
Higher-order explicit schemes based on

the Method of characteristics for hyperbolic equations

with crossing straight-line characteristics

T.I. Lakoba*, J.S. Jewell

Department of Mathematics and Statistics,

University of Vermont, Burlington, VT 05405, USA

June 10, 2021

Abstract

We develop Method of characteristics schemes based on explicit Runge–Kutta and pseudo-

Runge–Kutta third- and fourth-order solvers along the characteristics. Schemes based on Runge–

Kutta solvers are found to be strongly unstable for certain physics-motivated models. In contrast,

schemes based on pseudo-Runge–Kutta solvers are shown to be only weakly unstable for periodic

boundary conditions and essentially stable for the more physically relevant nonreflecting boundary

conditions. Our implementation of nonreflecting boundary conditions does not rely on interpolation.

Keywords: Method of characteristics, Coupled-mode equations, Higher-order methods.

*tlakoba@uvm.edu, 1 (802) 656-2610

1

1 Introduction

In this work we will develop higher-order explicit numerical schemes that use the Method of char-

acteristics (MoC) to solve systems of hyperbolic partial differential equations of the form:

y+
t + y+

x = f+
(
y+,y−

)
, y−t − y−x = f−

(
y+,y−

)
. (1a)

Here y± and f± are vectors of respective lengths N± and subscripts denote partial differentiation.

Functions f± are, in general, nonlinear. Moreover, they, in principle, may contain small diffusion-like

terms y±xx. We will briefly comment on the latter possibility in the concluding section of this work,

but in the main part of it we will assume that system (1a) is non-dissipative.

Systems of the form (1a) can be obtained by a simple change of variables from a slightly more

general system

yt + Ayx = f (y) , (1b)

where vectors y and f are obtained by stacking, respectively, y+ with y− and f+ with f−, and the

diagonalization of A is

c1I(N++N−) + c2Σ, with Σ ≡ diag(IN+ ,−IN−), (1c)

IN being the N ×N identity matrix, and c1,2 being some constants. Equations of the form (1a) or

(1b) describe physical models where there are two groups of waves that propagate with constant and

different velocities c± = c1±c2, in the notations of (1c). An extensive list of physical applications in

linear and nonlinear optics, plasma physics, atomic physics, and relativistic field theory where such

models arise is found in Section 2 of [1] (Refs. [4,5,20–29,44–64] there); see also Refs. [2]–[13] here

and Ref. [14] about applications to power transmission lines. Let us note that the Klein–Gordon

equation, which serves as a simplified model for many dispersive wave problems:

uxx − c−2utt = g(u, ux, ut), (2)

where c = const and g is some differentiable function of its arguments, can also be written in form

(1b) [15] with N+ = N− = 2. Numerical solution of various extensions of this well-studied model

has recently attracted atention [16, 17, 18]. The schemes that we propose below are applicable to

all of those extensions.

In the framework of the MoC, each of the two (systems of) equations in (1a) is transformed, by

the respective change of variables

(x, t)→ (ξ±, t), ξ± = x∓ t, (3a)

2

to an ordinary differential equation (ODE) in t, and then is solved by an ODE numerical solver

along the respective characteristic:

y±t = f± along ξ± = const. (3b)

Therefore, the accuracy of an MoC-based scheme follows that of the ODE solver. Our goal is

to develop schemes of order higher than two for the quasi-ODE system (3). We emphasize the

word ‘quasi’: the fact that each of the ODEs in (3b) is solved along a different characteristic

introduces several nontrivial modifications to the standard procedure of solving a system of (true)

ODEs numerically.

Before presenting a motivation for this work, it is important to state its limitations. First,

even though the body of physical applications described by Eqs. (1) is substantial, many hyperbolic

systems in fluid and gas dynamics, where the propagation speed depends on the wave amplitude,

cannot be described by (1a). Thus, for them, the schemes that we will develop in this work,

cannot be applied without modification. For such systems, a well-studied family of semi-Lagrangian

methods uses interpolation across a given time level to account for the grid “distortion” caused

by the characteristics’ curvature. Many highly accurate interpolation [19, 20] and characteristic-

backtracking [21] schemes have been used primarily in applications of semi-Lagrangian methods to

problems with one characteristic. We think that it should be possible (albeit not straightforward)

to combine these techniques with the higher-order schemes which we develop here for two crossing

characteristics; this is a topic for future work. The second limitation is that our approach requires a

substantial modification for problems in multiple spatial dimensions; see Section 9 for more detail.

In this and the next paragraph we present the motivation for this work. For long-time simulations

of system (1), it is essential that the numerical scheme distort its asymptotic dispersion relation

ω = ±k, |k| � 1 (4)

as little as possible; here k and ω are the wavenumber and frequency of Fourier modes y± ∼

exp[i(kx − ωt)]. The reason is that in schemes distorting (4), high-k Fourier modes propagate

with incorrect group velocities and also experience spuriously high reflection from the boundaries

back into the computational domain, thereby contaminating the solution (see, e.g., [22]). Most

finite-difference and collocation-type schemes do not preserve the asymptotic dispersion relation (4)

even approximately; see, e.g., [23, 24], whereas MoC-based schemes for systems with straight-line

characteristics preserve it inherently (see, e.g., [23, 1]). This is their main advantage over finite-

difference and collocation-type methods. (As a result, MoC-based schemes are able to compute

solutions with steep front very accurately; see Section 8.)

3

The main disadvantage of MoC-based schemes is that until now, only first- and second-order

accurate explicit MoC schemes for systems with crossing characteristics, such as (1a), have been

known [23, 25]. There exist fourth-order MoC schemes based on implicit Runge–Kutta (RK) [26] and

multistep [27] solvers for (1a). They are implemented as multi-stage predictor–corrector methods

and hence are, as far as implementation is concerned, explicit; yet, it is expected that a method

based on an explicit solver of the same order would be faster.

It is the purpose of this work to address the aforementioned disadvantage of MoC schemes and

develop 3rd- and 4th-order methods based on explicit ODE solvers for systems (1a). In addition to

the obvious benefit that a higher-order method is more accurate (or faster for the same accuracy)

than a lower-order one, a higher-order method is also expected to automatically provide the following

benefit. In many physical applications, systems of the form (1a) describe waves that propagate

without dissipation. Therefore, a desirable property of a numerical scheme would be to introduce

as little dissipation or energy gain as possible. The only explicit ODE solver that introduces no

dissipation is the leap-frog (or any of its equivalent forms). However, when used with the MoC

framework, it produces a strongly unstable method for energy-preserving systems of the form (1a)

[1]. Other explicit ODE solvers, such as RK, introduce either small dissipation or gain; the amount

of this dissipation/gain for non-stiff ODEs is known to decrease as the order of the solver increases.

Therefore, one should expect that an MoC-based scheme using a high-order ODE solver will preserve

the energy of the system (concentrated at low wavenumbers) better than a lower-order scheme. This

is the expected additional benefit of 3rd- and 4th-order accurate MoC-based schemes, mentioned

above. As for high wavenumbers, their temporal evolution is analyzed separately in this work.

A convergent numerical scheme must be not only accurate (consistent), but also stable. There-

fore, in this and the next three paragraphs, we will outline our approach to analyzing the stability

of an MoC-based scheme. The standard way is to apply the von Neumann stability analysis to the

linearized version of (1a):

ỹt + Σ ỹx = P ỹ, (5a)

where ỹ is a small deviation of the solution from some constant-in-x solution y0, Σ is defined in

(1c), and P = ∂f/∂y|y=y0 is the Jacobian matrix. For future reference, we mention that it has the

structure

P =

(
P++ P+−

P−+ P−−

)
, (5b)

where P+− = ∂f+/∂y−|y=y0 etc. For schemes based on the Method of lines, the outcome of the

von Neumann analysis depends on the scheme itself and on the eigenvalues of P; therefore, in that

case, applying the von Neumann analysis to a scalar equation would suffice. This, however, is not

4

so for MoC-based schemes, because matrix Σ also enters the equation determining the amplification

factor of the scheme. This was shown for first- and second-order MoC-based schemes in [1] and will

be reported for third-order schemes in Sections 3.2 and 6.2. Thus, it would be incorrect to perform

a stability analysis of an MoC-based scheme based only on the eigenvalues of the Jacobian matrix

P. Therefore, below we present an alternative approach that we followed.

We limited our numerical stability analysis of system (5) only to those P for which that system

is stable physically; i.e., its solutions of the form ỹ ∝ exp[ikx − iωt] with all k = O(1) do not

grow in time exponentially. When N+ = N− = 1 (see (1c)), it is straightforward to find all P for

which (5) is physically stable. However, already for N+ = N− = 2, the problem of determining

all possibilities for P where (5a) is physically stable becomes nontrivial. We do not address it here

but instead adopt the following simplified approach. We consider a certain family of models from

nonlinear optics whose linearization leads to a system (5a) with over 30 different forms of P with

N+ = N− = 2. Of those, we identify 4 distinct (i.e., not reducible to one another) P’s that lead to

a physically stable (5a). In addition, the linearization of the Klein–Gordon equation with g ≡ u and

written in the form (1b) (see Eqs. (2.6)–(2.8) in [15]), yields one more P. Thus, we have collected a

“bank” of 5 different P’s for which (5a) is physically stable, and which are listed in Section 2. We

then apply the von Neumann analysis to system (5a) with Σ = diag(I2,−I2) for each of these five

P’s. We will declare a given MoC scheme to be numerically stable (or weakly unstable; see Section

3) if the von Neumann analysis reveals no instability (or, respectively, only weak instability) for all

these five P’s, as well as for all cases with N+ = N− = 1. Admittedly, such an analysis cannot

predict numerical instability of a scheme for all possible cases of (5a); however, it does so for all

physically stable cases known to us. For any other case, the same analysis as outlined in Section

3 (and originally presented in [1] for lower-order MoC schemes) will determine the von Neumann

stability of the scheme.

In the previous paragraph we mentioned that the von Neumann analysis may reveal weak numer-

ical instability of a scheme. This means that for sufficiently high (but not necessarily the highest)

wavenumbers, the growth rate of the numerical error is O(h), where h is the discretization step in

space and time. As was demonstrated in [28], nonreflecting BC applied to low-order MoC-based

schemes can suppress the weak numerical instability. We found, by numerical simulations, that the

same conclusion also holds for the higher-order MoC schemes that are determined to be weakly un-

stable by the von Neumann analysis. On the other hand, if a scheme is found to be strongly unstable

(with the growth rate O(1)) by the von Neumann analysis, then it remains such for nonreflecting

BC.

5

Therefore, after presenting each of the new higher-order MoC schemes, we will report for it the

results of von Neumann analysis and accordingly classify the scheme as weakly or strongly unstable

(for periodic BC). Then, in Sections 3 and 7, we demonstrate that nonreflecting BC indeed suppress

weak, but not strong, numerical instability. When weak instability for wavenumbers satisfying

1 � |k| � kmax is suppressed by nonreflecting BC, there still remains a much weaker numerical

instability for |k| � 1 (corresponding to the ODE limit of (5a)) and for |k| ≈ kmax. The growth

rate of that instability decreases with the ODE solver’s order: for 2nd- and 3rd-order solvers it is

O(h3); for the 4th-order (and a 5th-order, not considered here), it is O(h5); etc. We will ignore this

very weak instability, as it can only affect results of ultra-long time simulations.

The organization of the main part of this work is as follows. In Section 2, we present the explicit

forms of matrix P for which we will perform the von Neumann analysis of our new MoC schemes

applied to system (5a). In Section 3, we will describe the construction of a MoC scheme with a

third-order RK solver. In what follows we will refer to a MoC scheme that uses an ‘XYZ’ ODE

solver as MoC-XYZ; thus, Section 3 presents details on MoC-RK3. It is shown that while the MoC-

RK3 is only weakly unstable for periodic BC for N+ = N− = 1, it can be strongly unstable for

N+ = N− = 2. Similar conclusions are reached about MoC-RK4 in Section 4. Therefore, in Section

5, we turn to a different family of ODE solvers, known as pseudo-RK (pRK) methods, which were

first proposed in [29]. These can be thought of as a hybrid between RK and multistep methods. We

also present modifications of pRK methods that can better preserve conserved quantities. Section

6 presents details on the construction and von Neumann stability analysis of MoC-pRK3 and MoC-

pRK4 methods. Unlike MoC-RK schemes, the MoC-pRK ones are found to be only weakly unstable

for periodic BC, and thus are expected to be stabilized by nonreflecting BC. In order to demonstrate

this, one needs to develop an algorithm of imposing non-periodic BC in the MoC-pRK scheme. We

present such algorithms in Section 7 and then verify that nonreflecting BC indeed suppress weak

instability of the MoC-pRK schemes. In Section 8 we demonstrate that the accuracy of the developed

MoC schemes indeed follows that of their respective ODE solvers. In Section 9, we summarize our

results, discuss their extensions, and briefly compare our main result with that of [26].

Given the considerable length of the paper, we recommend that the reader who is interested

only in the main idea of the MoC-(p)RK schemes limit their reading to: Sections 3.1, Figs. 2 and 3

and the paragraph immediately after it, Sections 5.1, 5.4, 6.1, and Figs. 7 and 8. Pseudocodes for

the MoC-pRK schemes are presented in Appendix B and the actual codes, in Ref. [30].

6

2 Explicit forms of P in (5a)

As noted in the Introduction, we will consider only the cases N± = 1 and N± = 2, as these are the

ones for which we are familiar with physical applications. We are interested only in those systems

where the solution is physically stable, i.e. has no exponentially growing Fourier harmonics exp[ikx]

for k = O(1). In this section, we present only the forms of the corresponding P matrices, which

for brevity we will refer to as “stable”, along with brief comments. Details on how these matrices

are obtained are in Appendix A. In what follows, we will use the common notation of 2 × 2 Pauli

matrices:

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
; (6a)

as well as (uncommon) ones for matrices that will appear in 4× 4 P matrices below:

σ4 =

(
0 1

0 0

)
=

1

2
(σ1 + iσ2), σ5 =

(
0 0

1 0

)
=

1

2
(σ1− iσ2), σ6 = σ1 +σ4, σ7 = iσ2 +σ4 .

(6b)

In the N± = 1 case, all physically stable P’s can be reduced (see Appendix A) to P = iσ1.

As explained in the Introduction, in the N± = 2 case, we had to deduce stable P’s from physical

models. The first one comes from the linear Klein–Gordon equation (with g ≡ u in (2)). Casting

equations (2.6)–(2.8) of [15] into form (5a), one can show that in this case,

P1 =
1

2

(
σ5 −σ7

−σ7 σ5

)
. (7)

The next model accounts for various forms of linear coupling among components of electromag-

netic field in two waveguides (two optical fibers in close proximity to one another [2, 3] or two

gratings with different periods in the same waveguide [4]). The corresponding stable P is:

P2 = i

(
σ2 aσ0

aσ0 σ2

)
, a ∈ [0,∞) . (8)

The other stable matrices come from various models describing nonlinear coupling of co- and

counter-propagating electromagnetic fields at distinct frequencies in optical fibers that support prop-

agation of two modes (polarizations); see [6]–[13], [31, 32]. The corresponding stable matrices are:

P3 = i

(
σ2 σ2

σ2 σ2

)
+ i a

(
σ2 O

O σ2

)
, a ∈ [−3/2, 7/4] ; (9)

P4 =

(
−iσ2 −σ6

σ6 iσ2

)
+ a

(
σ4 O

O −σ4

)
, a ∈ [−1, 3/4] ; (10)

7

P5 = i

(
σ2 σ2

σ2 σ2

)
+ a

(
σ4 −2σ4

−2σ4 σ4

)
, a ∈ [−1/2, 0] ; (11)

here and below O denotes the zero matrix of appropriate dimensions.

3 MoC schemes with RK3 solver

Here we will first derive a third-order accurate scheme based on an RK3 ODE solver. Then we

will show that this scheme is strongly numerically unstable for some of the P matrices with N± =

2. Finally, we will mention other versions of the same scheme; however, all of them will still be

numerically unstable for the same P matrices. There are three reasons why we will dwell quite

substantially on this unstable scheme:

� While describing its relatively simple setup, we will emphasize a number of key points that

will repeatedly occur in subsequent schemes, some of which will be essentially stable;

� The MoC-RK3 scheme is the only one suitable to start the stable 4th-order scheme developed

in Section 6;

� Finally, there are physically important systems for which the MoC-RK3 (and MoC-RK4,

considered in Section 4) are stable.

3.1 Derivation of the scheme

The stencil for MoC-RK3 scheme for system (1a) is shown in Fig. 1. Discretization sizes in space

and time are ∆x = ∆t ≡ h. Then at any time level tn = nh, the characteristics ξ± = const, defined

in (3a), are guaranteed to cross at the grid nodes, xm = mh. As will be explained below, the solution

at the nodes denoted by the two filled circles and three filled ellipses at level n will be needed to

determine the solution at node (xm, tn+1), denoted by an open circle. The different roles played by

the solution at filled circular and elliptical nodes will be explained after Eqs. (21).

An important condition that we will require of any MoC scheme developed below is that it avoids

interpolation of the solution along nodes at any one time level. This is because such an interpolation

is likely to introduce numerical diffusion and dispersion to the scheme, which are precisely the effects

one wants to avoid by using the MoC. An MoC-RK scheme will solve each of the equations in (3b)

using a particular RK solver along the respective characteristics. RK solvers of order higher than

second are known to require evaluation of f± at an intermediate time level t = tn+b with b ∈ (0, 1).

As we will show below, this will require (approximate) evaluation of y− at t = tn+b when solving the

ODE for y+ along ξ+ = const, and vice versa. Such an evaluation of y− can be done only along the

8

n+1

n+1/2

n
m m+1 m+2m-1m-2 m-1/2 m+1/2

+ = const - = const

Figure 1: Stencil for MoC-RK3 scheme. Vertical axis is time. Actual nodes are at the intersection

of the (solid) grid lines, while virtual nodes (open squares) are at the intersection of thin dotted

lines. Thick dashed and dotted lines show the directions of the characteristics. Nodes connected by

dashed (dotted) characteristics are used to determine (y+)n+1
m (respectively, (y−)n+1

m).

characteristic ξ− = const, via the second equation in (3b). It is clear from Fig. 1 that the only value

of b that will not require interpolation along nodes of time level tn is b = 1/2. The corresponding

“virtual node” where y− and y+ will be evaluated are shown by open squares. Therefore, among all

possible RK3 solvers we need to consider only those that involve the intermediate level tn+1/2 and

no other intermediate level.

Such a well-known RK3 solver for the ODE

yt = f(y, t) (12)

is:

(κ1)n = f(yn, tn), (κ2)n = f

(
yn +

h

2
(κ1)n, tn+1/2

)
, (κ3)n = f (yn − h (κ1)n + 2h (κ2)n, tn+1) ;

(13a)

yn+1 = yn +
h

6
((κ1)n + 4(κ2)n + (κ3)n) ; (13b)

where yn is the solution at time level tn and κ1,2,3 are known as “stage derivatives”. When applied

to ODEs (3b), the first stage derivatives acquire the following form:

(κ±1)nm∓1 = f±
(
(y+)nm∓1 , (y

−)nm∓1

)
. (14)

Note that the (m,n) index of a stage derivative is, and in what follows will be, that of the node

where the “old” solution at time level tn is taken to obtain the “new” solution at node (m,n).

The following remark about (14) contains the key idea of how a solver for an ODE (12) can

be applied to a system of ODEs (3) defined along different characteristics. To illustrate that idea,

let us focus on κ+
1 . Note that the evolution of y+ along ξ+ = const is determined by f+(y+,y−).

Comparing this with (12), one sees that the role of t in f(y, t) is played by y−(t). That is, in the

expression for κ+
1 , tn in (13a) must be interpreted as y−(ξ+, tn), where ξ+ is the constant value

on the characteristic. From Fig. 1, one sees that one should take y−(ξ+, tn) ≡ (y−)nm−1 in the

9

expression for (κ+
1)nm−1. Similarly, when solving the ODE (3b) for y−, one interprets y+ as the

counterpart of t in (12), and hence y+(ξ−, tn) ≡ (y+)nm+1.

Following the same idea, one obtains expressions for the other stage derivatives:

(κ+
2)nm−1 = f+

(
(y+)nm−1 +

h

2
(κ+

1)nm−1 , (y−)
n+1/2
m−1/2

)
; (15a)

(κ−2)nm+1 = f−
(

(y+)
n+1/2
m+1/2 , (y−)nm+1 +

h

2
(κ−1)nm+1

)
; (15b)

(κ+
3)nm−1 = f+

(
(y+)nm−1 − h (κ+

1)nm−1 + 2h (κ+
2)nm−1 , (y−(2))

n+1
m

)
; (16a)

(κ−3)nm+1 = f−
(

(y+
(2))

n+1
m , (y−)nm+1 − h (κ−1)nm+1 + 2h (κ−2)nm+1

)
. (16b)

Notations (y±)
n+1/2
m±1/2 and (y±(2))

n+1
m stand for a certain approximation of the respective y, as will

be defined shortly. Given the stage derivatives, one finds the solution at the next time level by a

counterpart of (13b):

(y±)n+1
m = (y±)nm∓1 +

h

6

(
(κ±1)nm∓1 + 4(κ±2)nm∓1 + (κ±3)nm∓1

)
. (17)

We now introduce notations that will be extensively used below:

(y±(1))
n+1
m = (y±)nm∓1 + h (κ±1)nm∓1 ; (18a)

(y±(2))
n+1
m =

1

2

[
(y±)nm∓1 + (y±(1))

n+1
m + h f±

(
(y+

(1))
n+1
m , (y−(1))

n+1
m

)]
. (18b)

They provide, respectively, the first- and second-order accurate approximations of the solution at

node (m,n+1). The first one is obtained by the simple Euler (SE) solver, and the second one, by the

modified Euler (ME) solver (a.k.a. explicit trapezoid rule), applied along respective characteristics

ξ± = const. Note that (y±(2))
n+1
m are used in (16); this will be explained shortly.

We now describe how the approximations (y±)
n+1/2
m±1/2 in (15) are computed, using (y−)

n+1/2
m−1/2

as the specific example. Note that this variable in (15a) is meant to denote y−(ξ+, tn+1/2), as was

explained after (14). Since its exact value is not available, one needs to use its approximation. A key

observation is that it suffices for this approximation to have error O(h3). Indeed, such an error will

introduce an error h · O(h3) = O(h4) in the solution (17), and this is consistent with the fact that

the sought third-order accurate solution (y+)n+1
m has a local truncation error O(h4). For the same

reason, it suffices to use the approximate solution (18b) instead of the exact values y±(ξ∓, tn+1) in

(16).

10

Now, the desired approximation of (y−)
n+1/2
m−1/2 is given by the Taylor expansion (see Fig. 1):

(y−)
n+1/2
m−1/2 = (y−)nm +

h

2

[
(y−)nm

]′
+

(h/2)2

2

[
(y−)nm

]′′
+O(h3)

= (y−)nm +
h

2
f−
(
(y+)nm, (y

−)nm
)

+
h2

8

[
(y−)nm

]′′
+O(h3) . (19)

We know the first two terms in the last expression, but not the third. We find it from the fact that

the solution defined in (18b) has the Taylor expansion

(y−(2))
n+1
m−1 = (y−)nm + h

[
(y−)nm

]′
+
h2

2

[
(y−)nm

]′′
+O(h3) . (20)

Solving (20) for [(y−)nm]
′′

and substituting the result into (19) yields:

(y−)
n+1/2
m−1/2 =

3

4
(y−)nm +

1

4
(y−(2))

n+1
m−1 +

h

4
(κ−1)nm ; (21a)

here we have used (14) and also omitted the O(h3) contribution. By the same token, the similar

term in (15b) is computed as

(y+)
n+1/2
m+1/2 =

3

4
(y+)nm +

1

4
(y+

(2))
n+1
m+1 +

h

4
(κ+

1)nm . (21b)

By using different filled symbols — circles and ellipses — in Fig. 1, we indicated that the former

contributed to the solution at node (n + 1,m) via the variables that were explicitly listed in the

stage derivatives (14)–(16), while the latter contributed via the auxiliary solutions (21).

To summarize, Eqs. (14)–(18) and (21) define an MoC-RK3 scheme that is a counterpart of the

ODE solver (13). The reason why this is a, and not the, counterpart scheme is that approximate

solutions y±(1) and y±(2) could, in principle, be computed by different first- and second-order schemes;

other “degrees of freedom” in obtaining (y±)n+1
m will be mentioned in Section 3.3. However, using

any of those degrees of freedom will not favorably affect stability of the resulting MoC-RK3 scheme.

We will address this issue in the next subsection.

Let us make two comments on using BC for the MoC-RK3. First, periodic BC require one to

define two nodes outside of each boundary (i.e., m = 0, −1 and m = M + 1, M + 2). This is done

simply by:

(y±)1−j ≡ (y±)M−j+1 and (y±)M+j ≡ (y±)j ; j = 1, 2. (22)

Second, the treatment of physically more relevant nonreflecting BC

y+(0, t) = bleft(t), y−(L, t) = bright(t) (23a)

11

where [0, L] is the spatial domain where (1a) is solved, proceeds slightly differently in that some of

y(2)’s in (16) and (21) are replaced by the exact BC values

(y+)n1 = bleft(tn), (y−)nM = bright(tn), n ≥ 1. (23b)

Specifically, (y−(2))
n+1
M in (16a) with m = M and (y+

(2))
n+1
1 in (16b) with m = 1 are replaced with

the exact values (y−)n+1
M and (y+)n+1

1 , respectively, from (23b). Also, when computing (y−(2))
n+1
1

in (21a) and (y+
(2))

n+1
M in (21b), one similarly uses the respective exact boundary values instead of

(y+
(1))

n+1
1 and (y−(1))

n+1
M in (18b).

3.2 Von Neumann analysis of the MoC-RK3 scheme

When carrying out von Neumann analysis of various schemes using the linear model equation (5),

it will be convenient to define:

z = hk, ỹn
m =

(
(ỹ+)nm
(ỹ−)nm

)
, Q = exp [−iΣz] , (24)

where k is the wavenumber, so that z ∈ [−π, π), and tilde here and below denotes variables obtained

by linearization. Then the linearization of (17) can be written as:

ỹn+1
m =

[
Q +

h

6
(K1 + 4K2 + K3)

]
ỹn
m ≡ Φ(z) ỹn

m . (25)

The expression for K1 is found from the linearization of (14):

K1 = Q P . (26)

Note that the factor Q has appeared because the m-index of ỹn
m is shifted by 1 compared to the

indices of (y±)nm∓1 on the r.h.s. of (14).

We will now briefly outline the derivation of K2 and then will state the form of K3, whose

derivation follows similar lines. Linearization of (15a) yields:

(
κ̃+

2

)n
m−1

= P++

((
ỹ+
)n
m−1

+
h

2
K+

1 ỹn
m

)
+ P+−(ỹ−)n+1/2

m−1/2
; (27)

where K+
1 denotes the top N+×N block of K1, with N ≡ (N+ +N−). The derivation of

(
κ̃+

2

)n
m−1

is completed by computing
(
ỹ−
)n+1/2

m−1/2
from the linearization of (21a) and (18); this is quite tedious

but straightforward. Combined with a similar calculation for
(
κ̃−2
)n
m+1

, this yields:

K2 = Pdiag

(
Q +

h

2
K1

)
+

1

8
Poffdiag (8I + (4I + hP) hP) , (28)

where

Pdiag =

(
P++ O

O P−−

)
, Poffdiag =

(
O P+−

P−+ O

)
, (29)

12

and we have omitted the obvious (N×N) dimension of the identity matrix. In obtaining the second

term in (28), Eq. (29) of [1] was used:

(ỹ(2))
n+1
m =

1

2
[Q + (I + hP)Q(I + hP)] (ỹ)nm . (30)

Similarly,

K3 = Pdiag (Q− hK1 + 2hK2) +
1

2
Poffdiag (Q + (I + hP) Q (I + hP)) . (31)

The amplification factor of the numerical error is the maximum absolute value of the eigenvalues,

max |λ|, of matrix Φ(z) in (25). Given a matrix P, the amplification factor is found numerically

(say, by Matlab) from Eqs. (25), (26), (28)–(31) in about one second for z ∈ [−π, π) and is shown for

P = P1 and P = P2 in Fig. 2(a,c), respectively. The results for P = P3 and iσ1 are qualitatively

similar to that shown in Fig. 2(c), while that for P = P4 and P = P5 is similar to that shown

in Fig. 2(a). The feature to note is the narrow peak of height ∼ 0.35 near z = π. That peak,

as well as a minor difference between those peaks in the cases of P1 and P4, are illustrated in

Fig. 2(b). The growth rates of the numerical error that follow from Figs. 2(a) and 2(c) are O(1) and

O(h), corresponding, respectively, to strong and weak numerical instabilities. For example, Fig. 2(a)

suggests that

max
z
|λ| = 1 + c h, (32a)

where c is some constant (c ∼ 0.35). Then the error in n = t/h time steps grows by the factor of

(1 + c h)t/h ≈ ect, (32b)

whence c is the growth rate. Similarly, the growth rate predicted by Fig. 2(c) is approximately

0.25h (note that in Fig. 2(c), the vertical axis label has a higher power of h in the denominator than

that in Figs. 2(a,b)).

Figures 3(a,b) show Fourier spectra of the numerical solution found by direct numerical simula-

tions of Eqs. (5a) with matrices P1 and P2 and with periodic boundary conditions (BC). Since (5a)

is linear, spectra of the numerical error of any nonlinear system whose linearized matrix coincides

with the respective P will look the same as in Fig. 3. In Section 3.2. of [1] it was explained why

Figs. 3(a) and 3(b) look similar to Figs. 2(a) and 2(c), respectively. There is, however, a minor

difference between Figs. 3(a) and 2(a) in that the numerical simulations reveal a slight growth of

the error for most z away from 0 and π (which appears as a “shelf” in Fig. 3(a)), which does not

seem to be predicted by the von Neumann analysis. However, we verified that this growth is linear

(as opposed to exponential) in time and occurs because for each z in that range, matrix Φ(z) has

13

0 /2
z

0

0.1

0.2

0.3

0.4

(
m

a
x|

|
-

1
)

 /
 h

(a)

3 3.05 3.1
z

0

0.1

0.2

0.3

0.4

(
m

a
x|

|
-

1
)

 /
 h

(b)

P
4
 with a=0

P
1

0 /2
z

0

0.05

0.1

0.15

0.2

0.25

0.3

(
m

a
x
|

|
-

1
)

 /
 h

2

(c)

Figure 2: Amplification factor of matrix Φ(z) in (25) (for the MoC-RK3) for matrices P1 (panels

(a,b)) and P2 with a = 1 (c). Note a different power of h in the ratio plotted in (a,b) versus that

in (c). The plots for z ∈ [−π, 0] are symmetric to those shown above and hence are not presented.

Results for two difference values of h are shown to illustrate the trend; h = 0.05 (solid) and h = 0.1

(dashed). Panel (b) shows a close-up of (a) near z = π for two P matrices.

two pairs of eigenvalues that are almost the same. Such “almost repeated” eigenvalues, leading to

a “shelf” in the Fourier spectrum, appear only for P1 but not for P2 through P5.

0 /2
z

-8

-7

-6

-5

-4

-3

-2

-1
(a)

at t = 0

0 /2
z

-8.5

-8

-7.5

-7

-6.5
(b)

0 /2
z

-12

-10

-8

-6 (c)

Figure 3: Fourier spectra of the numerical solution by the MoC-RK3 of (5a) with P1 (a) and P2

with a = 1 (b,c); h = 0.05 — solid; h = 0.1 — dashed. The initial condition is the white Gaussian

noise with standard deviation 10−10. The spectrum at t = 0 is shown in (a) only. Note different

vertical scales in all three panels. Panels (a,b) are for periodic BC, while (c) is for nonreflecting

BC (where the solution is multiplied by a spatial window vanishing at the end points before being

Fourier-transformed). Simulation parameters: L = 100 in all panels; t = 50 (a); t = 100 (b); t = 300

(c) for better visibility. The notation ‖ . . . ‖ stands for the `2-norm of the four-component vector.

The main conclusion of this subsection is that while the developed MoC-RK3 scheme is essentially

numerically stable for all physically stable systems (1a) with N± = 1 and for some systems with

N± = 2 (P = P2,P3), it is unstable for a number of N± = 2 systems (P = P1,P4,P5), including

the Klein–Gordon equation. In the previous sentence we need to clarify the word ‘essentially’, since

Figs. 2(c) and 3(b) exhibit a weak, but still non-negligible numerical instability near the “middle”

of the displayed spectral window (i.e., for k ∼ kmax/2). In [28] it was shown for the MoC-SE and

MoC-ME schemes (i.e., Eqs. (18a) and (18b), respectively) that such a weak instability, appearing

for periodic BC, can be suppressed by nonreflecting BC. The latter BC are more physically relevant

14

than periodic ones as they occur, e.g., in the problem of a field incident on a boundary of a medium

described by Eqs. (1). Figure 3(c) illustrates that such instability suppression also takes place for

the MoC-RK3 scheme (14)–(17). We did not carry out an analysis of this phenomenon for the

MoC-RK3 scheme because: (i) It will be considerably more technical than such an analysis for

the MoC-ME in [28], given that the MoC-RK3 is more complicated than MoC-ME; (ii) It will

not provide any new insight compared to what was shown in [28]; and (iii) It will distract the

reader’s attention from our main task, which is the development of an MoC scheme that is stable

(for nonreflecting BC) for all P matrices listed in Section 2.

It remains to point out two more aspects of the (in)stability of the schemes developed in this

work. Both of these aspects were pointed out in [28] in relation to second-order MoC schemes.

First, while nonreflecting BC suppress numerical instability “in the bulk” of the spectral window,

they are unable to suppress it near z = 0 and z = π. The instability near z = 0 is very weak and

is inherited from that of the ODE solver applied to a conservative ODE. For example, its growth

rate is O(h3) for RK2 (such as ME) and RK3 solvers and O(h5) for RK4 and RK5 solvers. Such an

instability is, therefore, inconsequential for most but ultra-long (t & 106) simulations with h ∼ 0.01

and hence will be ignored in what follows. Second, the nonreflecting BC are unable to suppress a

strong numerical instability near z = π, such as that seen in Fig. 2(a). That is, if simulations that

led to that Figure are repeated with nonreflecting BC, the peak near z = π will be essentially the

same as in Fig. 2(a) (plot not shown to save space). Thus, the MoC-RK3 is numerically strongly

unstable for some of the systems (5): specifically, for those with P = P1,P4,P5, regardless of the

BC used.

3.3 Other versions of the MoC-RK3 scheme

In the development of the scheme in Section 3.1, one has the following three degrees of freedom.

First, y±(2) in (18b) could be computed by a different second-order MoC scheme, e.g., one based

on the midpoint solver.1 Second, one could use another RK3 solver where one stage derivative is

computed at the time level tn+1/2. The only such solver with three stages is the Strong Stability

Preserving RK3 [33], which for the ODE (12) is given by:

(κ1)n = f(yn, tn), (κ2)n = f (yn + h(κ1)n, tn+1) , (κ3)n = f

(
yn +

h

4

(
(κ1)n + (κ2)n

)
, tn+1/2

)
;

(33a)

yn+1 = yn +
h

6
((κ1)n + (κ2)n + 4(κ3)n) . (33b)

1The leapfrog solver could, in principle, be another possibility. However, in [1, 28] it was shown that the corre-

sponding MoC scheme can be strongly numerically unstable for both periodic and nonreflecting BC. Hence we do not

consider an MoC-leapfrog scheme as a viable option.

15

Third, (y±)
n+1/2
m±1/2 in (21) could be found not by Taylor expansion but by using the MoC-ME with

half step (see Fig. 1). Several combinations of the above degrees of freedom were tried in [34].

However, all of them yielded results that are qualitatively similar to those shown in Figs. 2 and 3.

Therefore, we conclude that the MoC-RK3 scheme cannot be used to simulate a significant number

of systems (1a) with N± = 2, and hence we need to look for a different scheme.

4 MoC schemes with RK4 solver

The scheme presented in this section has the same stability problem as the MoC-RK3. That is, it

can be used to stably simulated equations (1a) with N± = 1 and with N± = 2 when the linearization

matrices are P2 or P3, but not the other three cases. Therefore, we will only state the equations of

this scheme based on the classical RK4 (cRK4) solver. We will then make a hypothesis as to what

causes the instability and hence, in Section 6, will be able to formulate stable MoC schemes of 3rd

and 4th orders.

The first two stage derivatives of the MoC-cRK4 are given by (14) and (15). The other two are

given by:

(κ+
3)nm−1 = f+

(
(y+)nm−1 +

h

2
(κ+

2)nm−1 , (y−)
n+1/2
m−1/2

)
; (34a)

(κ−3)nm+1 = f−
(

(y+)
n+1/2
m+1/2 , (y−)nm−1 +

h

2
(κ−2)nm+1

)
; (34b)

(κ+
4)nm−1 = f+

(
(y+)nm−1 + h (κ+

3)nm−1 , (y−(3))
n+1
m

)
; (35a)

(κ−4)nm+1 = f−
(

(y+
(3))

n+1
m , (y−)nm+1 + h (κ−3)nm+1

)
. (35b)

Finally,

(y±)n+1
m = (y±)nm∓1 +

h

6

(
(κ±1)nm∓1 + 2(κ±2)nm∓1 + 2(κ±3)nm∓1 + (κ±4)nm∓1

)
. (36)

In (35), (y±(3))
n+1
m need to be computed with local error O(h4); see the paragraph before (19). Such

a solution is available via the MoC-RK3. Similarly, (y±)
n+1/2
m±1/2 in (34) and the counterparts of (15)

for (κ±2)nm∓1 also need to be computed with the local error O(h4). Given (y±(3))
n+1
m , this can be done

following the derivation of (21). The result is (see Appendix C in [34]):

(y±)
n+1/2
m±1/2 =

1

2
(y±)nm +

1

2
(y±(3))

n+1
m±1 +

h

8
f±
(
(y+)nm, (y

−)nm
)
− h

8
f±
(

(y+
(3))

n+1
m±1, (y

−
(3))

n+1
m±1

)
. (37)

Von Neumann analysis of the MoC-cRK4 follows the lines presented in Section 3.2 and produces

qualitatively similar results. Namely, this scheme is strongly unstable for P = P1, P4, and P5. We

16

also tried to use a different RK4 solver (the first one listed in [35]), but obtained the same negative

results.

Thus, to develop an essentially stable alternative to the MoC-RK3 and MoC-RK4 schemes, it

is important to reflect on the question: Why did they fail to be stable? We do not know an answer

to this. However, from our extensive experimentation with various versions of these schemes, we

have surmised that the culprit may be the fact that they all required evaluation of the solution at a

virtual node such as (m+ 1/2, n+ 1/2); see Fig. 1. We have accepted this hypothesis and therefore

sought methods that require solution values only at the actual nodes (like the MoC-ME (18b)). This

led us to consider the pseudo-RK methods, described next.

5 Review of pseudo-RK solvers for ODE (12)

Here we will present ODE solvers that we will use in the next section to develop MoC schemes free

of the strong instability observed for the MoC-RK3 and MoC-RK4. We will begin by stating the

3rd-order pseudo-RK (pRK) solver originally proposed by Byrne and Lambert [29] and then will

present a new 4th-order solver, derived in [34]. We will then describe modified versions of pRK3

and pRK4 methods, proposed by Nakashima [36]. The usefulness of those modified pRK solvers

will become clear when we consider their stability regions. Finally, we will point out advantages of

using pRK solvers over the multi-step Adams–Bashforth ones.

5.1 pRK solvers based on Byrne–Lambert’s idea

The framework of the methods proposed in [29] is:

yn+1 = yn + h

s∑
j=0

m∑
i=1

cji (κi)
n−j , (38a)

where cji as well as ail and bi in (38b) below, are certain constants, and the stage derivatives have

the form:

(κi)
n−j = f

(
yn−j +

i−1∑
l=1

ail (κl)
n−j , tn + h bi

)
. (38b)

Parameter s is the number of time levels before the current one which “contribute” their stage

derivatives κi towards the solution at the new time level. Constants cji and ail are entirely deter-

mined by bi. According to the hypothesis stated at the end of Section 4, bi must be an integer (and

typically 0 or 1). The 3rd-order solver (38) with s = 1, b1 = 0, and b2 = 1 was found in [29]; we will

refer to it as ‘the pRK3’:

(κ1)n = f(yn, tn), (κ2)n = f (yn + h (κ1)n, tn+1) ; (39a)

17

yn+1 = yn +
h

12

(
13(κ1)n + 5(κ2)n − (κ1)n−1 − 5(κ2)n−1

)
. (39b)

The 4th-order solver presented in [29] had s = 1 (as does (39)), b1 = 0, and could use b2 and

b3 as free parameters. If one sets b2 = 1, one must set b3 to equal another integer. Setting b3 = 2

would be awkward in view of the future use of the solver in the MoC framework. Indeed, suppose

one solves for (y+)n+1; then one would need to first estimate (y−)n+2, as it “replaces” tn+2 in the

ODE solver (see text after (14)). One can alternatively set b3 = −1. However, this produces no

advantage over, and uses more function evaluations per step than, a solver with s = 2 that was

originally derived in [34] and which has the form (‘the pRK4’):

yn+1 = yn +
h

24

(
37(κ1)n + 9(κ2)n − 14(κ1)n−1 − 18(κ2)n−1 + (κ1)n−2 + 9(κ2)n−2

)
, (40)

with κ1,2 being defined in (39a).

5.2 pRK solvers based on Nakashima’s idea

Nakashima proposed [36] computing (κi)
n for i ≥ 2 in (38b) using not only (κl)

n (l < i), but also

the solution and selected stage derivatives from the previous time level. The general form of the

Nakashima pRK (NpRK) solver can be found in [36]; its special cases were explored in [37] and [38].

Here we present only a 3rd- and a 4th-order solver with b1 = 0 and b2 = 1. For both solvers, κ1 is

computed as in (39a) (and all previous instances) and

(κ2)n = f
(
yn + Λ

(
yn − yn−1

)
+ h

(
a20(κ1)n−1 + a21(κ1)n

)
, tn+1

)
. (41)

Then the NpRK3 solution is computed as:

yn+1 = yn + h
(
c11(κ1)n + c12(κ2)n + c21(κ1)n−1

)
; (42a)

a21 = 2 + a20, Λ = −1− 2a20, c11 = 2/3, c12 = 5/12, c21 = −1/12 . (42b)

Note that unlike in the Byrne–Lambert pRK solvers (with fixed bi’s), here one has a free parameter,

a20.

The NpRK4 solution is computed as:

yn+1 = yn + h
(
c11(κ1)n + c12(κ2)n + c21(κ1)n−1 + c22(κ2)n−1 + c31(κ1)n−2

)
. (43a)

Here either Λ or c22 can be chosen as free parameters. If Λ is free, then

a20 = −1 + Λ

2
, a21 =

3− Λ

2
, c11 =

7

6
, c12 =

3

8
, c21 = − 5

24
, c22 = −3

8
, c31 =

1

24
; (43b)

18

while if c22 is free, then

a20 = 2, a21 = 4, Λ = −5, c11 =
19− 24c22

24
, (43c)

and c12, 21, 31 have the same values as in (43b). The role of the free parameters in (42) and (43) is

revealed in the next subsection.

5.3 Stability regions of pRK and NpRK solvers

The hyperbolic PDEs that we consider in this work conserve the “energy” (or the L2-norm) of the

solution; see [1]. They may also conserve other quantities, such as the Hamiltonian. Eigenvalues of

all P matrices listed in Section 2 lie on the imaginary axis. Therefore, one can expect that ODE

solvers whose stability region boundaries have a high degree of tangency to the imaginary axis are

preferred to be used in the MoC framework.2 This is the feature that we will emphasize in this

subsection.

In Fig. 4 we show stability regions of the RK3 (13), cRK4 (see Section 4), the pRK3 (39), and

the pRK4 (40). The following observations are apparent. First, while the size of the stability region

increases with the solver’s order for the RK solvers, it decreases for the pRK ones. (The latter trend

is the same as that for multi-step solvers.) In particular, the length of the interval along which the

stability is tangent to the imaginary axis appears, in Fig. 4(a), to be smaller for the pRK4 than for

the RK3. However, Fig. 4(b) shows that the situation is actually the opposite. (As a quantitative

measure of the degree of tangency of a curve to the imaginary axis, one can use the exponent of

h in the ratio Re(hλ) / Im(hλ), where (Re(hλ), Im(hλ)) is a point on the curve. Then the degree

of tangency of any RK3 and pRK3 solver can be shown to be 3, while that of any RK4 or pRK4

solvers is 5.) Based on Fig. 4(b), one can expect that the pRK4 should be able to preserve conserved

quantities of an ODE better than both the pRK3 and RK3 solvers. This was confirmed in [34] for

selected nonlinear, non-stiff ODEs. In Section 8 we will demonstrate a similar trend for a PDE.

Figure 5 illustrates the improvement that NpRK solvers can bring over the pRK ones. Tangency

of the NpRK3 stability regions to the imaginary axis can be improved by a judicious choice of a20;

of the three values shown in Fig. 5, the solver with a20 = 1.4 has the best tangency. The tangency

of the NpRK3 solvers can even exceed that of the RK3 one (see panel (b)). Correspondingly, it

was shown in [34] that for the ODEs mentioned in the previus paragraph, the NpRK3 was able

to preserve conserved quantities significantly better than the RK3. Analogous results hold for the

2Such solvers will at least do well in the limit k → 0, where ∂x in (1a) can be dropped and the PDE becomes an

ODE. Whether they will do well for arbitrary k can only be determined on a case-by-case basis; see the footnote in

Section 3.3 about the leapfrog solver, whose ODE stability region is a segment on the imaginary axis.

19

cRK4 RK3

pRK3 pRK4

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

-3

-2

-1

0

1

2

3

0 0.002 0.004

-0.4

-0.2

0

0.2

0.4

Figure 4: Stability regions of the four ODE solvers for the model equation y′ = Λy (see any textbook

on Numerical Analysis). As per standard notations, the horizontal and vertical axes denote hReΛ

and h ImΛ, respectively. Various line styles denote the solvers as labeled in panel (a). Panel (b)

shows a magnification of panel (a) near the imaginary axis. Line styles pertain to the same solvers

in both panels.

NpRK4 solvers (not shown to save space), except that even the optimal of them (with Λ = −5 and

c22 = −0.15) does not become quite as good as the cRK4 in preserving conserved quantities. In

Section 8 we will show that optimizing values of the free parameters in the NpRK solvers can also

improve performance of the MoC schemes based on these solvers. However, the optimal values of

parameters are not, in general, those suggested by the stability plots and do vary depending on the

PDE and its simulated solution.

-2.0 -1.5 -1.0 -0.5 0.0

-1.0

-0.5

0.0

0.5

1.0

RK3

0 0.002 0.004

-0.4

-0.2

0

0.2

0.4

Figure 5: Stability regions of the pRK3 (thick dashed) and the NpRK3 (solid) with a20 = 1.1 (thin),

1.4 (medium), and 1.7 (thick). Panel (b) shows a magnification of panel (a) near the imaginary

axis. The boundary of the stability region of the RK3 is also shown (in (b) only) for comparison.

20

5.4 Advantages of the pRK over Adams–Bashforth solvers

The pRK solvers (38) and their Nakashima variety are, essentially, a hybrid between RK and

multi-step Adams–Bashforth solvers. They have two advantages over the latter solvers. First, one

can verify that stability regions of the pRK solvers go closer to the imaginary axis than stability

regions of the Adams–Bashforth solvers of respective orders. Second, and more importantly, the

number of of previous time steps used in Adams–Bashforth solvers is greater than that number

used in pRK solvers. When solving an ODE, this is not a problem (and may only moderately

increase storage requirements). However, the implementation of MoC schemes with non-periodic

BC becomes increasingly complicated as the number of previous time levels involved increases. In

Section 7 we will see that increasing this number from one (in the MoC-pRK3) to two (in the

MoC-pRK4) significantly complicates the implementation of the scheme. In comparison, an MoC-

Adams–Bashforth-4 scheme would need three previous time levels, and coding it for any non-periodic

BC would be very complicated.

6 MoC schemes of 3rd and 4th orders based on (N)pRK solvers

for periodic BC

We will begin by presenting the schemes for the 3rd- and 4th-order MoC-pRK3 and MoC-NpRK3.

We will then present results of the von Neumann analysis for these schemes and thereby arrive at

one of our key conclusions: These schemes exhibit only a weak instability with growth rate O(h),

which is actually weaker than that of the MoC-ME. A demonstration that this instability disappears

for nonreflecting BC, is postponed until Section 7.

6.1 MoC-pRK and MoC-NpRK schemes

In complete analogy with (17), (14), and (15) for the MoC-RK3, the MoC-pRK3 scheme is:

(y±)n+1
m = (y±)nm∓1 +

h

12

(
13(κ±1)nm∓1 + 5(κ±2)nm∓1 − (κ±1)n−1

m∓2 − 5(κ±2)n−1
m∓2

)
, (44a)

where κ±1 are given by (14) and

(κ+
2)nm−1 = f+

(
(y+

(1))
n+1
m , (y−(2))

n+1
m

)
, (κ−2)nm+1 = f−

(
(y+

(2))
n+1
m , (y−(1))

n+1
m

)
, (44b)

with (y±(1))
n+1
m and (y±(2))

n+1
m being found with respective local errors O(h2) and O(h3) by (18).

Once the stage derivatives κ±1,2 are found at time level tn−1, they are stored for one time step, to

advance the solution from tn to tn+1; see the last two terms in (44a). The stencil for the MoC-pRK3

21

n

(a)n+1

n-1

m-2 m-1 m m+2m+1

+ = const - = const

n+1

mm-1m-2

n

m+1 m+3m+2m-3

n-1

n-2

(b)

Figure 6: Stencils for the MoC-(N)pRK3 (a) and MoC-(N)pRK4 (b) schemes. Note that unlike

in Fig. 1, there are no virtual nodes here. Filled (open) circles show nodes where the solution is

available (is to be computed). See text for the explanation of line styles in (a).

is shown in Fig. 6(a). The dashed and dotted lines connect all the nodes required to compute

(y+)n+1
m and (y−)n+1

m , respectively.

The MoC-NpRK3 scheme based on the ODE solver (42a) has the same stencil, and is given by:

(y±)n+1
m = (y±)nm∓1 + h

(
c11(κ±1)nm∓1 + c12(κ±2)nm∓1 + c21(κ±1)n−1

m∓2

)
, (45a)

where κ±1 are given by (14) and

(κ+
2)nm−1 = f+

((
y+
)n
m−1

, (y−(2))
n+1
m

)
, (κ−2)nm+1 = f−

(
(y+

(2))
n+1
m ,

(
y−)nm+1

)
, (45b)

(
y±
)n
m
≡ (y±)nm + Λ

(
(y±)nm − (y±)n−1

m∓1

)
+ h

(
a20(κ±1)n−1

m∓1 + a21(κ±1)nm
)
, (45c)

with the coefficients aij and cij computed as in (42b).

To start the third-order schemes (44) and (45), one can compute the solution at the time level

t1 ≡ h by any second-order scheme, such as the MoC-ME (18b). Also, for periodic BC, a modification

of these schemes near the edges of the computational domain, m = 1 and m = M , is done by (22).

The MoC-pRK4 scheme is:

(y±)n+1
m = (y±)nm∓1+

h

24

(
37(κ±1)nm∓1 + 9(κ±2)nm∓1 − 14(κ±1)n−1

m∓2 − 18(κ±2)n−1
m∓2 + (κ±1)n−2

m∓3 + 9(κ±2)n−2
m∓3

)
,

(46a)

where κ±1 are given by (14) and

(κ+
2)nm−1 = f+

(
(y+

(1))
n+1
m , (y−(3))

n+1
m

)
, (κ−2)nm+1 = f−

(
(y+

(3))
n+1
m , (y−(1))

n+1
m

)
. (46b)

The only difference between (46b) and (44b) is that for the former, we require a third-order (local

error O(h4)), not second-order, accurate solution, (y±(3))
n+1
m . It can be found by the MoC-pRK3

(44). Thus, finding a fourth-order accurate solution by the MoC-pRK4 requires first finding its

22

less accurate approximation by the MoC-pRK3. Fortunately for the implementation, these two

methods share one stage derivative out of two: κ±1 . The stage derivatives, found at a given time

level, are stored to be used at two subsequent time levels. The stencil for the MoC-pRK4 is shown

in Fig. 6(b). Note that the solution at the node (n− 1,m) is needed to compute (y±(3))
n+1
m , which is

used by (κ±2)nm∓1 in (46b).

The MoC-NpRK4 scheme has the same stencil and is given by:

(y±)n+1
m = (y±)nm∓1 + h

(
c11(κ±1)nm∓1 + c12(κ±2)nm∓1 + c21(κ±1)n−1

m∓2 + c22(κ±2)n−1
m∓2 + c31(κ±1)n−2

m∓3

)
,

(47a)

where κ±1 are given by (14) and

(κ+
2)nm−1 = f+

((
y+
)n
m−1

, (y−(3))
n+1
m

)
, (κ−2)nm+1 = f−

(
(y+

(3))
n+1
m ,

(
y−)nm+1

)
, (47b)

with
(
y±)nm+1 being given by (45c) and the coefficients aij and cij computed as in (43b) or (43c).

Similarly to the difference between (46b) and (44b), in (47b) we require (y±(3))
n+1
m instead of (y±(2))

n+1
m

in (45b). This solution can be found by either MoC-pRK3 or MoC-NpRK3.

To implement periodic BC for the MoC-pRK4 and MoC-NpRK4, one extends (22) to include

j = 3.

6.2 von Neumann stability analysis of the MoC-(N)pRK schemes

We will show details for the MoC-pRK3 and will state only the final results for the MoC-NpRK3

and MoC-pRK4, as the corresponding details are analogous but more technically involved. These

details for the MoC-pRK4 can be found in Section 6.2 of [34]. We did not work out this analysis

for the MoC-NpRK4 since it is even more involved; however, direct numerical simulations with this

scheme indicate that its stability is similar to that of the MoC-pRK4.

Since (44) is, essentially, a multi-step scheme, we introduce an “extended” vector:

(ỹext)
n
m =

(
ỹn
m

ỹn−1
m

)
(48)

and seek to put the linearization of (44) into the form analogous to (25):

(ỹext)
n+1
m ≡ Φ(z) (ỹext)

n
m . (49)

We begin by formally writing the linearization of (44a) as

(ỹ)n+1
m =

[[
Q, O

]
+

h

12

(
13K

(0)
1 + 5K

(0)
2 −K

(−1)
1 − 5K

(−1)
2

)]
(ỹext)

n
m ≡ Φ1(z) (ỹext)

n
m (50)

and will calculate the N × 2N matrices K
(0), (−1)
1, 2 one at a time, where N is the length of vector ỹ.

23

Since from (14):(
κ̃+

1

κ̃−1

)n

m

=
[
P, O

]
(ỹext)

n
m ,

(
κ̃+

1

κ̃−1

)n−1

m

=
[
O, P

]
(ỹext)

n
m , (51a)

then, accounting for the lower indices of the κ1-terms in (44a), one has:

K
(0)
1 = Q

[
P, O

]
, K

(−1)
1 = Q2

[
O, P

]
. (51b)

To obtain linearization of κ2 in (44b), one first notices that linearization of the y±(1)-terms in it

is:

(ỹ(1))
n+1
m = Q

([
I, O

]
+ h

[
P, O

])
(ỹext)

n
m ≡ S

(0)
(1) (ỹext)

n
m ,

(ỹ(1))
n
m = Q

([
O, I

]
+ h

[
O, P

])
(ỹext)

n
m ≡ S

(−1)
(1) (ỹext)

n
m . (52)

Note that S
(0), (−1)
(1) are N × 2N matrices. Linearizations of y±(2), previously given by (30), should

now be written as:

(ỹ(2))
n+1
m =

1

2

[[
Q, O

]
+ S

(0)
(1) + h

[
P, O

] (S
(0)
(1)

O

)]
(ỹext)

n
m ≡ S

(0)
(2) (ỹext)

n
m ,

(ỹ(2))
n
m =

1

2

[[
O, Q

]
+ S

(−1)
(1) + h

[
O, P

] (O

S
(−1)
(1)

)]
(ỹext)

n
m ≡ S

(−1)
(2) (ỹext)

n
m . (53)

Note that in the last terms in the square brackets, O is the zero matrix of dimension N ×2N . With

(52) and (53), the linearization of (44b) yields the expression for K
(0)
(2) in (50):

K
(0)
(2) =

[
Pdiag, O

] (S
(0)
(1)

O

)
+
[
Poffdiag, O

] (S
(0)
(2)

O

)
. (54a)

Similarly, one obtains:

K
(−1)
(2) = Q

([
O, Pdiag

] (O

S
(−1)
(1)

)
+
[
O, Poffdiag

] (O

S
(−1)
(2)

))
. (54b)

Combining (51b) and (54) with (52) and (53) yields matrix Φ1(z) in (50). The remaining step of

calculating Φ(z) in (49) is straightforward because (ỹ)nm = [I, O] (ỹext)
n
m, whence

Φ(z) =

(
Φ1(z)[
I, O

]) . (55)

Representative scaled amplification factors of the matrix (55) are shown in Fig. 7(a). These

factors for the MoC-NpRK3 and MoC-pRK4 are shown in Fig. 7(b,c). Note that unlike Figs. 2(a,b),

they predict only a weak instability, with growth rate O(h), for the same P-matrices for which the

24

0 /2
z

0

0.1

0.2

0.3

0.4

(
m

a
x
|

|
-

1
)

 /
 h

2

(a)

P
1

P
4
 with a=0

0 /2
z

0

0.1

0.2

(
m

ax
|

| -
 1

)
 /

h2

(b) P
4
 with a=0

P
1

0 /2
z

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(
m

ax
|

| -
 1

)
 /

h2

P
1

(c)
P

4

with a=0

Figure 7: (a): Amplification factor of matrix Φ(z) in (55) for the MoC-pRK3 for two representative

P-matrices. (b): Amplification factor for the MoC-NpRK3 with the “optimal” (see Section 5.3)

value a20 = 1.4 in (42b). (c): Amplification factor for the MoC-pRK4. Amplification factors for

other matrices listed in Section 2 are either similar to, or located between, the displayed ones. All

curves are shown for a rather large value of the step size, h = 0.05. For smaller h, the corresponding

curves look almost identical to those shown. For h as large at 0.1, these curves for some of P-

matrices look quantitatively different (but qualitatively the same). This is consistent with the fact

[36, 38] that pRK solvers are less accurate (i.e., have a greater numeric constant in the O(h3) or

O(h4) error terms) than the RK solvers of the same orders. In regards to panel (b), similar curves

obtained for h < 0.01 are insensitive to a20 in a large range. For h = 0.05, they are close to the

displayed curves for a20 ∈ [0, 3].

MoC-RK3 and MoC-RK4 schemes had the strong instability with growth rate O(1). Note that

while the instability growth rate is greater for the MoC-pRK4 than for the MoC-pRK3 scheme, it

is still some 30% smaller than that for MoC-ME, where the maximum of the curve corresponding

to P4 with a = 0 is at 1 (see Fig. 2(a) in [1]).

These results are confirmed3 by direct numerical simulations of Eqs. (5) with periodic BC, as

shown in Fig. 8. They also show that: (i) the weak instability in the MoC-NpRKn (n = 3, 4) can

be made weaker than that of the MoC-pRKn methods of the same order, and (ii) this instability is

stronger for the MoC-(N)pRK4 than for the MoC-(N)pRK3. In the next section, we will demonstrate

that the weak instability for wavenumbers in the “bulk” of the spectrum, i.e. for z away from 0

and π in Figs. 7 and 8, is suppressed when one uses nonreflecting BC. The verification that the

numerical errors of all four schemes scale as the appropriate powers of h, is postponed until Section

8.

The results for matrix P4 shown in Figs. 8(a)–(c) quantitatively confirm the corresponding

results in Figs. 7(a)–(c). For example, from Fig. 7(a) one finds that λ(z = π/2) ≈ 1 + 0.33h2,

whence the growth rate of the corresponding harmonic is 0.33h (see (32)). This agrees very well

with the growth of this harmonic by 7.3 orders of magnitude, as observed in Fig. 8(a). We verified

that similar quantitative agreement takes place for all matrices except P1 for the schemes reported

3qualitatively for P1 and quantitatively for the other P-matrices; see next paragraph

25

0 /2
z

-8

-6

-4

-2

0
(a) P

4
 with a=0

P
1

0 /2
z

-8

-7

-6

-5

-4

-3
(b) P

4
 with a=0

P
1

0 /2
z

-5

0

5

(c) P
4
 with a=0

P
1

0 /2
z

-8

-6

-4

-2

0

2

4

6
(d) P

4
 with a=0

P
1

Figure 8: (a)–(c): Fourier spectra of numerical solutions of Eqs. (5) corresponding to the von

Neumann results shown in Fig. 7(a–c). (d): Same, but for MoC-NpRK4. Simulation parameters:

L = 100, h = 0.05, t = 1000. The initial condition is the white Gaussian noise with standard

deviation 10−10. The y±(3) solutions used by the MoC-NpRK4 are computed by the MoC-NpRK3.

The free parameter in the MoC-NpRK3 was set to a20 = 1.4 (see (42b) and Fig. 5) for panels (b)

and (d); the remaining free parameter in the MoC-NpRK4 was set to c22 = −0.2 (see (43c)).

in panels (a)–(c) of Figs. 7 and 8. (When the P-matrix depended on parameter a, we verified

the agreement only for two random values of a.) The reason that the amplified noise spectrum in

simulations using matrix P1 agrees only qualitatively with the results of the von Neumann analysis

is similar to that described in relation to the discrepancy between Figs. 3(a) and 2(a). Namely: for

each z, the spectrum of the corresponding matrix Φ(z) in (49) contains pairs of complex eigenvalues

that differ by an amount much smaller than O(h). This leads to an oscillatory rather than monotonic

growth of the harmonics’ amplitudes, with the “swing” of the oscillations reaching some two orders

of magnitude.

7 MoC-pRK schemes with nonreflecting BC

Implementation of (N)pRK schemes for ODEs is straightforward in the sense that the general

algorithm is to be modified only at the first few time levels. This is common for multi-step solvers

and is accomplished by computing the solution at those levels by a single-step solver. For the

MoC-(N)pRK schemes, applied to PDEs, the situation becomes considerably more complicated:

one also needs to handle nodes adjacent to the boundaries separately from the in-bulk algorithm.

26

Let us note, however, that this is a common feature of all finite-difference schemes due to the one-

sided approximation to spatial derivatives being different from symmetric approximations, which

are typically used in the bulk of the grid.

In this section we will present the ideas of how nonreflecting BC (23) can be imposed for the

MoC-pRK3 and MoC-pRK4. The slightly more general partially nonreflecting BC,

y+(0, t) = R lefty
−(0, t) + b left(t), y−(L, t) = R righty

+(L, t) + b right(t) , (56)

are imposed similarly. Also, BC (23) (or (56)) are imposed similarly for the MoC-NpRK3 and

MoC-NpRK4 schemes, respectively. Even though the idea for the MoC-pRK4 case is conceptually

the same as that for the MoC-pRK3 one, it is technically more complex. Therefore, we will present

them separately and in both cases focus only on the left boundary, since the right one is handled in

an analogous way. The implementation of these ideas in a code is yet another nontrivial task; it is

outlined in Appendix B, where a GitHub link to the actual codes is also given.

7.1 Nonreflecting BC for the MoC-pRK3 (44), (14)

The stencil for the MoC-pRK3 in the vicinity of the left boundary is shown in Fig. 9(a). We now

explain how the solution is found at the time levels with n ≥ 2 given the initial condition at the

time level with n = 1 and for m = 1, . . . ,M . First, one computes, for future use, the solution at the

virtual node (n = 1,m = 0), i.e., (y±)1
0, by the 3rd-order Lagrange extrapolation:

(y±)n0 = 3(y±)n1 − 3(y±)n2 + (y±)n3 , n = 1, (57)

whose order is consistent with the global error, O(h3), of the scheme. We stress that the extrapo-

lation is used to compute a point outside the boundary only at the time level t1. This is because in

general, we do not assume that the solution is smooth (in x), which is the assumption implied in

(57). Moreover, it is unknown (i.e., requires a separate investigation) how such an extrapolation, if

done for all n, would affect stability of the scheme. Therefore, for all n ≥ 2, finding the solution at

m = 0 will be done by another method, which will be described two paragraphs below.

Second, the solution at n = 2, m = 1, . . . ,M , required to start the MoC-pRK3, is computed

by the MoC-ME scheme, whose error at one step is O(h3). This error will only propagate to all

subsequent levels, but will not accumulate (unlike the local truncation errors), and hence is consistent

with the desired O(h3) global error of the MoC-pRK3. Third, at n = 3, the solution (y+)3
m≥2 and

(y−)3
m≥1 is found by the in-bulk algorithm, while (y+)3

1 is found from the BC (23b). (Recall that

we concentrate on the vicinity of the left boundary only.) Note that determining (y+)3
2 requires, as

per the κ+
1,2-terms in (44a), the solution (y±)1

0, which has been determined at the first step above.

27

(a)

m=0 m=2m=1 m=3

n=1

n=2

n=3

n=4

m=1m=0

n=1

n=2

n=3
(b)

- 90o

+=const

-=const

(c)

m=0

m=1

n=3n=2n=1

+ = const-=const

Figure 9: Schematics illustrating the treatment of the nonreflecting BC at the left boundary for the

MoC-pRK3. See text for details.

A nontrivial extension of the algorithm is required to compute (y+)4
2, as this requires the yet

undetermined solutions (y±)2
0. As we have emphasized above, these solutions will be computed

by a method different from the extrapolation (57). Note that these solutions affect (y+)4
2 only via

h (κ+
1,2)2

0 and therefore need to be found only with local error O(h3) in order to guarantee that the

local truncation error of (y+)4
2 is h ·O(h3) = O(h4). This suggests that (y±)2

0 can be found by the

MoC-ME. However, it is clear from Fig. 9(a) that the standard MoC-ME, whose stencil is given by

the three circles in Fig. 1, cannot be used for this purpose. The key trick that enables the use of the

MoC-ME is to employ the rotated stencil, as shown in Figs. 9(b,c). Indeed, the solutions (y±)1
1 and

(y±)3
1 have already been found at the previous steps. Then, rotating the stencil shown in Fig. 9(b)

by −90◦, one obtains the standard MoC-ME stencil in Fig. 9(c). The corresponding equations are

(for n = 2):

(y±(1))
n
0 = (y±)n±1

1 ∓ h f±
(

(y+)n±1
1 , (y−)n±1

1

)
, (58a)

(y±(2))
n
0 =

1

2

[
(y±)n±1

1 + (y±(1))
n
0 ∓ h f±

(
(y+

(1))
n
0 , (y

−
(1))

n
0

)]
. (58b)

Note that the negative sign in front of h in the expressions for y+
(1),(2) occurs because the correspond-

ing “steps” are taken in the negative direction along the characteristic ξ+ = const; see Fig. 9(b).

At the right boundary, the signs in front of the f±-terms switch compared to those in (58).

Now that (y±)2
0 (and the analogous solutions just outside the right boundary), and hence the

solutions (y+)4
2 (and (y−)4

M−1), have been found, the remaining solutions at time level with n = 4

are found by the in-bulk algorithm. The solution for all time levels with n > 4 follows the same

pattern, and the pseudocode is shown in Appendix B.

It is reasonable to ask if in the above algorithm one could avoid using virtual nodes (at the left

boundary, those are nodes with m = 0) altogether by computing only the solutions (y−)n≥3
1 and

(y+)n≥3
2 by the MoC-RK3 (and similarly at the right boundary), while computing the rest of the

solution by the in-bulk MoC-pRK3. The answer to this is ‘no’. The reason is that even with these

28

four nodes out of the entire grid being computed by the unstable MoC-RK3 scheme (see Section

3b) renders this “combined MoC-(RK3 & pRK3)” scheme similarly unstable. We verified this by

simulations with P = P4 with a = 0 in [34] (see Sec. 5.9 there).

On the other hand, simulations following the “MoC-pRK3 only” scheme with the boundary

treatment described above show that the mild numerical instability for the intermediate wavenum-

bers is completely suppressed: compare Figs. 8(a) and 10(a). (In this regard, we will comment on

a relatively small growth — by about an order of magnitude over t = 1000 — that is visible as

the “bumps” around the sharp “dips” at the left and right edges of Fig. 10(a) for P = P1. We

verified that this growth is linear, not exponential, in time, and therefore can affect only ultra-long

simulations, on the order of many millions of time units.)

0 /2
z

-20

-15

-10

-5 (a)

P
4
 with a=0

P
1

0 /2
z

-20

-15

-10

-5 (b)
P

1

P
4
 with a=0

0 /2
z

-20

-15

-10

-5 (c)

P
4
 with a=0

P
1

Figure 10: (a), (b): Same schemes and parameters as in Figs. 8(a,c), but with homogeneous nonre-

flecting BC (23). (c): Same as (b), but h = 0.025.

7.2 Nonreflecting BC for the MoC-pRK4 (46), (14)

The stencil for the MoC-pRK4 scheme in the vicinity of the left boundary is shown in Fig. 11(a).

The initial condition is given at the time level with n = 1 for m = 1, . . . ,M . Since the pRK4

is a three-step solver, it requires the solution at three time levels to start the calculations. These

solutions are to be computed with local accuracy O(h4). The only available option to obtain such

a solution is the MoC-RK3. Even though that scheme can be strongly unstable when carrying out

calculations for t = O(1), it is acceptable to use it just for two time levels. Next, similarly to the

situation with the MoC-pRK3, one obtains the solutions at the virtual nodes (n = 1, 2; m = 0,−1)

by the 4th-order Lagrange extrapolation:

(y±)nm = 4(y±)nm+1 − 6(y±)nm+2 + 4(y±)nm+3 − (y±)nm+4; n = 1, 2; m = 0,−1 . (59)

We emphasize that, as for the MoC-pRK3, this extrapolation will not be used at subsequent time

levels. The solution at time level t4 now has all the ingredients to be computed by the in-bulk

algorithm (46); see Fig. 11(a).

29

(a)

n=1

n=2

n=3

n=4

n=5

m=3m=2m=1m=0m= -1 m=0 m=1 m=2

(b)n=5

n=4

n=3

n=2

n=1

- 90o

+

-
n=1 n=2 n=3 n=4 n=5

- +

(c)

m=2

m=1

m=0

Figure 11: Schematics of computing the MoC-pRK4 solution with nonreflecting BC at the left

boundary. (a) Filled squares indicate that a nontrivial computation involving nodes outside the

boundary first occurs at the time level with n = 5. The open circle shows the node where this

nontrivial computation is required. (b) Stencil to compute (y±)3
0 by the MoC-pRK3. (c) Same

stencil rotated by −90◦.

A nontrivial step first occurs in computing the solution at the next time level, t5. It will contain

the trick with the “rotated stencil” as in the MoC-pRK3 case, as well as an additional twist. To

find (y+)5
2, one requires (y±)3

0. In analogy with the MoC-pRK3 case, it needs to be computed with

error O(h4). At first sight, we have two schemes that could accomplish that task: the MoC-RK3

and MoC-pRK3. However, even the stability considerations aside, the MoC-RK3 scheme cannot be

used. Indeed, one is unable to use the regular (i.e., not rotated) stencil for it since, as explained in

the last paragraph of Section 3.1, that would require the knowledge of (y+)3
−1, which is not available.

Similarly, if one instead uses the rotated stencil, that would require the knowledge of (y+)4
0, which is

not available, either. Therefore, the only available option is to find (y±)3
0 is by the MoC-pRK3 with

the rotated stencil, as shown in Figs. 11(b) and (c). In this stencil, we already know the solution

at nodes (n,m) = (1, 2), (2, 1), (3, 2), and (4, 1). However, we do not know the solution y+ at node

(5, 2), because this is precisely the solution that we need (y±)3
0 for!

The way out of this seemingly vicious circle follows from the observation that the (y+)5
2 which

is required to compute (y±)3
0 by the MoC-pRK3 needs to be computed only with the local error

O(h3). (In contrast, the (y+)5
2 which will be computed by the MoC-pRK4 must have the local error

O(h5).) Thus, to compute (y±)3
0 by the “rotated MoC-pRK3”, it will suffice to compute (y+)5

2 by

the MoC-ME. This can be done readily using the regular (i.e., not rotated) MoC-ME stencil and the

available solution at time level t4. Thus, to compute (y±)3
0, one proceeds as follows. First, compute

(y±(2))
5
2 by the MoC-ME (18) using (y±)4

1,3. Then, compute (y±)3
0 by the rotated MoC-pRK3 using

the stencil shown in Figs. 11(b,c). The corresponding equations are (for n = 3):

(y±)n0 = (y±)n±1
1 ∓ h

12

(
13(κ±1)n±1

1 + 5(κ±2)n±1
1 − (κ±1)n±2

2 − 5(κ±2)n±2
2

)
, (60a)

30

with κ±1 being given by (14) and

(κ+
2)n+1

1 = f+
(

(y+
(1))

n
0 , (y−(2))

n
0

)
, (κ−2)n−1

1 = f−
(

(y+
(2))

n
0 , (y−(1))

n
0

)
, (60b)

(κ+
2)n+2

2 = f+
(

(y+
(1))

n+1
1 , (y−)n+1

1

)
, (κ−2)n−2

2 = f−
(

(y+)n−1
1 , (y−(1))

n−1
1

)
, (60c)

where y±(1) and y±(2) are computed by (58). Note that, as previously in (58), the “steps” along the

ξ+ = const characteristics are taken with increment (−h), not h.

Having computed (y±)3
0, one can then compute (y+)5

2≤m≤M and (y−)5
1≤m≤M−1 by the in-bulk

algorithm (46), while (y+)5
1 and (y−)5

M are supplied by the BC (23b). For the purpose of generalizing

this step for n ≥ 5, we note that after computing the solution at level n (in Fig. 11(a), n = 4) for

m = 1, . . . ,M , one then needs to compute the solution at the nodes (n− 1, 0) and (n− 1,M + 1),

as that will be needed to advance to level (n+ 1). In particular, having found the solution (y±)5
m,

m = 1, . . . ,M , we then compute (y±)4
0 and (y±)4

M+1.

At time level t6, we again need to deviate from the in-bulk algorithm when computing (y+)6
2

(and similarly at the right boundary), as now (y±)3
−1 is not available. The latter values are required

with local accuracy O(h4) and can be found by the “rotated MoC-pRK3” using the already available

solutions at nodes (n,m) = (1, 1), (2, 0), (3, 1), (4, 0), and (5, 2). The trick with using the MoC-ME,

as described two paragraphs above, is not needed here. The remaining steps will follow a similar

pattern. Namely, once the solution is found at level tn for m = 1, . . . ,M , first compute (y±)n−1
0,M+1 by

the “rotated MoC-pRK3” (60); then compute (y±)n+1
1≤m≤M by the MoC-pRK4; and, finally, compute

(y±)n−1
−1,M+2 by the “rotated MoC-pRK3”. One is now ready to compute (y±)n+2

1≤m≤M ; and so on.

The corresponding pseudocode is presented in Appendix B.

Comparison of Figs. 8(a,c) with 10(a,b) shows that the ability of nonreflecting BC to suppress

the instability for the MoC-pRK4 is less than that for MoC-pRK3. In particular, for h = 0.05,

this suppression is sufficient to eliminate the instability for some P-matrices (namely, P4), but not

all of them: for P1, the harmonics near |k| = kmax/2 are seen to still grow by some three orders

of magnitude over t = 1000. In [28], we showed analytically that for the MoC-SE and MoC-ME

schemes, the smaller h (or, more precisely, hL), the stronger the unstable modes get suppressed

by the nonreflecting BCs. While we do not carry out a similar analysis for the MoC-pRK schemes

(which would have required a separate study), we can hypothesize that the same phenomenon should

take place for them. This hypothesis is confirmed by numerical simulations: when we used h = 0.025

instead of h = 0.05, the instability near |k| = kmax/2 got suppressed; see Fig. 10(c). The “bumps”

on both sides of the sharp “dips” near the edges of the figure pertain to harmonics that grow linearly,

not exponentially, in time, and hence do not affect any but ultra-long simulations; see a similar note

31

for the MoC-pRK3.

8 Numerical verification

Here we will verify that the MoC-(N)pRK schemes developed in this work indeed have the accuracy

declared. Due to space limitation, we will explicitly do so only for the fourth-order schemes ([34]

contains numerical results pertaining to the third-order schemes). However, note that the MoC-

pRK4 scheme uses the MoC-pRK3 solution at an intermediate step. Therefore, the fact that the

MoC-pRK4 solution is shown to have the error O(h4) implies that the MoC-pRK3 solution must

have the error of at most O(h3). Similarly, since the MoC-pRK4 scheme uses the MoC-RK3 solution

to start the calculations, our results will also imply that the error of the MoC-RK3 solution is at

most O(h3).

Our verification will be restricted to two equations, one nonlinear and one linear. The former is

the Gross–Neveu model [39] of the relativistic field theory, written in the form (1a):

u+
t + u+

x = i(|u−|2u+ + (u−)2(u+)∗)− iu−,

u−t − u−x = i(|u+|2u− + (u+)2(u−)∗)− iu+.
(61)

Numerical schemes for (61) have attracted considerable attention in the last few years; see, e.g.,

[40, 41] and references therein. We will simulate two of its exact soutions. The first one is the

standing soliton [42]:

u±sol(x, t) =
√

1− Ω
cosh(βx) ± iµ sinh(βx)

cosh2(βx)− µ2 sinh2(βx)
exp[−iΩt+ iφ0], Ω ∈ (0, 1); (62a)

with φ0 = const and

β =
√

1− Ω2, µ =
√

(1− Ω)/(1 + Ω) . (62b)

The second solution is the soliton moving with velocity V . It is obtained from (62) by a transfor-

mation related to the Lorentz transformation:

u±mov(x, t) =

(√
Γ + 1 +

√
Γ− 1√

2

)±1

u±(xmov, tmov), (63a)

where

Γ = 1/
√

1− V 2, xmov = Γ (x− x0 − V t), tmov = Γ (t− V (x− x0)) (63b)

and x0 = const. Equation (63a) can be obtained from that found in, e.g., [43] by a simple dependent

variable transformation. The Gross–Neveu model admits, in particular, two conserved quantities,

charge Q and Hamiltonian H:

Q =

∫ ∞
−∞

(
|u+|2 + |u−|2

)
dx ; (64a)

32

H =

∫ ∞
−∞

(
−i
(
(u+)∗u+

x − (u−)∗u−x
)
− 1

2

(
u+(u−)∗ + u−(u+)∗

)2
+
(
u+(u−)∗ + u−(u+)∗

))
dx .

(64b)

For the soliton (62), they take on values:

Q = 2

√
1− Ω2

Ω
, H = 2 ln

Ω

1−
√

1− Ω2
. (64c)

This model has, in the notations of Section 2, N± = 1. Therefore, the MoC-RK4 (and MoC-RK3)

scheme(s) will be stable or only weakly unstable for it (depending on the boundary conditions used).

However, we will not test their performance relative to those of the MoC-(N)pRK schemes due to,

again, space limitation, as well as in order to maintain our focus on the latter schemes. It should be

noted that the 4th-order method proposed in [40] is (unlike the MoC-(p)RK4) restricted to using

periodic BC; it was demonstrated in [41] that certain solutions (62) exhibit numerical instability for

periodic (but not for nonreflecting) BC.

The second equation is the linear Klein–Gordon equation (2) with c = 1 and g ≡ u. We simulated

it as system (5a) with P = P1, given by (7), with the purpose being to demonstrate an excellent

ability of the MoC-pRK4 to accurately compute very steep spatial fronts.

In all simulations in this section we set the length of the computational domain to L = 100.

8.1 Gross–Neveu with periodic BC

The standing soliton (62) is zero to numerical precision at the boundaries of the computational

domain x ∈ [−L/2, L/2), and hence it satisfies periodic BC. Two facts that we intend to demonstrate

about the MoC-pRK4 scheme here are: (i) that its error scales as O(h4) and (ii) that it preserves

conserved quantities (64) up to order O(h5) for moderately long times.4 For these demonstrations,

we simulate the solitons (62) with Ω = 0.3 and 0.6, shown in Fig. 12, up to t = 200. A technical

aspect about computing the numerical error of a soliton solution over such a moderately long time

is addresses in Appendix C.

The dependence of the errors of the MoC-pRK4 and MoC-NpRK4 schemes on h is shown in

Fig. 13(a) and is seen to be O(h4). The corresponding dependences of relative errors in Q and H

are shown in Fig. 14(a,b) and are seen to be O(h5). Note that this dependence is the same as the

well-known scaling of the errors of conserved quantities computed by the RK4 solvers for ODEs.

Finally, Fig. 14(c) illustrates that one can significantly improve the ability of the MoC-NpRK4

scheme to preserve conserved quantities by optimizing the free parameter in the NpRK4 solver (see

Section 5.2).

4As we noted in Section 6, for very long times, the numerical solution with periodic BC will be affected by the

weak instability, which will occur primarily for wavenumbers in the interval (kmax/4, 3kmax/4).

33

0 2 4 6 8
x

0

0.2

0.4

0.6

0.8

R
e

u+ so
l = 0.6

 = 0.3
(a)

0 2 4 6 8
x

0

0.1

0.2

0.3

0.4

0.5

Im
 u

+ so
l

(b)
 = 0.3

 = 0.6

Figure 12: Real and imaginary parts of u+
sol(x, 0) for two values of Ω used in Section 8. By symmetry,

Reu+
sol(−x, 0) = Reu+

sol(x, 0), Imu+
sol(−x, 0) = −Imu+

sol(x, 0).

-2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4
log

10
 h

-12

-11

-10

-9

-8

-7

-6

lo
g

1
0
 |
|

 |
|

pRK4

c
22

= -1.5 and +1

(a)

c
22

= -0.36

c
22

= -1.5
c

22
= +1

=0.3

=0.6pRK4

c
22

= -0.40

-2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4
log

10
 h

-12

-10

-8

-6

-4

lo
g

1
0
 ||

 ||

(b)

=0.3

V=0.5

V=0.5

V=0.25

V=0.25

=0.6

Figure 13: (Color online) (a): Error (see (78b)) of MoC-pRK4 (thick line) and MoC-NpRK4 (thin

lines) for the solitons with Ω = 0.3 (black) and 0.6 (green) of the Gross–Neveu model with periodic

BC versus h. Thin dashed and dashed–dotted lines correspond to c22 = −1.5 and 1.0, respectively.

The lines for c22 = −1.5 and 1.0 for Ω = 0.3 are indistinguishable in the plot. The thin solid lines

are for the optimal values of c22 (see Fig. 14): −0.36 for Ω = 0.3 and −0.40 for Ω = 0.6. The red

dotted line has the slope of 4. Simulations were done for h = L/211+0.5j , j = 0, . . . , 10. (b): Same,

but for nonreflecting BC and for the MoC-pRK4 only. Simulation parameters (except t; see text)

and colors are the same as in (a). Thick and thin lines are for V = 0.25 and 0.5, respectively, where

V is the velocity of the incident soliton. Solid and dashed lines are for x0 = −0.4 and +0.4, where

x0 is the position of the soliton center at t = 0 relative to the left boundary of the computational

domain.

Let us note that Figs. 13(a) and 14(a,b) show that while optimization of the free parameter in

the MoC-NpRK4 leads to a significant reduction of the drifts of conserved quantities, it has only

minor effect on the error of the solution. This is explained by the fact that the error at t = 200 is

computed relative not to the exact soliton (62) but to the soliton whose Ω is adjusted (see Appendix

C) according to the varying Q (or, equivalently, H: see (64c)). Thus, the error whose norm is

plotted in Fig. 13(a) does not contribute to the drift of Q and H.

34

-2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4
log

10
 h

-14

-12

-10

-8

-6

-4

lo
g

1
0
 |

 Q
 /

 Q
(t

=
0

)|

(a)

c
22

= +1

c
22

= +1

c
22

= -1.5

c
22

= -1.5
 = 0.6

 = 0.3

-2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4
log

10
 h

-14

-12

-10

-8

-6

-4

lo
g

1
0
 |

 H
 /

 H
(t

=
0

)|

(b)

c
22

= +1

c
22

= +1

c
22

= -1.5

 = 0.3

 = 0.6

c
22

= -1.5

-1.5 -1 -0.5 0 0.5 1
c

22

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

lo
g

1
0
 |

 Q
 /

 Q
(t

=
0

)|

(c)

Figure 14: (Color online) (a) and (b): Similar to Fig. 13(a), but for the errors in Q (a) and H

(b). The red dotted line has the slope of 5. In (b), the lines corresponding to the MoC-pRK4 for

Ω = 0.3 and MoC-NpRK4 with c22 = −1.5 for Ω = 0.6 can be distinguished only in color. (c):

Thick lines: Errors in Q (solid) and H (dashed) versus c22 for MoC-NpRK4 for Ω = 0.3 (black) and

Ω = 0.6 (green); h = 0.025. The thin horizontal lines with respective colors and line styles show the

errors for the MoC-pRK4.

8.2 Gross–Neveu with nonreflecting BC

In order to confirm that the algorithm of handling nonreflecting BC presented in Section 7 preserves

the order O(h4) of the MoC-pRK4 scheme, we simulated the entering of a soliton (63) into a medium

governed by Eqs. (61). The corresponding BC, and the initial condition consistent with them, are:

u+(0, t) = u+
mov(0, t), u−(L, t) = 0 ; (65a)

u±(x, 0) = u±mov(x, 0) . (65b)

For reasons explained in Appendix C, the simulation time needs to be much shorter than that in

Section 8.1, and we used t = 5. During this simulation time, and for the parameters V and x0 of

the incident soliton reported in the caption to Fig. 13(b), the field at the boundary is essentially

nonzero, as follows from Fig. 12. The error for the MoC-pRK4 is shown in Fig. 13(b) and is seen to

scale as O(h4). We did not show corresponding results for the MoC-NpRK4 scheme because in the

pulse-entering problem, one is not concerned with preservation of the conserved quantities, as they,

naturally, vary as the pulse enters the medium.

8.3 Linear Klein–Gordon

Here we demonstrate convergence of the MoC-pRK4 scheme for Eq. (2) with c = 1 and g ≡ u and

an initial condition with steep fronts (see Fig. 15(a)):

u(x, 0) = exp
[
− xq

]
, q = 10 or 20; ut(x, 0) = 0. (66)

In what follows we limit out simulation time to t = 10, whereby the field does not have the time to

reach the boundaries of the computational window located at x = ±L/2; recall that L = 100 in this

35

section. Therefore, the corresponding exact solution coincides with that on the infinite line:

u(x, t) =

∫ ∞
−∞

eikx û0(k) cos(
√
k2 + 1 t) dk, û0(k) =

1

2π

∫ ∞
−∞

e−ikxu(x, 0) dx . (67)

The transformation between the linear Klein–Gordon equation and its form (5) is given by:

y±1 = (±p− u)/2, y±2 = (v ± w)/2, (68)

where v = ut and w = −ux, and p is an auxiliary variable satisfying compatibility conditions:

pt = ux + w and px = ut − v (see [15]), with p(x, 0) = 0. In our simulations, we had vectors y±

satisfy the nonreflecting BC (23) with bleft,right = 0.

0 1 2 3 4 5 6
x

-3

-2

-1

0

1

2

3

u
 (

-)
,

 u
x
 (

--
)

exp[-x20]

exp[-x10]

(a)

3.5 4 4.5 5 5.5 6 6.5
x

-4

-2

0

2

4
e
rr

o
r

=
 n

u
m

e
ri
c
a
l
-

e
x
a
c
t

10-4

 outside this x-interval,
error is several orders of magnitude lower

(b) error for q=10 is more than
an order of magnitude lower
than the error for q=20

-2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4
log

10
 h

-8

-6

-4

-2

lo
g

1
0
(

||
||
 /

 |
|y

||
)

u
0
(x,0)=exp[-x10]

u
0
(x,0)=exp[-x20](c)

Figure 15: (Color online) (a): Solution (solid black lines) of (5) with (7) (equivalent to (2) with

g ≡ u) for each of the initial conditions (66) (shown in color), obtained with h = 0.0125 at t = 5;

it is symmetric with respect to x = 0. Solution at t = 10 is similar but more spread out. Since in

some applications, it is either ut or ux that has physical meaning, we also show ux (dashed lines).

Thick (thin) black lines correspond to the solution for the initial condition with q = 10 (q = 20).

These two lines are almost indistinguishable in the plot. (b) Error for u and ux of the solutions

shown in (a); line styles mean the same as in (a). (c) Relative `2-error of the solution of (5), (7)

at t = 10 for both initial conditions. The red dotted line has slope four. Since the y±2 -components

of the solution involve w = −ux, the `2-norm of the y-error is proportional to the Sobolev norm of

the u-error.

Figures 15(a,b) show that the MoC-PRK4 scheme computes the steep fronts of the solution very

accurately, and Fig. 15(c) further shows that even for those steep fronts, the scheme preserves the

O(h4) order of the error not only in the maximum norm of u but also in its Sobolev norm.

9 Summary and discussion

We have considered systems of (N+, N−) coupled first-order hyperbolic equations of the form (1a)

in one spatial dimension. We have constructed, for the first time to our knowledge, 3rd- and 4th-

order MoC schemes based on the explicit ODE solvers. When employing RK solvers, we found (in

Sections 3 and 4) that while the resulting MoC-RK schemes were essentially stable5 for N± = 1 and

5Here the word ‘essentially’ refers to the fact that instability with the respective growth rates O(h3) and O(h5)

still remains (see the end of Section 1), but can be ignored as inconsequential for most applications.

36

for some cases with N± = 2, they were strongly unstable for other N± = 2 cases, including that of

the important Klein–Gordon equation. Based on our extensive experimentation with various ODE

solvers, we hypothesized that the common feature of all such unstable schemes is that they involve

virtual nodes (i.e., nodes off the grid; see Fig. 1). Consequently, we proposed to use pRK solvers

(Section 5) instead of RK ones, and the resulting MoC-pRK schemes (Section 6) were found to be

only weakly unstable, with the instability growth rate being O(h), for periodic BC. Importantly,

we further demonstrated (in Section 7) that this weak instability disappears for nonreflecting BC

(23), which are more common in physical applications than periodic ones. It should be noted that

implementation of nonreflecting BC required non-trivial treatment of the near-boundary nodes, as

explained in Section 7. A link to the codes themselves is found at [30]. For partially reflecting

BC (56), which generalize the nonreflecting BC, our MoC-pRK schemes are implemented similarly.

The MoC-pRK schemes are capable of resolving sharp fronts of the solution without introducing

spurious oscillations (see Section 8.3).

In the remainder of this section we will discuss extensions of our schemes to systems more general

than (1). First of all, MoC-pRK schemes are easily extended from (1a) to the following system with

three characteristics:

y+
t + y+

x = f+
(
y+,y−,n

)
, y−t − y−x = f−

(
y+,y−,n

)
, nt = fmed

(
y+,y−,n

)
. (69)

They arise when the waves y± interact with a medium, described by variable n; examples are

electromagnetic propagation in distributed-feedback semiconductor lasers (e.g., [44, 5] and references

therein) and Stimulated Brillouin Scattering (see, e.g., [45]). Below we illustrate the extension of

the schemes developed in Section 6 to systems (69) using the MoC-pRK3 as an example; it is

conceptually similar for the MoC-pRK4.

The extension of the general algorithm (i.e., disregarding boundaries) is straightforward: Eqs. (14)

are replaced with

(κj
1)nm = f j

(
(y+)nm, (y

−)nm, (n)nm
)
, j ∈ {±, med}; (70a)

Eqs. (18) are supplemented with

(n(1))
n+1
m = (n)nm+h (κmed

1)nm; (n(2))
n+1
m =

1

2

[
(n)nm + (n(1))

n+1
m + h fmed

(
(y+

(1))
n
m, (y

−
(1))

n
m, (n(1))

n
m

)]
;

(70b)

in Eqs. (44b), the third argument, (n(2))
n+1
m , is added to f± and one also sets

(κmed
2)nm = fmed

(
(y+

(2))
n+1
m , (y−(2))

n+1
m , (n(1))

n+1
m

)
; (70c)

37

finally, Eqs. (44a) are supplemented with

(n)n+1
m = (n)nm +

h

12

(
13(κmed

1)nm + 5(κmed
2)nm − (κmed

1)n−1
m − 5(κmed

2)n−1
m

)
. (70d)

To illustrate the new (compared to that treated in Section 7.1) issue that arises in the com-

putation of the outside-the-boundary nodes, let us consider the computation of the fields at node

(n,m) = (2, 0); see Fig. 9. In order to compute (y±)2
0, one requires the knowledge of (n(1))

2
0. The

following two key realizations should be made here. First, one cannot compute (n(1))
2
0 using the

rotated stencil in Fig. 9(b,c) and the first equation in (70b) because it would have required an

equation for nx, which is not available (see (69)). Second, (n(1))
2
0 does not need to be computed

using specifically the stencil in Fig. 9(b,c); it just needs to be computed in some way that is con-

sistent with (69). Such a way is to simply use the first equation in (70b) with n = 1 and m = 0,

all ingredients for which have already been found. Finally, one computes (n(2))
2
0 using the second

equation in (70b) with n = 1 and m = 0.

Another generalization of Eqs. (1) includes advection-dominated problems where small diffusion

is present in f±. Numerical implementation of such terms is straightforward: one simply computes

y±xx within one time level. However, their presence changes the Jacobian matrix P in Eqs. (5)

so that its eigenvalues now lie in the left half of the complex plane. This will require redoing

stability analysis of the MoC-RK and MoC-pRK schemes with a new P. It is even possible that the

strong instability of the MoC-RK schemes could be suppressed by dissipation. On the other hand,

one should keep in mind that the stability region of MoC-pRK schemes can be smaller than that

MoC-RK schemes: see Fig. 4.

Let us now comment on the issue of generalizing higher-order MoC schemes to two spatial

dimensions. A well-known method to apply the MoC of order up to 2 on a rectangular spatial grid

is by using operator splitting (OS), applying a one-dimensional scheme along one dimension at a

time over a substep ∆ti, where
∑s

i=1 ∆ti = ∆t and s is the number of stages in OS. However, if

one intends to avoid interpolation, one must use ∆ti that are integer multiples of the spatial steps

∆x = ∆y = ∆t. The problem is that no OS scheme with such ∆ti is known to have the order higher

than 2, and using a second-order accurate OS will annihilate the advantage of using a higher-order

MoC scheme per each spatial dimension. Therefore, the extension of higher-order MoC schemes to

several spatial dimensions is a nontrivial open problem.

Finally, let us comment on the issue of comparison of the MoC-pRK4, proposed in this work,

with the MoC scheme using an implicit RK4 solver, proposed in [26]. For brevity, we will refer to it

38

as the MoC-iRK4 scheme. Let us note that it implements the implicit step as a predictor-corrector,

with the number of corrector stages advocated in [26] being three. First, and most importantly,

we note that stability of the MoC-iRK4 has not been studied analytically, and, to our knowledge,

applications of that scheme were reported only to equations (1a) with N± = 1 or N± = 2 with

P = P2 [2]. Thus, the question whether MoC-iRK4 is stable for N± = 2 and the other four

P-matrices listed in Section 2, remains open. We will address it in a future publication.

Therefore, here we will limit our task to comparison of the number of function evaluations (FE)

per variable in the MoC-iRK4 and MoC-pRK4 schemes, which should give one a rough idea about

relative execution times for the two schemes. The predictor stage of the MoC-iRK4, given by Eqs. (8)

in [26], requires 2 FEs (with f(xn, yn) being saved from the previous step), and each corrector stage,

given by Eqs. (7) there, requires 2 more. Thus, for one predictor and three corrector stages (see

above), one needs 8 FEs per variable. In the MoC-pRK4, one computes κ1 by (14) and κ2 by (46b)

at each step, which amounts to 2 FEs. Next, the computation of κ2 requires y(3), which in turn

requires its κ1 (same as above) and κ2 (Eqs. (44b)); this is 1 more FE. Finally, the latter κ2 requires

y(2), which takes 1 more FE as per (18b). In total, the MoC-pRK4 requires 4 FEs per variable per

step, and hence its execution time should be approximately half that of the MoC-iRK4.

Let us also note that application of the MoC-iRK4 to systems of the form (69) required interpo-

lation of solution to nodes off the grid (as in Fig. 1), whereas the MoC-pRK (70) does not require

such an interpolation.

References

[1] T.I. Lakoba, Z. Deng, Stability analysis of the numerical Method of characteristics applied to

a class of energy-preserving hyperbolic systems. Part I: Periodic boundary conditions, J. Com-

put. Appl. Math. 356 (2019) pp. 67–80.

[2] W.E.P. Padden, C.M. de Sterke, D.C. Psaila, Nonlinear pulse propagation in twin-core-fiber

rocking filters, Phys. Rev. E 52 (1995) pp. 4401–4409.

[3] H.H.B. Rocha, J.C. Sales, W.B. de Fraga, A. da Conceição Ferreira, J.L.S. Lima, C.S. Sobrinho,

J.W.M. Menezes, A.S.B. Sombra, Signal coupling in nonlinear hybrid optical structures: a

numerical approach, Int’l Microwave Optoelectron. Conf. (IMOC 2009) pp. 611–614.

[4] I.M. Merhasin, B.A. Malomed, Four-wave solitons in Bragg cross-gratings, J. Opt. B: Quantum

Semiclass. Opt. 6 (2004) pp. S323–S332.

39

[5] H. Ghafouri-Shiraz, Distributed feedback laser diodes and optical tunable filters, Wiley, Chich-

ester, 2003; Secs. 2.4 and 2.3.4.

[6] H.G. Winful, Pulse compression in optical fiber filters, Appl. Phys. Lett. 46 (1985) pp. 527–529.

[7] C.J. McKinstrie, H. Kogelnik, G.G. Luther, L. Schenato, Stokes-space derivations of gener-

alized Schrödinger equations for wave propagation in various fibers, Opt. Express 15 (2007)

pp. 10964–10983.

[8] S. Pitois, G. Millot, S. Wabnitz, Nonlinear polarization dynamics of counterpropagating waves

in an isotropic optical fiber: theory and experiments, J. Opt. Soc. B 18 (2001) pp. 432–443.

[9] V.V. Kozlov, J. Nuno, S. Wabnitz, Theory of lossless polarization attraction in telecommuni-

cation fibers, J. Opt. Soc. B 28 (2011) pp. 100–108.

[10] A.V. Mikhailov, S. Wabnitz, Polarization dynamics of counterpropagating beams in optical

fibers, Opt. Lett. 15 (1990) pp. 1055–1057.

[11] S. Wabnitz, Chiral polarization solitons in elliptically birefringent spun optical fibers,

Opt. Lett. 34 (2009) pp. 908–910.

[12] S. Wabnitz, Cross-polarization modulation domain wall solitons for WDM signals in birefrin-

gent optical fibers, IEEE Photon. Technol. Lett. 21 (2009) pp. 875–877.

[13] V.E. Zakharov, A.V. Mikhailov, Polarization domains in nonlinear media, JETP Lett. 45

(1987) pp. 349–35

[14] T. Kauffmann, I. Kocar, J. Mahseredjian, New investigations on the method of characteristics

for the evaluation of line transients, Electr. Pow. Syst. Res. 160 (2018) pp. 243–250.

[15] T.J. Bridges, S. Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs

that conserve symplecticity, Phys. Lett. A 284 (2001) pp. 184–193.

[16] X. Zhao, On error estimates of an exponential wave integrator sine pseudospectral method for

the Klein–Gordon–Zakharov system, Numer. Methods Partial Differ. Equ. 32 (2016) pp. 266–

291.

[17] W. Yi, X. Ruan, C. Su, Optimal resolution methods for the Klein–Gordon–Dirac system in

the nonrelativistic limit regime, J. Sci. Comput. 79 (2019) pp. 1907–1935.

40

[18] B. Ji, L. Zhang, X. Zhou, Conservative compact finite difference scheme for the N -coupled

nonlinear Klein–Gordon equations, Numer. Methods Partial Differ. Equ. 35 (2019) pp. 1056–

1079.

[19] M. El-Amrani, M. Seäıd, A finite element modified Method of Characteristics for convective

heat transport, Numer. Methods Partial Differ. Equ. 24 (2008) pp. 776–798.

[20] J.-M. Qiu, C.-W. Shu, Conservative high order semi-Lagrangian finite difference WENO meth-

ods for advection in incompressible flow, J. Comput. Phys. 230 (2011) pp. 863–889.

[21] S. Bak, High-order characteristic-tracking strategy for simulation of a nonlinear advec-

tion–diffusion equation, Numer. Methods Partial Differ. Equ. 35 (2019) pp. 1756–1776.

[22] T. Colonius, Numerically nonreflecting boundary and interface conditions for compressible

flow and aeroacoustic computations, AIAA J. 35 (1997) pp. 1126–1133.

[23] H. Wang, M. Al-Lawatia, A.S. Telyakovskiy, Runge–Kutta characteristic methods for first-

order linear hyperbolic equations, Numer. Methods Partial Differ. Equ. 13 (1997) pp. 617–661.

[24] M. Alhawwary, Z.J. Wang, Fourier analysis and evaluation of DG, FD and compact difference

methods for conservation laws, J. Comput. Phys. 373 (2018) pp. 835–862.

[25] P.L. Roe, M. Arora, Characteristic-based schemes for dispersive waves I. The Method of

Characteristics for smooth solutions, Numer. Methods Partial Differ. Equ. 9 (1993) pp. 459–

505.

[26] C.M. de Sterke, K.R. Jackson, B.D. Robert, Nonlinear coupled-mode equations on a finite

interval: a numerical procedure, J. Opt. Soc. Am. B 8 (1991) pp. 403–412.

[27] J. Chi, A. Fernandez, L. Chao, Comprehensive modeling of wave propagation in photonic

devices, IET Commun. 6 (2012) pp. 473–477.

[28] T.I. Lakoba, Z. Deng, Stability analysis of the numerical Method of characteristics applied

to a class of energy-preserving hyperbolic systems. Part II: Nonreflecting boundary conditions,

J. Comput. Appl. Math. 356 (2019) pp. 267–292.

[29] G.D. Byrne, R.J. Lambert, Pseudo-Runge–Kutta methods involving two points, J. As-

soc. Comput. Mach. 13 (1966) pp. 114–123.

[30] https://github.com/jsjewell/MoC-pRK-codes .

41

https://github.com/jsjewell/MoC-pRK-codes

[31] J.E. Sipe, C.M. de Sterke, B.J. Eggleton, Rigorous derivation of coupled mode equations for

short, high-intensity grating-coupled, co-propagating pulses, J. Mod. Opt. 49 (2002) pp. 1437–

1452.

[32] E. Assemat, A. Picozzi, H.-R. Jauslin, D. Sugny, Hamiltonian tools for the analysis of optical

polarization control, J. Opt. Soc. B 29 (2012) pp. 559–571.

[33] C.-W. Shu, S. Osher, Efficient implementation of Essentially Non-oscillatory shock-capturing

schemes, J. Comp. Phys. 77 (1988) pp. 439–471.

[34] J.S. Jewell, Higher-order Runge–Kutta type schemes based on the Method of Characteristics

for hyperbolic equations with crossing characteristics, M.S. Thesis, University of Vermont,

2019, https://scholarworks.uvm.edu/graddis/1028/ .

[35] J.C. Butcher, Numerical methods for ordinary differential equations, 2nd Ed., Wiley, Chich-

ester, 2008; p. 180.

[36] M. Nakashima, On pseudo-Runge–Kutta methods with 2 and 3 stages, Publ. RIMS, Kyoto

Univ. 18 (1982) pp. 895–909.

[37] H. Shintani, On pseudo-Runge–Kutta methods of the third kind, Hiroshima Math. J. 11

(1981) pp. 247–254.

[38] T.H. Lim, A third-order Nakashima pseudo-Runge–Kutta method, Sunway Acad. J. 10 (2014)

pp. 36–45.

[39] D.J. Gross, A. Neveu, Dynamical symmetry breaking in asymptotically free field theories,

Phys. Rev. D 10 (1974) pp. 3235–3253.

[40] S.-C. Li, X.-G. Li, F.-Y. Shi, Time-splitting methods with charge conservation for the nonlinear

Dirac equation, Numer. Methods Partial Differ. Equ. 33 (2017) pp. 1582–1602.

[41] T.I. Lakoba, Study of instability of the Fourier split-step method for the massive Gross–Neveu

model, J. Comput. Phys. 402 (2020) p. 109100.

[42] S.Y. Lee, T.K. Kuo, A. Gavrielides, Exact localized solutions of two-dimensional field theories

of massive fermions with Fermi interactions, Phys. Rev. D 12 (1975) pp. 2249–2253.

[43] A. Alvarez, B. Carreras, Interaction dynamics for the solitary waves of a nonlinear Dirac model,

Phys. Lett. A 86 (1981) pp. 327–332.

42

https://scholarworks.uvm.edu/graddis/1028/

[44] N.G.R. Broderick, C.M. de Sterke, K.R. Jackson, Coupled mode equations with free carrier

effects: a numerical solution, Opt. Quantum Electron 26 (1994) pp. S219–S234.

[45] R.W. Boyd, Nonlinear optics, Academic, San Diego, 1992; Secs. 8.3, 8.6, 10.6.

Appendix A: Derivation of stable P matrices and their physical

context

A.1 Case N+ = N− = 1

The obvious necessary condition for system (5a) to be stable for k = O(1) is that it be stable

for k = 0, which amounts to P having only imaginary eigenvalues. This yields the allowed form

of P:

P = ia1σ1 + ia2σ2, (71a)

where a1,2 ∈ R. Terms ia0σ0 and ia3σ3 with a0,3 ∈ R are absent in (6) since they can be

removed by a phase transformation: y± → y± exp[−i(a0t ± a3x)]. It is straightforward to

verify that for (71a), the plane-wave solution, proportional to exp[i(kx − ωt)], is stable for all

k ∈ R.

Now, (71a) can be transformed into a form where only one of σ1 and σ2 is present. For

example, if originally a2 6= 0, then a similarity transformation with matrix rσ0 + σ3, where

r = i
(√

(a1/a2)2 + 1− (a1/a2)
)

, sets a2 = 0. Note that this transformation does not affect

matrix Σ ≡ σ3 in (5a). Therefore, for N+ = N− = 1, one can take, without loss of generality:

P = iσ1 . (71b)

In the context of coupled modes in a waveguide, the coefficients a1 and a2 in (71a) describe

coupling via spatial modulation of, respectively, refractive index and gain/loss in both counter-

propagating [5, 6] and co-propagating [2, 31] geometries. Matrix (71b) also arises in the one-

dimensional relativistic field theory; examples are the Gross–Neveu and Thirring models.

A.2 Case N+ = N− = 2

Here we will consider two groups of models describing propagation of electromagnetic field in

optical fibers. The field vector in a fiber has two components, referred to as polarizations. Typi-

cally, they propagate with slightly different speeds; this phenomenon is known as birefringence.

43

The two polarizations can be coupled linearly by spatial modulation of the fiber’s refractive

index. In addition, there can be linear coupling to the field in another, closely placed fiber.

Finally, there can be nonlinear coupling, via the refractive index’s nonlinear part, to a co- or

counter-propagating field in the same fiber, as well as between two polarizations of the same

field.

The first group contains just one model, where two polarizations in one fiber are coupled

linearly to each other as well as to respective polarizations in a closely placed fiber [2]. The

corresponding matrix has the form:

P = i

(
σ1 aσ0

aσ0 σ1

)
, a ∈ [0,∞) , (72)

where parameter a accounts for the relative strength of the two types of coupling. In order to

make the form of the diagonal blocks of P matrices of both groups the same, we cast (72) into

an equivalent form (8). This can be achieved by a similarity transformation with matrix

S =

(
V+ O

O V−

)
, (73)

where V± are some invertible matrices. One can show that (73) is the only similarity transfor-

mation that does not affect matrix Σ in (5a).

The second group comprises several models, each describing nonlinear coupling between po-

larizations of counter- and co-propagating fields. For a summary, see [32] and also below. The

same or closely related models had been also considered in [7], although equations derived there

were not put in the form (74). The general form of these models is:

s±t ± s±x = s± × Jc s∓ + s± × Js s± , (74)

where s± ≡
(
s±1 , s

±
2 , s

±
3

)T
are the Stokes vectors of the two fields, ‘T’ stands for transposition

and Jc,s are matrices accounting, respectively, for cross- and self-interaction of s±. The real-

valued components of the Stokes vector are defined in terms of the complex-valued field vector

~E = (E1, E2)T as:

sj =
(
~E∗
)T

σj
~E, j = 1, 2, 3; (75)

where E1,2 are the polarizations and ‘∗’ stands for complex conjugation. In the context

of counter-propagating geometry, superscripts ‘+’ and ‘−’ refer to forward- and backward-

propagating fields. In the context of co-propagating geometry, the same identification can be

made formally, as described after Eq. (1c). The form of matrices Jc,s has been derived for five

44

different physical models. Below we use the order of entries of these matrices consistent with

definition (75).

The first model describes two counter-propagating fields in an isotropic fiber, in which case [8]:

Jc = diag(−2,−2, 0), Js = diag(−1,−1, 0). (76a)

The next two models describe counter- and co-propagating fields in a randomly birefringent

fiber, where, respectively [9]:6

Jc = diag(1,−1,−1), Js = O, (76b)

and

Jc = diag(1, 1, 1), Js = O . (76c)

The last two models describe interaction of counter- and co-propagating fields in a spun, highly

birefringent fiber, where the respective matrices are [10, 11]:

Jc = (1− afiber) diag(1,−1,−2), Js =
3

2
afiber diag(0, 0, 1), afiber ∈ [−1/2, 1]; (76d)

and [12]:

Jc = (1−afiber) diag(1,−1,−2)−3 diag(1, 1, 0), Js =
3

2
afiber diag(0, 0, 1), afiber ∈ [−1/2, 1]; .

(76e)

Parameter afiber = 1 − (3/2) cos2 ϕfiber in these equations characterizes the relative strength

of the spinning and birefringence, with ϕfiber being the degree of ellipticity of the polarization

eigenmodes of the fiber (ϕfiber = 0 and π/2 correspond to linear and circular eigenmodes,

respectively). Note that afiber in (76d), (76e) is not the same as a in (9)–(11), although the

two are related. Model (76d) with afiber = 0 was earlier derived in [13] in a different physical

context.

Two remarks about Eqs. (76) are in order. First, the numeric values of entries of Jc, s are dictated

by fundamental physical properties of the nonlinear refractive index of the fiber and cannot be

taken arbitrarily, as, say, diag(a1, a2, a3). Second, these entries cannot be scaled relative to one

another; e.g., Jc = diag(1,−1,−1) cannot be transformed to Jc = diag(1,−1,−2) by any linear

transformation of the Stokes vectors s±.

6Expressions (76b), (76c) correct a typo that resulted in an incorrect order of entries in [9].

45

In deriving stable P matrices from models (76), we follow the approach of [1]. Namely, we

consider six stationary solutions of (76):

s+
j = 1, s−j = ±s+

j

for one of j = 1, 2, or 3, with

the other two components of s± being 0.
(77)

For brevity, we will refer to these solutions as (j±), where j and ± correspond to the particular

choice of the component and the sign in (77). For each model in (76) we obtain P from lineariza-

tion about each of these solutions; this results in 30 matrices. The explicit form of P allows us

to determine which of solutions (77) are physically stable for a given model in (76); this is done

by numerically finding the dispersion relation ω(k) for the plane wave solution ∝ exp[iωt−ikx].

For model (76a), the only physically stable solution is (3+), and its P corresponds to P3 with

a = −1/2. For model (76b), the stable solutions are (1+), (2−), (3−), and the corresponding

matrices can be reduced to P3 in (9) with a = 0 by a similarity transformation (73). The sta-

ble solutions (1+), (2+), (3+) of model (76c) result in the same matrix. The stable solutions

(1+), (2−) of model (76d) result (either directly or via a similarity transformation) in P4 in

(10), and the stable solution (3−) results in P3 with a ∈ [−1/2, 7/4]. The stable solution (1+)

and (2+) of model (76e) result in P5 in (11), while the stable solution (3+) results in P3 with

a ∈ [−3/2, 3/2]. All solutions not mentioned above are physically unstable, and hence their

P matrices are not considered in this work. (This includes matrices P4 and P5 with values of

parameter a that correspond to values of afiber allowed by (76d) and (76e) but that are outside

of the intervals for a listed in (10) and (11).)

Appendix B: Pseudocodes and codes for MoC-pRK{3,4}
schemes with nonreflecting BC

To improve visual clarity, in these pseudocodes we will not use boldface font for variables.

Recall that the nodes of the grid are numbered with 1 ≤ m ≤ M . Then the virtual nodes

nearest to the grid on the left and right are numbered as m = 0 and m = M + 1, respectively,

and the next-to-nearest nodes are numbered as m = −1 and m = M + 2. Notations like y[1 ::M]

will refer to all nodes with 1 ≤ m ≤ M , while those like y[1,M] will refer to only two nodes

m = 1 and m = M . At each time level except the first, the algorithms first handle virtual

nodes outside the grid and then those inside the grid; the corresponding groups of steps are

labeled as OG and IG. This order is dictated by the fact that the OG calculations are performed

at earlier time levels.

46

Equation numbers for the computation of a specific variable (e.g., (14) for κ1) are listed only

once per pseudocode. Also, some of these listed equations pertain only to the left boundary;

their counterparts for the right boundary are obtained straightforwardly.

Schematics of the pseudocodes are illustrated in Fig. 16. Only the left boundary and the flow

of the computation of the components along the positive characteristic are shown; for the right

boundary and the negative characteristic they are analogous. The emphasis of this schematic

is on the OG calculations, and hence only the m = 2, 3 nodes for the IG calculation are shown.

We note that these pseudocodes use a different organization of OG calculations than the pseu-

docodes presented in [34].

Finally, the actual Matlab codes for both schemes are found on GitHub [30]. The main groups

of logical steps that these codes have while the pseudocodes below do not are: (i) reassignment

of κ’s computed at previous time levels (e.g., as n is increased, one reassigns κn−1 → κn−2,

etc.) and (ii) storage of near-boundary values.

(a)

m=0 m=3

n=1

n=2

n=3

n=4

m=1 m=2

2.OG

3.OG
2.IG 2.IG

3.IG

4.IG4.IG

3.IG
4.OG

5.OG

n=1

n=2

n=3

n=4

n=5

m=3m=2m=1m=0m= -1

(b)

3.OG3.OG

2.OG 2.OG

4.IG4.IG

5.IG5.IG

4.OG

5.OG

6.OG 5.OG

3.IG3.IG

2.IG 2.IG

Figure 16: Schematics illustrating the pseudocodes. Filled (open) circles represent real (virtual)

nodes. Solid arrows show the flow of an inside-the-grid calculation along the positive characteristic.

Dashed (dotted) arrows indicate an outside-the-grid calculation (retrieval of stored data) to compute

(retrieve) the virtual node to which the arrow is pointing. The numbers in front of ‘OG’ and ‘IG’ and

next to the arrows correspond to the time levels as numbered in the pseudocodes. Panels (a) and

(b) correspond to the MoC-pRK3 and MoC-pRK4 schemes, respectively. In panel (b), two labels are

missing due to lack of space: 4.OG for the arrow from node (n,m) = (3, 1) to (2, 0) and 5.OG from

(4, 1) to (5, 2). Note that while the latter arrow (thin dashed) is located inside the grid, it belongs

to the ‘OG’ group.

MoC-pRK3 pseudocode

while n < nmax

if n = 1

IG: (y±)n[1::M] given by initial condition

47

IG: Compute (κ+
1)n[1::M−1] and (κ−1)n[2::M] by (14)

else if n = 2

OG: Compute (y±)n−1
[0,M+1] by (57)

IG: Compute (y±)n[1::M] by MoC-ME (18b) and BC (23b)

IG: Compute (κ+
2)n−1

[1::M−1] and (κ−2)n−1
[2::M] by (44b)

IG: Compute (κ+
1)n[1::M−1] and (κ−1)n[2::M]

else (n ≥ 3)

OG: if n = 3

Retrieve (y±)n−2
[0,M+1] from n = 1

else

Compute (y±)n−2
[0,M+1] by the rotated MoC-ME (58)

end

OG: Compute (κ+
1,2)n−2

0 and (κ−1,2)n−2
M+1

IG: Compute (y±(2))
n
[1::M] by MoC-ME

IG: Compute (κ+
2)n−1

[1::M−1] and (κ−2)n−1
[2::M]

IG: Compute (y±)n[1::M] by MoC-pRK3 (44a)

IG: Compute (κ±1)n[1::M−1] and (κ−1)n[2::M]

end

end while

MoC-pRK4 pseudocode

while n < nmax

if n = 1

IG: (y±)n[1::M] given by initial condition

IG: Compute (κ+
1)n[1::M−1] and (κ−1)n[2::M] by (14)

IG: Compute (y+
(1))

n+1
[1::M−1] and (y−(1))

n+1
[2::M] by (18a)

(% These will be used at the next n to compute κ2 at this n.)

else if n = 2 or n = 3

OG: Compute (y±)n−1
[−1, 0,M+1,M+2] by (59)

OG: if n = 3

Compute (κ
(+)
1)n−2

0 and (κ
(−)
1)n−2

M+1

Compute (κ
(+)
2)n−2

0 and (κ
(−)
2)n−2

M+1

end

IG: Compute (y±)n[1::M] by MoC-RK3 (17) and BC (23b)

IG: Compute (κ+
2)n−1

[1::M−1] and (κ−2)n−1
[2::M] by (46b)

IG: Compute (κ+
1)n[1::M−1] and (κ−1)n[2::M]

IG: Compute (y+
(1))

n+1
[1::M−1] and (y−(1))

n+1
[2::M]

end

else (n ≥ 4)

48

OG: if n > 4

Compute (y±(2))
n
[2,M−1] by the MoC-ME

end

OG: if n = 4

Retrieve (y±)n−2
[0,M+1]

else (n ≥ 5)

Compute (y±)n−2
[0,M+1] by the rotated MoC-pRK3 (60)

end

OG: Compute (κ
(+)
1)n−2

0 and (κ
(−)
1)n−2

M+1

OG: Compute (κ
(+)
2)n−2

0 and (κ
(−)
2)n−2

M+1

OG: if n = 4 or n = 5

Retrieve (y±)n−3
[−1,M+2]

else (n ≥ 6)

Compute (y±)n−2
[−1,M+2] by the rotated MoC-pRK3

end

OG: Compute (κ
(+)
1)n−3

−1 and (κ
(−)
1)n−3

M+2

OG: Compute (κ
(+)
2)n−3

−1 and (κ
(−)
2)n−3

M+2

IG: Compute (y±(3))
n
[−1 ::M] by the MoC-pRK3 (44a)

IG: Compute (κ+
2)n−1

[1::M−1] and (κ−2)n−1
[2::M]

IG: Compute (y±)n[1::M] by MoC-pRK4 (46a) and BC

IG: Compute (κ+
1)n[1::M−1] and (κ−1)n[2::M]

IG: Compute (y+
(1))

n+1
[1::M−1] and (y−(1))

n+1
[2::M]

end

end while

Appendix C: Technical considerations for computing numerical

error in Section 8

If computed by the naive formula

ε±naive = max
x
|u±(x, t)− u±sol(x, t)| , (78a)

where u±sol(x, t) is given by (62), the error ε±naive would grow in time due to the following. The

scheme’s discretization error at every time step causes the soliton parameters Ω, V , φ0, and x0

to drift. (For the standing soliton (62), only Ω and φ0 will drift due to symmetry considerations.)

As the discretization error is approximately constant in time for the constant soliton profile,

this drift can be assumed to have approximately constant rate. A drift of φ0 at a rate φ̇0 causes

the error, computed by (78a), to grow linearly in time, since | exp[iφ̇0t]− 1| ∝ t for |φ̇0t| � 1.

Similarly, a drift of Ω at a constant rate Ω̇ causes the error to grow quadratically in time, since

49

now the soliton’s phase is
∫ t

0 Ω(t′)dt′ = Ω(0)t+ Ω̇t2/2. Since, in general, both φ0 and Ω drift,

the time dependence of the error depends on the relation between φ̇0 and Ω̇t. A typical result

is shown in Fig. 17(a). Such a growth of the error due to the phase drift would mask an error

occurring due to the changes in the soliton’s profile and which, for practical purposes, could be

deemed more essential than the phase error.

0 50 100 150 200
time

0

0.5

1

1.5

2

2.5

||
 ||

10-6

(a)

naive

adjusted

0 50 100 150 200
time

0

0.5

1

1.5

2

2.5

3

 Q
/Q

(t
=

0)
,

 H
/H

(t
=

0)

10-6

(b)

 H/H(t=0)

 Q/Q(t=0)

Figure 17: (a): Evolution of the solution error of MoC-NpRK4 with c22 = 1 and h = 0.025 with

periodic BC. (b): Evolution of errors of Q and H for the same simulation.

Thus, to avoid this growth, we computed the error as

ε± = max
x
|u±(x, t)− u±sol, adj(x, t)| , ‖ε‖ =

√
(ε+)2 + (ε−)2 , (78b)

where in the last term of the first expression, parameters Ω and φ0 of the soliton are being

continuously adjusted. This adjustment proceeds as follows. First, at each time step, one com-

putes the soliton’s charge Qcomp from (64a) and the numerical solution u±(x, t). As illustrated

in Fig. 17(b), Qcomp drifts in time due to the scheme not being exactly conservative. Given the

first relation in (64c), one infers that

Ωcomp = 1/
(
1 + (Qcomp/2)2

)
. (79a)

Second, one measures the phase φcomp(t) of the computed solution as the phase of (u+(0, t) +

u−(0, t)). (For the exact soliton (62), the phase of (u+(x, t) + u−(x, t)) would equal (−Ωt)

uniformly in x.) Then in (78b), one sets

u±sol(x, t) =
√

1− Ωcomp
cosh(βcomp x) ± iµcomp sinh(βcomp x)

cosh2(βcomp x)− µ2
comp sinh2(βcomp x)

exp[iφcomp(t)] , (79b)

where βcomp and µcomp are related to Ωcomp by (62b).

In order to use (79a) to compute the error of the soliton entering the medium, as in Section

8.2, one would have to adjust not only Ω and φ0, but also V and x0. We do not do so for two

50

reasons. First, it is considerably more complicated than adjusting just Ω and φ0 of the standing

soliton; this, in particular, is due to the fact that as the soliton is entering the medium, small

changes in Ω and φ0 become coupled to those of V and x0. Moreover, there is actually no need

to carry out a long-term simulation of a soliton entering the medium to evaluate performance

of a numerical scheme. Indeed, simulating the standing soliton over a long time was needed

not to confirm its accuracy, but rather to verify that it can preserve conserved quantities to

a given degree in long-term simulations. In the pulse-entering problem, one is not concerned

with preservation of the conserved quantities, as they, naturally, vary as the pulse enters the

medium. Therefore, in this case, we computed the error only up to t = 5 using the “naive”

formula (78a) and did not compute the error in Q and H.

51

	Introduction
	Explicit forms of P in (5a)
	MoC schemes with RK3 solver
	Derivation of the scheme
	Von Neumann analysis of the MoC-RK3 scheme
	Other versions of the MoC-RK3 scheme

	MoC schemes with RK4 solver
	Review of pseudo-RK solvers for ODE (12)
	pRK solvers based on Byrne–Lambert's idea
	pRK solvers based on Nakashima's idea
	Stability regions of pRK and NpRK solvers
	Advantages of the pRK over Adams–Bashforth solvers

	MoC schemes of 3rd and 4th orders based on (N)pRK solvers for periodic BC
	MoC-pRK and MoC-NpRK schemes
	von Neumann stability analysis of the MoC-(N)pRK schemes

	MoC-pRK schemes with nonreflecting BC
	Nonreflecting BC for the MoC-pRK3 (44), (14)
	Nonreflecting BC for the MoC-pRK4 (46), (14)

	Numerical verification
	Gross–Neveu with periodic BC
	Gross–Neveu with nonreflecting BC
	Linear Klein–Gordon

	Summary and discussion
	Case N+=N-=1
	Case N+=N-=2

