters were: L = 40π, N = 212, and ∆t = ∆x/5. The spectrum of the numerical

solution looks qualitatively similar to that shown in Fig. 3(a) and therefore is not shown here.
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For greater Q, this NI developed even faster.3 Conversely, for smaller Q, we found that this NI

decreases. For example, for Q = 0.30π we found that the unstable modes at the spectral edges

grow at most by two orders of magnitude when we performed this simulation for a variety of values

of L.

We were unable to observe the “noise floor” NI for the Massive Thirring soliton in our numerics

for any values of Q and L and initially were surprised. However, an analysis similar to that

presented in Section 6 revealed that for this model, this type of NI does not occur. Below we

present a summary of this analysis. Although it is possible to apply it directly to Eqs. (48), it is

more convenient to cast those equation in a form with the l.h.s. identical to that of the Gross–Neveu

model (2) so as to follow the analysis of Section 6 as closely as possible. To that end, defining

ψ1 = (u+ v)/
√

2, ψ2 = (u− v)/
√

2, (51)

we transform (48) into

ψ1,t + ψ2,x =
i

2

(
ψ1|ψ1|2 − ψ∗1ψ2

2

)
+ iψ1, ψ2,t + ψ1,x =

i

2

(
ψ2|ψ2|2 − ψ∗2ψ2

1

)
− iψ2, (52)

Linearizing (52), we obtain equations of the form (8a) with Ω on the l.h.s. being replaced by cosQ

and with:

P0 =
1

2

(
|Ψ1|2 + |Ψ2|2

)
, P1 ≡ 0, Q0 ≡ 0, Q1 ≡ 0, (53a)

P2 = −Im (Ψ1Ψ∗2) , P3 =
1

2

(
|Ψ1|2 − |Ψ2|2

)
+ 1 , Q2 ≡ 0, Q3 =

1

2

(
Ψ2

1 −Ψ2
2

)
, (53b)

where Ψ1,2 are the exact one-soliton solutions obtained from (49) and (51). In deriving P1 ≡ 0, we

used the specific form (49) of the soliton. The information about the possible growth of the “noise

floor” perturbation is found from Eqs. (42a), where the matrix on the r.h.s. is now:

R(±) = iσ3

(
cosQσ0 +

(
P0(t) 0

0 P0(t)

))
, (54)

where we have used that P0 is a real-valued and even function. The key point to note is that due to

the absence of off-diagonal terms in (54), the evolution of the perturbation c is unitary, and hence

there is no “noise floor” NI in this case.

7.3 Numerical instability of other methods applied to Gross–Neveu soliton

In our analysis of the NI in Sections 5 and 6 there was nothing that would explicitly refer to the

SSM as opposed to any other numerical method. Indeed, all we did was obtain a differential (in

time) equation for the error in the limit ∆t→ 0. There was, however, an implicit assumption: that

the numerical scheme does not change the linear dispersion relation (11) (for |k| � 1). Therefore,

we expect that similar NI should occur for any other numerical scheme that preserves the linear

dispersion relation of models (2) and (48).

3The limit Q → π for the massive Thirring soliton is known to have similarities with the limit Ω → 0 for the

Gross–Neveu soliton.
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One such family of schemes is the Exponential Time Differencing (ETD) and Integrating Factor

methods (see, e.g., [43]). It should be noted that for the Gross–Neveu model, such methods were

first proposed in [44] and have recently been considered in [18]. We implemented the ETD method

based on the 4th-order explicit Runge–Kutta (RK) solver, referred to as ETD4RK in [43] and given

by Eqs. (26)–(29) in that paper. For the implementation of the ETD methods, it is convenient to

rewrite the simulated equation in a form where the matrix multiplying the spatial derivative terms

is diagonal. For Eqs. (2) this is achieved via the transformation inverse to (51), upon which they

take on the form:

ut = −ux + i(u|v|2 + u∗v2 − v), vt = vx + i(v|u|2 + v∗u2 − u) . (55)

In simulating the Gross–Neveu equations in this form with the ETD4RK, we observed both types

of NI — at the spectral edges and of the “noise floor”, — with their growth rates being practically

the same (for the selected values of L that we tested) to those reported in Sections 5 and 6, as long

as ∆t < ∆x (see (12)).

The other method for which we tested the presence of NI in the Gross–Neveu model is the

pseudo-spectral 4th-order RK method. To implement it, one solves Eqs. (55) (or (2)) by the classical

RK method in time, with the spatial derivatives being computed by the direct and inverse Fourier

transform (15). This method preserves the dispersion relation (11) only in the limit kmax∆t ≡
(π/∆x)∆t � 1, where the 4th-degree polynomial in k∆t, which results from the 4th-order RK

method, approximates exp[ik∆t] sufficiently closely for all wavenumbers. However, recall that

we are interested in demonstrating the unconditional NI, which persists in the limit ∆t → 0.

Therefore, at least for sufficiently small ∆t, the NI in the pseudo-spectral method is expected to

develop similarly to that in the SSM. We confirmed this to indeed be the case. For example, for

Ω = 0.2, the NI at the spectral edge was suppressed by the numerical diffusion of the pseudo-

spectral method for ∆t = ∆x/5; however, for ∆t = ∆x/10, the numerical diffusion became weak

enough to allow this NI to develop almost as fast as in the SSM. For Ω = 0.1, even the relatively

strong numerical diffusion was not able to prevent the NI at the spectral edge from destroying the

numerical solution around t = 200. Also, the “noise floor” NI in the pseudo-spectral method was

similar to that in the SSM for both ∆t = ∆x/5 and ∆t = ∆x/10.

7.4 Suppression of the numerical instability for the Gross–Neveu soliton

The previous subsection illustrated the fact that the appearance of NI in simulations of the Gross–

Neveu soliton with sufficiently small Ω occurs not just for the Fourier SSM, but for a variety of

numerical methods. In fact, NI for this problem was earlier reported in [29, 30], although no details

about its nature were investigated in those studies. On the other hand, we showed in [32] that

merely imposing nonreflecting boundary conditions (BC):

u(−L/2) = 0, v(L/2) = 0 , (56)
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which is done by using the numerical method of characteristics, allows the small-Ω soliton to survive

over several thousands of time units. Imposing additional absorption at the boundaries was shown

[32] to further increase soliton’s survival time, thus making it numerically stable even in ultra-long

simulations, in accordance with the theoretical prediction of [31].

Let us mention in passing that nonreflecting BC (56) alone, i.e., without the additional absorber

at the boundaries, do not entirely eliminate NI for sufficiently small Ω (e.g., for Ω = 0.1). Indeed,

as shown in [32], the key to suppress NI is to let any radiation completely leave the computational

domain without being partially reflected inside it by the boundaries. (In the case of periodic BC,

such a reflection is replaced by mere re-entrance of the radiation into the domain.) Nonreflecting

BC (56) allow the radiation to completely leave the computational domain, without being reflected

back (hence the name), only in the absence of terms other than ux, vx on the r.h.s. of (55). With

the other terms, the amount of radiation reflected back into the domain is proportional to 1/k.

Hence higher harmonics are suppressed more than the lower ones; yet it is the lower harmonics

that appear to be “responsible” for soliton’s “fragility” (see Section 2). This is why the additional

absorber, that would equally absorb all harmonics, was needed in [32] to avert destruction of the

soliton.

8 Conclusions and Discussion

In this work, we showed that the (Fourier) SSM, (10) or (14), for the Gross–Neveu model (2)

may exhibit NI, and analytically studied three distinct mechanisms that can lead to it. Two of

these mechanisms lead to unconditional NI, which, to our knowledge, have never been analyzed

previously.

The first type of NI, analyzed in Section 4, may occur when the time step exceeds the “threshold”

(12) set by the Courant–Friedrichs–Lewy condition. However, unlike in other schemes for hyperbolic

equations, this high-k NI is observed only if the simulated solution of the model also exhibits low-k

instability. In practice, such conditional NI (unlike that for the NLS!) is inconsequential for the

outcome of the simulations. Indeed, if a low-k instability is present, it will destroy the solution

long before this high-k NI will. On the other hand, if there is no (or too weak) low-k instability,

then harmonics near the “resonance” wavenumber kπ will also be stable, even when the time step

exceeds the “threshold” (12).

The NI of the second type, analyzed in Section 5, occurs near the edges of the computational

spectrum. It is unconditional, i.e. persists for arbitrarily small ∆t. This type of NI becomes

stronger as Ω of the soliton decreases, i.e., as the soliton becomes more “fragile”. While the

corresponding growth rate depends on the length L of the computational domain, this dependence

diminishes as Ω decreases: see Figs. 7 and 8(b). There is no “simple” qualitative reason that would

unambiguously explain the origin of this NI. Analysis of this NI required numerical solution of a

relatively large eigenvalue problem, but this is still several orders of magnitude faster than direct

numerical simulations, especially for non-fragile solitons.
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The NI of the third type, analyzed in Section 6, occurs for Fourier harmonics of the “noise

floor”. This NI is also unconditional, and it also becomes stronger as Ω of the soliton decreases.

The growth rate is essentially periodic in L, but also decreases in inverse proportion to it (i.e., for a

sufficiently large L, slowly). Unlike for the second type of NI, there is a qualitative explanation for

the third one. Namely, it can occur as perturbations travelling in the opposite directions interact

in the vicinity of the soliton via the “potential” created by it. This process can be amplified when

the perturbations do so repeatedly, which is enabled by their staying in the computational domain

due to periodic boundary conditions. Analysis of this NI requires numerical solution of only two

coupled ordinary differential equations; see Eqs. (42) and (44). Remarkably, the same analysis was

able to explain the absence of the “noise floor” NI in the massive Thirring model (Section 7.2).

In Section 7, we demonstrated that these two types of unconditional NI can occur in more

general situations. First, they occur in multi-soliton solutions, as long as some of the consitituent

solitons have a sufficiently small Ω. Second, they can occur for other models that involve solitons in

asymptotically dispersionless coupled-mode equations; an example is the massive Thirring soliton.

Third, they can occur for methods other than the SSM.

Based on these generalizations, we propose that there may be only two essential conditions that

need to be met for these unconditional NIs to be observed. The first is that the simulated soliton’s

parameters must be in a certain range (e.g., a sufficiently small Ω for the Gross–Neveu soliton or

a sufficiently large Q for the massive Thirring soliton). Although these NIs were found even for

Gross–Neveu solitons with Ω as large as 0.75,4 their growth rates were too small to be observed in

any but the ultra-long simulations.

The second essential condition for observing these NIs is the boundary conditions that permit a

substantial part of the radiation to re-enter the computational domain. The simplest such BC are

periodic; they are automatically imposed when the numerical method involves the discrete Fourier

transform. However, there are indications in [30] that other BC, such as homogeneous Dirichlet,

may also lead to similar NIs. As we showed in [32] and stressed in Section 7.4, only a combination of

nonreflecting BC and an additional absorber (or a more sophisticated technique [45]) could suppress

NI for solitons with arbitrarily small Ω.

We now relate our results with those of [29, 30], where numerical instabilities of the Gross–

Neveu soliton were reported. The authors of [29] used a 4th-order non-Fourier SSM, where the

linear substep was computed by the method of characteristics, subject to nonreflecting BC (56).

The evidence of high-k NI is reported there in the captions to Figs. 5 and 6. This may be surprising

given that we argued in Section 7.4 that the nonreflecting BC tend to suppress high-k NI (and so a

low-k NI would be observed before any high-k could be seen). A detailed analysis of this conundrum

would require a separate study and is clearly outside the scope of this one. Below we present only a

plausible resolution, which consists of two ingredients. First, it should be noted that the 4th-order

method of [29] required a relation ∆t = 12∆x. Thus, the stability “threshold” (12) was exceeded

4and we have no reason to think that they would not occur for even greater Ω
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significantly. Had the method been 2nd-order, as here, this would not have caused a high-k NI to

destroy the soliton. However, it was shown in [16] that the equation satisfied by a high-k numerical

error in a 4th-order method is different from that for the 2nd-order one. This fact makes it possible

for the modes near the “resonant” wavenumbers knπ, n = 1, . . . , 12 to become unstable regardless

of any low-k NI. In fact, the numerical solution reported in [29] for the soliton with Ω = 0.1 at

t = 100, was provided to this author in a private communication by the first co-author of [29], and

it confirmed the above hypothesis about an NI developing near the “resonant” wavenumbers knπ,

n = 1, . . . , 12.

The authors of [30] employed three methods to simulate the dynamics of the soliton. Their

best-performing method is, in fact, the pseudo-spectral method considered in Section 7.3. As we

showed there, this method is subject to the same NIs as the SSM. Moreover, the NIs would become

more pronounced as one decreases ∆t/∆x, because it is then suppressed less by numerical diffusion.

In [30], the authors conspicuously stated that the NIs should go away as L → ∞ and ∆x → 0.

However, our analysis indicates that both of these statements are incorrect. Namely, Figs. 7(a)

and 8(b) show that the growth rate of the spectral edge NI for sufficiently small Ω persists almost

unchanged from L = 40π to L = 1600π ≈ 5, 000, which is more than 30 times the largest length

considered in [30]. We also verified that for the same length as used in most of the simulations in

this work, L = 40π, and for N = 217 (∆x ≈ 10−3, i.e. 32 times smaller than in the rest of the

work) the growth rate of the Ω = 0.2 soliton was the same as for N = 212 (∆x ≈ 0.03). Thus, the

spectral edge NI is not perceptibly affected by either the L → ∞ or ∆x → 0 limits. The “noise

floor” NI is not affected by the ∆x → 0 limit, but its growth rate does indeed vanish as L → ∞
since it scales as 1/L.

Finally, we note that results of our study should alert researchers who numerically study new

models similar to the Gross–Neveu model (see, e.g., [46, 47]) about possible NI that may occur in

simulations of those models. Our analysis may also serve as a prototype for that of the Zakharov

equations, describing interaction of short and long waves [48]. They consist of an NLS coupled to

the hyperbolic nonlinear wave equation. The dispersion relation of the latter equation, which for

high wavenumbers coincides with (11), may potentially enable an NI similar to those considered in

this work. In fact, an indication of a possible NI in simulations of the Zakharov equations by an

SSM is reported in Fig. 10 of [11].
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Appendix A: Code of 2nd-order SSM for Gross–Neveu soliton
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1 c l e a r a l l ;

2 % === Simulat ion parameters :

3 L = 40* pi ; N = 2ˆ12 ; dx = L/N; x = [ =L/2 : dx : L/2=dx ] ;

4 dk = 2* pi /L ; k = [ 0 : N/2=1 =N/2 : =1 ]* dk ;

5 dt = dx /2 ; tmax = 1500 ; t p l o t = 50 ;

6 % === I n i t i a l c o n d i t i o n s :

7 Omega = 0 . 3 5 ; beta = s q r t ( 1 = Omegaˆ2 ) ; mu = (1 = Omega) /(1 + Omega) ;

8 u0 = s q r t (2* (1 = Omega) ) . / ( (1 = mu* tanh ( beta*x ) . ˆ 2 ) .* cosh ( beta*x ) ) ;

9 v0 = 1 i *u0 .* s q r t (mu) .* tanh ( beta*x ) ;

10 u = u0 + 10ˆ(=12)* randn ( s i z e ( x ) ) ; v = v0 + 10ˆ(=12)* randn ( s i z e ( x ) ) ;

11 % === Aux i l i a ry parameters to be used at each step in the loop :

12 i d t = 1 i *dt ; ckdt = cos ( k*dt ) ; mi skdt = =1 i * s i n ( k*dt ) ;

13 ckdto2 = cos ( k*dt /2) ; mi skdto2 = =1 i * s i n ( k*dt /2) ;

14 % === Main c a l c u l a t i o n :

15 f o r nn = 1 : round ( tmax/dt )

16 f f t u = f f t (u) ; f f t v = f f t ( v ) ;

17 i f nn == 1

18 u = i f f t ( ckdto2 .* f f t u + mi skdto2 .* f f t v ) ;

19 v = i f f t ( ckdto2 .* f f t v + mi skdto2 .* f f t u ) ;

20 e l s e

21 u = i f f t ( ckdt .* f f t u + mi skdt .* f f t v ) ;

22 v = i f f t ( ckdt .* f f t v + mi skdt .* f f t u ) ;

23 end

24 expaux = exp ( i d t *( ( abs (u) .ˆ2=abs ( v ) . ˆ 2 ) = 1) ) ;

25 u = u .* expaux ; v = v . / expaux ;

26 i f nn == round ( tmax/dt )

27 u = i f f t ( ckdto2 .* f f t u + mi skdto2 .* f f t v ) ;

28 v = i f f t ( ckdto2 .* f f t v + mi skdto2 .* f f t u ) ;

29 end

30 % === Plot the r e s u l t s :

31 i f rem(nn , round ( t p l o t /dt ) ) == 0

32 f i g u r e (123) ;

33 subplot (211) ; p l o t (x , abs (u) , 'b' , x , abs ( v ) , ' r ' ) ;

34 x l a b e l ( 'x' ) ; y l a b e l ( ' { |u | , | v | } ' ) ;

35 subplot (212) ; p l o t (k , log10 ( abs ( f f t u ) ) , 'b' , k , log10 ( abs ( f f t v ) ) , ' r

' ) ;

36 x l a b e l ( 'k , wavenumber' ) ; y l a b e l ( ' l o g {10} ( |F[ u , v ] ( k ) | ) ' ) ;

37 t i t l e ( [ ' t=' , num2str ( dt*nn) ] , ' f o n t s i z e ' , 13) ; pause ( 0 . 3 )

38 end

39 end

Appendix B: Weak fragility of solitons with Ω > 0.6

Simulations reported in Section 3.1 illustrated our general observation that if the soliton is fragile,

then exponentially growing modes will appear around knπ-peaks whenever ∆t > ∆x. One can

conjecture that the converse statement may also be true, namely: If one detects such modes around
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knπ-peaks, then the soliton must be (weakly) fragile, even though it has not yet exhibited any fragile

behavior for the same simulation time. In other words, can a high-k instability signal the occurrence

of a low-k one?

In Fig. 12 we demonstrate that this is indeed the case. In panel (a) we show a close-up on the

vicinity of the kπ-peak for the Ω = 0.75-soliton at t = 15, 000, where exponentially growing “spikes”

near the wider kπ-peak are clearly discernible. For the same t, there is no sign of fragile behavior of

this numerical solution in either the Fourier domain (panel (b)) or x-domain (not shown). However,

at a much greater time, a small “spike” becomes visible within the soliton’s own spectrum (around

k = 5); see Fig. 12(b). Finally, Fig. 12(c) shows that one can detect the exponentially growing

modes around the kπ-peaks much earlier than similarly growing modes around the soliton.
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Figure 12: Ultra-long-time simulations of Ω = 0.75-soliton (non-fragile). Simulation parameters

are: L = 40π, N = 212 (∆x = ∆tthresh ≈ 0.031). Results for the ψ2-component are similar to those

for the ψ1-component and hence are not shown. (a) Close-up on the vicinity of the kπ-peak for

∆t = 0.04 ≈ 1.3∆x and t = 15, 000. (b) Solitonic part of the spectrum of the numerical solution

obtained at different times and with different ∆t. The lines are indistinguishable for k < 5. (c)

Evolution of the amplitudes of the “spikes” circled in panels (a) and (b). The left curve is shifted

up by 7.2 units for better visibility.

Two clarifications regarding the above result are in order. First, the reason that exponentially

growing modes are observed sooner around the kπ-peak is that the “noise floor”, from which these

modes arise, is several orders of magnitude closer to the kπ-peak than to the soliton’s spectral

maximum. Thus, it takes less time for such modes to become visible relative to the kπ-peak than

relative to the soliton. Second, the reason why the emergence of the exponential instability is

significantly delayed from the start of the simulations (see Fig. 12(c)) was explained in [49]. It

is related to the fact that both (i) the overlap of the actual unstable mode with any one Fourier

harmonic and (ii) the instability growth rate, are small.

Appendix C: Reduced form of Eqs. (30), and matrix blocks in (33c)

Substitution of (31) and (32) into Eqs. (30) and taking complex conjugate of two of the four

equations yields the following system:

â(+), t = (C.1a)

i
(

Ω− δk(<0)
)
â(+) + iF

[[
P0 a(+) + (iP2 + P3)b(−) +Q3 a

∗
(−) + (Q0 +Q1)b ∗(+)

](<0)
]
,
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b̂(−), t = (C.1b)

i
(

Ω + δk(≥0)
)
b̂(−) + iF

[[
(−iP2 + P3)a(+) + P0 b(−) + (Q0 −Q1)a ∗(−) +Q3 b

∗
(+)

](≥0)
]
.

â ∗(−), t = (C.1c)

−i
(

Ω + δk(<0)
)
â ∗(−) − i

(
F
[[

(Q3 a
∗
(+) + (Q0 −Q1)b ∗(−) + P0 a(−) + (−iP2 + P3)b(+)

](<0)
])∗

,

b̂ ∗(+), t = (C.1d)

−i
(

Ω− δk(≥0)
)
b̂ ∗(+) − i

(
F
[[

(Q0 +Q1)a ∗(+) +Q3 b
∗
(−) + (iP2 + P3)a(−) + P0 b(+)

](≥0)
])∗

.

Here we have also used that P1 = Q2 = 0 from (8).

The M ×M matrix blocks C1m, m = 1, . . . , 4, in (33c) are obtained from the respective four

convolution-like terms in (C.1a). Similarly, the other blocks are obtained from the respective terms

in (C.1b)–(C.1d). Here we will present a derivation of C11 and C12 and will state the results for

the other Cjm, which are derived analogously.

To obtain the form of C11, we substitute the first relation from (27) into the first F-term

in (C.1a) and use the definitions of discrete Fourier transform and its inverse (15) to obtain the

following expression for the harmonic with wavenumber k−j = −j∆k, where 1 ≤ j ≤M :

F
[
P0 a(+)

]
−j =

N/2−1∑
m=−N/2

e−ik−jxm
1

N

N/2−1∑
n=−N/2

P̂0 n e
iknxm 1

N

M∑
l=1

â(+) l e
−iklxm (C.2)

=
1

N2

N/2−1∑
n=−N/2

P̂0 n

M∑
l=1

â(+) l δn, l−j =
1

N

M∑
l=1

P̂0 l−j â(+) l;

in the last line, δ is the Kroneker symbol. Therefore,

C11 =


P̂0 0 P̂0 1 · · · P̂0M−1

P̂0−1 P̂0 0 · · · P̂0M−2

. . .
. . .

. . .
. . .

P̂0−(M−1) P̂0−(M−2) · · · P̂0 0

 . (C.3a)

This is a Toeplitz matrix, and half of the entries in (33c) will also be Toeplitz. Therefore, we

introduce a notation:

C11 ≡ T [P0, −(M − 1), M − 1 ] , (C.3b)

where: T stands for a Toeplitz matrix, the first argument indicates the function whose harmonics

make up the entries of the matrix, and the third and fourth entries indicate the harmonic’s indices

of the lower-left and upper-right entries of the matrix, respectively.

Similarly, and denoting iP2 + P3 ≡ Pi23 for brevity, one has:

F
[
Pi23 b(−)

]
−j =

N/2−1∑
m=−N/2

e−ik−jxm
1

N

N/2−1∑
n=−N/2

P̂i23 n e
iknxm 1

N
e−i∆kxm

M∑
l=1

b̂(−) l e
iklxm (C.4)

=
1

N

M∑
l=1

P̂i23 1−l−j b̂(−) l;
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whence

C12 =


P̂i23−1 P̂i23−2 · · · P̂i23−M

P̂i23−2 P̂i23−3 · · · P̂i23−M−1

. . .
. . .

. . .
. . .

P̂i23−M P̂i23−M−1 · · · P̂i23−2M+1

 . (C.5a)

This is a Hankel (i.e. an “upside-down” Toeplitz) matrix, and the remaining half of the entries in

(33c) are also Hankel. Therefore, we introduce a notation:

C12 ≡ H [iP2 + P3, −1, −2M + 1 ] , (C.5b)

where, similarly to (C.3b): H stands for a Hankel matrix, the first argument indicates the function

whose harmonics make up the entries of the matrix, and the third and fourth entries indicate the

harmonic’s indices of the upper-left and lower-right entries of the matrix, respectively.

Similarly, one has:

C13 = H [Q3, −2, −2M ] , C14 = T [Q0 +Q1, −M, M − 2 ] ; (C.6a)

C21 = H [−iP2 + P3, 1, 2M − 1 ] , C22 = T [P0, M − 1, −(M − 1) ] ,

C23 = T [Q0 −Q1, M − 2, −M ] , C24 = H [Q3, 0, 2M − 2 ] ;
(C.6b)

C31 = −H [Q∗3, −2, −2M ] , C32 = −T [(Q0 −Q1)∗, −M, M − 2 ] ,

C33 = −T [P ∗0 , −(M − 1), M − 1 ] , C34 = −H [(−iP2 + P3)∗, −1, −2M + 1 ] ;
(C.6c)

C41 = −T [(Q0 +Q1)∗, M − 2, −M ] , C42 = −H [Q∗3, 0, 2M − 2 ] ,

C43 = −H [(iP2 + P3)∗, 1, 2M − 1 ] , C44 = −T [P ∗0 , M − 1, −(M − 1) ] .
(C.6d)

These matrix blocks can also be easily coded. For example, if dftP0 and dftPi23 denote the

discrete Fourier spectra (15) with harmonics limited to l ∈ [−2M, 2M ] of P0 and (iP2 +P3), then

the respective matrix blocks (C.3) and (C.5) can be programmed in Matlab as:

for j = 1 : M

C_11(j, :) = dftP0(2*M+1 - (j-1) : 2*M+1 - (j-1) + (M-1));

C_12(j, :) = dftPi23(2*M - (j-1) :-1: 2*M - (j-1) - (M-1));

end

Appendix D: Explanation of why and how the spectral range of

Φ(L) depends on L

For the purpose of this explanation, it will suffice to replace the soliton with a box-like profile as

follows. Since Ψ1(x) has a bell-like shape, we replace it by some constant for x ∈ [−Lsol/2, Lsol/2].

On the other hand, iΨ2(x) changes sign at x = 0 (see Fig. 1), and therefore it needs to be replaced

by a piecewise-constant profile on the same interval. Thus, we approximate:

Ψ1(x) =

{
A, x ∈ [−Lsol/2, Lsol/2]

0, |x| > Lsol/2
, Ψ2(x) =

{
±iB, x ∈ [0, ±Lsol/2]

0, |x| > Lsol/2
, (D.1a)
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for some A,B,Lsol > 0, with Lsol � L. Then the t-dependent matrix on the r.h.s. of (44) is

replaced with:(
Ψ2

1 −Ψ2
2 (Ψ1 + Ψ2)2

(Ψ1 −Ψ2)2 Ψ2
1 −Ψ2

2

)
≡

(
C C e±iφ

C e∓iφ C

)
, x ∈ [0, ±Lsol/2] (D.1b)

and the zero matrix outside [−Lsol/2, Lsol/2], where C = A2 +B2 and φ = 2 arctan(B/A).

Using the replacement (D.1b), we can now calculate Φ(L) in (45) as

Φ(L) ≡ ΦLsol
Φfree , ΦLsol

=

(
Φ11 Φ12

−Φ12 Φ∗11

)
, Φfree = eiΩ(L−Lsol)σ3 (D.2)

where the last matrix is obtained by solving the soliton-free part of (44) on an interval t ∈
(Lsol/2, L − Lsol/2). The entries of ΦLsol

depend on A, B, and Lsol in a complicated way, but

their explicit form is not needed for our purpose; we will only require the result, found by a tedious

calculation, that Φ12 ∈ iR. The eigenvalues λ of Φ(L) in (D.2) are found from the quadratic

equation:

λ2 − 2|Φ11| cos [Ω(L− Lsol) + arg Φ11] · λ+
(
|Φ11|2 − |Φ12|2

)
= 0. (D.3)

Since ρ(Φ(L)) = |λ|, one can see that it varies with L periodically, with the period being

2π/(2Ω). Moreover, as stated in (47),

‖Φ(L)‖ = ρ
(

Φ(L) Φ†(L)
)1/2

= ρ
(

ΦLsol
Φ†Lsol

)1/2
= |Φ11|+ |Φ12|, (D.4)

where † denotes Hermitian conjugation, and the last equation is found via a somewhat tedious but

straightforward calculation. This result means that even when the “noise floor” does not grow on

average over time, the amplitude of the “noise floor” harmonics can still increase by the factor

‖Φ(L)‖ over a time t = L; however, it will decrease in one or more of subsequent time intervals of

the same length (see Figs. 10(b,c)).
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