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Numerical treatment of boundary conditions to
reduce high-frequency artifacts in simulations of

distributed-feedback lasers
T.I. Lakoba, B.L. Kotzen, and C.J. McKinstrie

Abstract—High-frequency artifacts may occur when the
coupled-mode equations describing distributed-feedback lasers
are solved by a variety of numerical methods, such as method-of-
characteristics schemes and the split-step method. We propose a
simple technique to suppress this artifact. Its idea is to modify the
numerical implementation of the boundary conditions to promote
the leakage of highest-frequency modes out of the medium. At
the same time, this implementation only minimally affects the
physical part of the solution. We demonstrate the effectiveness
of this technique for first- and second-order schemes.

Index Terms—Distributed feedback devices, Semiconductor
device modeling

I. INTRODUCTION

Semiconductor distributed-feedback (DFB) lasers are the
backbone of the optical communications industry and also
find extensive applications in compact optical sensing devices.
Their operation involves stimulated and spontaneous emission,
stimulated absorption, material and facet loss, and the coupling
of forward and backward light waves. In the lasing regime,
the dynamics of these waves results in longitudinal and/or
transverse mode competition. A good laser will attain a single-
mode steady state, superimposed on which are weak, noise-
induced power and frequency fluctuations. The light-wave
and carrier-electron equations that govern laser dynamics are
too complicated to solve analytically. Consequently, one must
use numerical simulations to determine the properties of a
variety of designs. To do this, one must have a code that
operates accurately and stably, even in the presence of noise.
In this work we address the issue of suppression of an artifact,
which may appear as a numerical instability, in some widely
used numerical schemes. Surprisingly, this artifact has not,
to our knowledge, been discussed in the earlier literature on
numerical modeling of DFB devices.

Electromagnetic wave propagation in semiconductor lasers
with distributed feedback is modeled by the following equa-
tions for forward- and backward-propagating fields E± and
free carrier (electron) density N (see, e.g., [1], [2], [3]):(

1

vg
∂t ± ∂x

)
E± = f (±)(E+, E−, N) + ξ±(x, t) , (1a)

∂tN = f (N)(E+, E−, N)−vg
(
(E+)∗ξ+ + (E−)∗ξ− + c.c.

)
.

(1b)
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Here t and x are the time and distance along the propagation
direction; vg is the field’s group velocity; ξ± are mutually
independent noise terms modeling spontaneous emission; the
asterisk denotes complex conjugation, and ‘c.c.’ stands for
‘complex conjugate’. The functions on the r.h.s. in (1) are:

f (±) =

(
g (1 + i∆) (N −N0)

2(1 + εP )
− αloss

2

)
E± + iκE∓ ,

(2a)

f (N) =
J

qd
− N

τ
−BN2 − CN3 − g (N −N0)

1 + εP
vgP, (2b)

where g is the differential gain (including the confinement
factor), ∆ is the linewidth enhancement factor, N0 is the
carrier density required for transparency, P = |E+|2 + |E−|2
is the total photon power (normalized so that it has units
of density N , i.e., that of inverse volume), ε is the gain
compression coefficient, αloss is the waveguide loss coeffi-
cient, and κ is the coupling coefficient due to refractive index
corrugation (we do not consider gain coupling in this work,
as it is not essential to its main idea). Moreover, in (2b), J
is the current injection density, q is electron’s charge, d is
the thickness of the active layer, τ is the carrier lifetime, B
and C are bimolecular and Auger recombination coefficients,
respectively. The spontaneous emission terms are assumed to
have the correlation functions:

〈(ξ±)∗(x′, t′) ξ±(x, t)〉 = 2D±ξ δ(x− x
′) δ(t− t′) , (3)

where 〈· · · 〉 stands for ensemble average, and all the other
correlation functions vanish. Strictly speaking, Eq. (1b) also
has a noise term whose intensity is proportional to the carrier
recombination rate [1]. For the parameters that we consider
below, that intensity is of the same order of magnitude as that
of the noise term retained in (1b). As we show in Section 4,
the effect of that noise term is quite small (much smaller than
the effect of the noise terms in Eqs. (1a)), and hence we limit
ourselves to considering only one type of noise term in (1b).

The partially reflecting boundary conditions (BC), which
along with Eqs. (1)–(2) govern the lasing dynamics of the
device, are:

E+(+0, t) = TlE
+
inc(t) +RlE

−(+0, t) , (4a)

E−(L− 0, t) = TrE
−
inc(t) +RrE

+(L− 0, t) , (4b)

where Tl,r and Rl,r are, respectively, the complex trans-
mission and reflection coefficients at the left (x = 0) and
right (x = L) boundaries, and E±inc(t) are the forward- and
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backward-propagating fields incident on the device from the
outside. The fields at the output of the device are found from:

E−(−0, t) = T ∗l E
−(+0, t)−R∗lE+

inc(t) , (5a)

E+(L+ 0, t) = T ∗r E
+(L− 0, t)−R∗rE−inc(t) . (5b)

We will consider lasing as starting from spontaneous emis-
sion, described by the initial condition

E±(x, 0) = ζ±(x), N = N0, (6a)

where ζ± is a white noise in x similar to that defined in (3):

〈(ζ±)∗(x′) ζ±(x)〉 = 2D±ζ δ(x− x
′) , etc. (6b)

We will work with nondimensionalized equations, letting

x→ xL, t→ t (L/vg), N → N N0 , P → P N0 ;
(7a)

here, on the left (right) the variables x, t,N, P are dimen-
sional (nondimensional). Equations (1), (2) written in these
nondmensional variables retain their form, where now all the
coefficients are appropriately normalized and, in addition:

0 ≤ x ≤ 1 (i.e., L = 1); vg = 1; N0 = 1 . (7b)

Most numerical methods used to solve the coupled-mode
Eqs. (1) fall into two categories: transfer matrix-type methods
and finite-difference schemes based on the Method of Charac-
teristics (MoC). These two categories were compared in [4],
[5]. In Appendix A we will also briefly describe two forms of
the split-step method. In this work we focus on the schemes
based on the MoC [6], [2], [7]; however, the ideas developed
below apply equally to the split-step method. In [6], [2], the
MoC schemes were referred to as ‘transmission line laser
model’ and ‘time domain model,’ respectively; they produced
first-order accurate (in time step) solutions of Eqs. (1). In
Ref. [7], a fourth-order scheme was used; other fourth-order
MoC schemes are found in [8], [9], although they were not
used specifically to solve Eqs. (1). Below we focus on a
second-order MoC scheme, described in Appendix A, where
we also justify our choice of this order of accuracy. Let us note
that among various finite-difference methods, MoC schemes
present a “natural choice” in that the numerical grid can be
chosen so that characteristics of the system cross exactly at
the grid nodes.

The numerical difficulty faced by the MoC applied to
Eqs. (1), (2), and (4) can be illustrated with the following
example. The stationary (∂t ≡ 0) solution of these equations
with normalization (7), nondimensional parameters (see cap-
tion to Fig. 1):

∆ = ε = αloss = 0, g = 10, κ = 2,

1

τ
= 10−3, B =

0.6

τ
, C =

0.9

τ
,
J

qd
=

25

τ
;

(8a)

E±inc ≡ 0, Rr = 0, Rl = −i
√

0.9 , (8b)

and ξ± ≡ 0, is shown in Fig. 1(a). This solution can be
obtained, e.g., with the shooting method. On the other hand,
the solution at t � 1 obtained by the MoC scheme of

Appendix A is shown in Fig. 1(b). The output power at the left
boundary is shown in Fig. 1(c). Both figures show numerical
artifacts occurring due to significant presence in the solution
of the mode with the highest numerically resolved frequency.
In Fig. 1(b) and the inset to Fig. 1(c), this is manifested by the
curve’s changing significantly on the scale of the grid spacing
h. This numerical artifact persists as h decreases (we verified
this down to h = 1/2000), although its magnitude relative
to the smooth part of the solution varies irregularly with h.
This persistence of the artifact for progressively smaller grid
spacings indicates that it is a purely numerical phenomenon
and is not related to the physical high-frequency pulsations
due to mode competition, reported, e.g., in Fig. 6 of [2].

Figure 1(d) confirms that the highest resolved (i.e., un-
physical) Fourier harmonics are not sufficiently attenuated
by the numerical scheme compared to the harmonics with
wavenumbers O(1) (i.e., those describing the actual physical
process). It should be noted that the shape of the Fourier
spectrum (and, most importantly, the relative magnitude of
the highest and lowest harmonics) remains approximately the
same even for much longer times than that used in Fig. 1; e.g.,
for 1000 nondimensional units, or about 5 ns. In other words,
the highest-frequency harmonics do not grow in time, but are
merely not attenuated fast enough compared to the “physical”
part of the solution. Thus, the artifact described above is not
a numerical instability (in the terminology of numerical anal-
ysis). Rather, it is an unphysically slow decay of the highest
harmonics resolved by the numerical grid compared to the
time evolution of the lower-frequency modes that describe the
“true” physics of the model. Those “physical” modes occupy
part of the Fourier spectrum with wavenumbers of order one,
as follows from the coefficients in the example considered,
i.e., (8), all being of that order. Even for h = 1/100, used in
Fig, 1, and certainly for the smaller grid spacings mentioned
above, the “physical” modes are very well resolved by the
numerical grid.

We have explained that the highest-frequency modes are
present in the solution because the numerical scheme causes
them to decay insufficiently fast. To see how these modes
became part of the solution, recall that in the simulations
reported in Fig. 1, lasing is assumed to be seeded by the spon-
taneous emission (6). There, harmonics with all wavenumbers
contribute approximately equally. According to Fig. 1(d) and
to the analysis presented later in this paper, the magnitude
of the lowest and highest harmonics evolves at approximately
the same rate, while the intermediate harmonics decay faster.
Then, it is the smooth and the most rapidly varying harmonics
that dominate the numerical solution at long times. If, on the
other hand, the field inside the medium is excited, e.g., by an
incident pulse, then the situation can be different; see below.

Let us note that, to our knowledge, the high-frequency
numerical artifact illustrated in Fig. 1 was not reported in
earlier studies. We do not know why this was the case. In
regards to studies (e.g., [2], [4], [10]) which considered lasing,
that presumably was seeded by spontaneous emission, we hy-
pothesize that the authors could have started their simulations
with spatially smooth, small but nonzero initial values of E±

inside the medium. If these smooth initial values significantly
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Fig. 1. (a): Stationary solution of Eqs. (1)–(4) where ξ± ≡ 0, and (8); all variables are nondimensionalized as per (7). One nondimensional time unit
corresponds to ∼ 5 ps. (b): Solution of the same system with D±

ζ ∼ 10−30 (i.e., the order of Matlab’s round-off error) in (6b) obtained by the MoC
scheme described in Appendix A at t = 100 with h = 0.01. (c): A sample of output power evolution at the left boundary. (d): Fourier spectrum of the
forward- and backward-moving fields at t = 100. In (c), the graph appears as a filled band due to fast unphysical oscillations at the maximum frequency
resolved by the temporal grid; a close-up on these oscillations near t = 27 is shown in the inset, confirming that they occur at the highest resolved frequency
with period h. For (d), the fields were multiplied by a super-Gaussian window to ensure periodicity in x before taking the Fourier transform. Parameters
(8) represent a version of parameters used in Section 4 that was simplified (∆ω = ε = αloss = 0) but retain the most essential features of the model, e.g.,
the relaxation oscillations seen for 25 < t < 30. Some other parameters were tweaked so that in the absence of the high-frequency numerical artifact, the
lasing would occur at a single frequency. See Section 4 for more details.

exceeded the level of (initial) spontaneous emission, so would
the amplitude of smooth, physical modes compared to those
of the highest-frequency, unphysical modes. As we noted in
the previous paragraph, this relation would then be preserved
in time by the numerical scheme, and the fast ripple would
not contaminate the numerical solution. We verified that this
“trick” can indeed suppress the artifact. On the other hand,
Ref. [7], which focused on transmission and and reflection of
a smooth pulse through/from a grating containing an active
medium. In this case, it appears likely that the field of that
pulse could play the role of the “regularizing” smooth initial
condition mentioned a few sentences ago, which thereby also
suppressed the high-frequency artifact.

Let us note that the numerical artifact in question does not
require the coupled-mode equations to have the complexity of
all terms in Eqs. (1), (2). Rather, it is readily observed (when
starting from zero, to numerical precision, initial conditions)
even in the simplest coupled-mode system, as described in
Section 2. Moreover, in Section 5 we show that the same
artifact is observed (and can be suppressed with the technique
presented in this work) in a split-step numerical method.

In this work we describe how the implementation of the
BC (4) can be modified in a systematic way so that the high

Fourier harmonics “responsible” for the above artifact get
attenuated sufficiently fast, similarly to what would be required
by the physics of the problem (see the figures in Appendix
B). Our modification of the BC restores the smooth nature
of the solution obtained without the (physical) noise terms in
Eqs. (1a) and produces a significantly smoothed solution when
those terms are included.

The main part of this paper is organized as follows. In Sec-
tion 2 we present the main idea of our smoothing method for
the first-order MoC scheme and simpler equations. These sim-
plifications are intended to clarify the presentation, allowing us
to emphasize the idea over technical details. We also validate
this idea numerically. In Appendices B and C we present
analyses of the numerical method whose results corroborate
our numerical results for the simpler case mentioned above.
In Section 3 we extend the “smoothing” idea to a second-
order MoC scheme and confirm its viability with numerical
results, still for the simpler equations. Finally, in Section 4,
we apply “smoothing” to simulate the original Eqs. (1)–(4),
which include the noise terms, with the second-order MoC
scheme of Appendix A, thus demonstrating the validity of the
proposed method. In Section 5 we summarize the results and
present some extensions.



5

II. SMOOTHING METHOD FOR A SIMPLIFIED PROBLEM

A. Idea of the method

To emphasize the key idea, we explain it here for a version
of the original problem where we make two simplifications.
First, instead of Eqs. (1), (2), we consider a system

(∂t ± ∂x) E± = iκE∓ (9)

supplemented with the same BC (4), where we set E±inc ≡ 0.
The phenomenon where the lowest and highest Fourier har-
monics evolve at similar rates, thus causing numerical artifacts
illustrated in Figs. 1(b,c), takes place for this simplified model
as well. Second, in this section only, we will consider not the
second-, but the first-order MoC scheme given by Eqs. (32),
(34). Applied to Eqs. (9), this scheme reads:(

E+

E−

)n+1

m

= C+

(
E+

E−

)n
m−1

+ C−
(
E+

E−

)n
m+1

,

(10a)
where: (E±)nm ≡ E±(xm, tn) are field values at the nodes of
the space–time grid; the evolution matrices for the forward-
and backward-propagating fields are:

C+ =

(
1 0
0 0

)
+h

(
0 iκ
0 0

)
, C−=

(
0 0
0 1

)
+h

(
0 0
iκ 0

)
;

(10b)
and h is the step size in space and time. The standard

implementation of BC (4) (with E±inc ≡ 0) is:(
E+
)n

0
= Rl

(
E−
)n

0
;

(
E−
)n
M

= Rr
(
E+
)n
M
. (11)

Analysis of numerical scheme (10), (11) proceeds by using
the ansatz

Enm = λnρmu , (12)

where E ≡ [E+; E−]T and vector u is independent of
(m,n). The so-called amplification factor |λ| and the pa-
rameter ρ determine, respectively, the temporal evolution and
spatial shape of modes of the numerical scheme, which are
non-periodic counterparts of Fourier harmonics. In particular,
counterparts of Fourier harmonics with low (|k| = O(1)) and
highest (|k| . kmax ≡ π/h) wavenumbers k, are modes that
correspond to physical (i.e., “true”) and unphysical parts of the
numerical solution and thus are referred to by these names in
what follows. Separate analyses for these modes are presented
in Appendices B and C. In particular, they show that:
• The physical and unphysical modes have:

ρph = 1 +O(h), ρunph = −1 +O(h) (13a)

(note that ρph ≈ exp[i · O(1) · h] and ρunph ≈ exp[i ·
(π/h) · h]). Indeed, the physical modes are assumed to
be numerically well resolved, meaning that they vary
smoothly from one grid point to the next. The above
factor (ρph)m describes such a smooth variation. On
the contrary, the highest-frequency modes are not well
resolved, meaning that they have only two grid points
per period (as per the Nyquist criterion), at the maximum
and minimum. The corresponding abrupt changes in the
mode’s profile are described by the factor (ρunph)m and
are illustrated, e.g., in the inset to Fig. 1(c).

• The corresponding amplification factors are approxi-
mately the same:

|λph|≈|λunph|=1+O(h)<1; |λph|−|λunph|=O(h2).
(13b)

Consequently, the numerical noise (e.g., from the round-off
error) has approximately the same magnitude as the “true” part
of the numerical solution when one starts simulations from the
zero initial condition. Therefore, to suppress this numerical
noise, one needs to modify scheme (10), (11) so as to make

|λph| − 1 > |λunph| − 1, (14a)

since this entails

|λph|n � |λunph|n for n� 1 . (14b)

We will accomplish this by modifying the BC (11), led
by the following key observation. The unphysical modes will
be attenuated in the entire grid if they are attenuated at the
boundary. A way to attenuate a mode at the boundary is to
lower its reflection coefficient, since then more of this mode
would leak out. Therefore, the desired modification of (11)
should meet two criteria:
(i) Attenuate the unphysical modes by lowering their effec-

tive reflection coefficient,
(ii) While not changing the reflection coefficient for the

physical modes within the accuracy of the numerical
scheme (i.e., O(h) in this Section).

We will seek the modified version of BC (11) in the form:

E+
0 + θ+

l ∆1E
+
0 = Rl

[
E−0 + θ−l ∆1E

−
0

]
, (15a)

E−M − θ
−
r ∆1E

−
M−1 = Rr

[
E+
M − θ

+
r ∆1E

+
M−1

]
, (15b)

where we have dropped the superscript ‘n’ in all E±-terms,
∆1Ej ≡ Ej+1 −Ej , and θ±l,r are constants to be determined.
To estimate the range of θ±l,r that could satisfy criteria (i) and
(ii) above, let us start by considering unphysical modes (for
criterion (i)) and the left boundary (the considerations for the
right one are analogous). Substituting (12) with ρunph ≈ −1
(from (13a)) into (15a), one finds:

E+
0, unph ≈ Rl

(
1− 2θ−l
1− 2θ+

l

)
E−0, unph ≡ Rl, eff E

−
0, unph .

(16)
The more rigorous analysis of Appendix C confirms that the
effective reflection coefficient is indeed given by the above
equation in the main order in h. For θ+

l < 0 and θ−l ∼ 0.5,
one has |Rl, eff | � |Rl|, thereby leading to attenuation of
the E+-field at the left boundary compared to the case where
the original BC (11) are used. This intuitive conclusion about
diminishing reflection as |Rl, eff | decreases to zero is also
generally confirmed by the analysis; see the next subsection
for a minor variation. Thus, criterion (i) is satisfied.

To see why criterion (ii) is satisfied, one uses similar
calculations with ρph ≈ 1, obtaining from (15a):

E+
0, ph +O(h) = RlE

−
0, ph +O(h) . (17)
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These considerations also show that when the reflection
coefficient is originally zero, then the modification of BC at the
corresponding boundary along the lines of (15) is not expected
to lead to attenuation of unphysical modes. Therefore, since
we set Rr = 0 in this study, we do not vary θ±r in the results
reported below.

Let us note that implementation of BC (15) in a code is
straightforward and similar to (11). Namely, since E+

1 , E
−
0,1

and E−M−1, E
+
M,M−1 are determined by scheme (10) “in the

bulk” of the grid, then E+
0 and E−M are found from them by

elementary algebra.

B. Numerical validation

Here we show that the above qualitative considerations for
plausible ranges for θ±l are confirmed by direct simulations
of system (10), (15), with simulations agreeing quantitatively
with the analysis of Appendices B and C. The reader not
interested in these technical details can skip to Section 3.

From Eqs. (43a), (49), and (48) it follows that the magnitude
of a mode E(ρ) evolves as:

|E(ρ)| ∝ exp
[
Re
[
β(ρ)

]
t
]
, (18)

where parameter β(ρ) is defined in the first two of the
aforementioned equations in Appendices B and C and can be
found as explained there. Then the quantity

∆γanal ≡ Re[β]ph−Re[β]unph = Re[β(ρ = 1)]−Re[β(ρ = −1)]
(19)

can be computed for any given pair (θ+
l , θ

−
l ) with the help

of Eqs. (16), (17). The result is shown in Fig. 2(a). A positive
value of ∆γ indicates that unphysical modes in the numerical
solution are attenuated relative to the physical ones.

On the other hand, the rate of change of the exponent in (18)
can be measured in simulations as follows. Upon multiplying
the spatially non-periodic solutions of (10), (11) by a “win-
dow” function smoothly vanishing at x = 0 and x = 1 (e.g.,
by a super-Gaussian), one can take their Fourier transform.
Given the correspondence between the mode parameter ρ and
the wavenumber k, i.e. ρ ∼ exp[ikx], one can then estimate
Re[β] ≡ γ in (18) as:

γ(k) =
1

t2 − t1
ln
|F [E](k, t2)|
|F [E](k, t1)|

, (20)

where F [. . .] stands for the Fourier transform. The counterpart
of the analytical quantity (19), which determines how much
unphysical modes are attenuated relative to the physical ones,
is then

∆γnumer = γ(k = 0)− γ(k = π/h) ; (21)

see the text after (13a). Figure 2(b) shows that the discrepancy
between these analytical values and those found in simulations
is indeed small.1 From Fig. 2 one can also see that the region in
the (θ+

l , θ
−
l )-plane where ∆γ > 0 is quite broad. Incidentally,

it may be interesting to note that the maximum ∆γ occurs
not at θ−l = 0.5, where Rl, eff = 0, but slightly away from
that point, which at the resolution of the Figure is at (θ+

l =
0.08, θ−l = 0.42). This may be related to the comment [11].

1except where ∆γ is strongly negative and hence of no practical interest

Fig. 2. (a): Analytical values of the quantity defined in (19). As noted in the
text, positive values of ∆γ indicate that unphysical modes in the numerical
solution are suppressed relative to the physical ones. (b): ∆γnumer−∆γanal.
For each pair (θ+

l , θ
−
l ), the value ∆γnumer was found as the mean of 100

simulations with different seeds of the random number generator of Eqs. (10),
(15) (with θ±r = 0), initial condition (6a), the equation parameters (8b) and
κ = 2, and simulation parameters h = 0.01 and t1,2 in (20) being 12.5
and 25. The standard deviation (not shown) was under 0.02 for all (θ+

l , θ
−
l )

except at the corner near (0.2,−0.2).

As the final step in affirming the validity of our approach, in
Fig. 3(a) we verify that the accuracy of the solution obtained
with (10), (15) is indeed O(h). Thus, a O(h) change in the BC
(see (17)) does not affect the overall O(h) order of the scheme.
However, one can see that having θ±l 6= 0 does increase the
magnitude of the error.

To ensure reproducibility of the numerical results, we will
now describe how the errors in Fig. 3 were obtained. As noted
at the end of Appendix A.2, one should distinguish between
two kinds of numerical error: in the shape of the solution and
in its time evolution constant β (that with the largest real part).
For future reference, we present the exact solution of (9), (4)
(with E±inc ≡ 0), which can be obtained from (44)–(46) (with
h→ 0 in the last equation):(
E+

exact

E−exact

)
=K(t)

(
β sinh[α+(x−1)]−α+ cosh[α+(x−1)]

iκ sinh[α+(x− 1)]

)
,

(22a)
where α+, β are computed as described in Appendix B,

K(t) ≡ 2c+ exp[α+ + βt] , (22b)

and c+ is defined in (45). Then the two types of error are:

εβ = |βnumer − βexact| , (23a)
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Fig. 3. Numerical errors (23) versus step size. Panels (a) and (b) are for
the first- and second-order schemes, respectively. The parameters of the
simulations are described at the end of Section 2, and tmax = 30. Thin
lines: original BC (11); thick lines: θ+

l = 0, θ−l = 0.4 in (15) for (a) and
η+ = 0, η− = −0.2 in (25) for (b). Solid and dashed lines show εshape

and εβ , respectively. The dotted line with the indicated value of slope is
presented in each panel to facilitate visual comparison. The initial condition
in all simulations was (24) with s± = O(1) (the exact value did not affect the
results displayed). For simulations with the original BC (11), we set D±

ζ = 0,
and for simulations with modified BC (15) and (25), we used D±

ζ = 1 (again,
its exact value did not affect the results).

εshape =
1

|K(t)|
max
x

∑
j={+,−}

√
|E j

numer(x, t)−E j
exact(x, t)|2,

(23b)
where βnumer is computed from the time evolution of
E−numer(0, t) similarly to Eq. (20) for t1,2 � 1. Since the
constant c+ could not be obtained from the initial condi-
tion in an efficient manner, we instead evaluated K(t) as
E−numer(0, t)/(iκ sinh[−α+]), where E−numer(0, t) is measured
in the simulation. Note that it made sense to normalize the
shape error by |K(t)| since the latter quantity is proportional
to the magnitude of the solution.

The initial condition for E±numer was chosen as

E±(x, 0) = E±exact(x, 0) + s± · (x− 1) + ζ±(x) , (24)

with K(0) = 1, s+ = Rls
−, and ζ± defined in (6); see

caption to Fig. 3 for details. A nonzero s±-term (satisfying the
BC (4), (8b)) was used so as to suppress the high-frequency
numerical artifact when using the original implementation (11)
of the BC; see the discussion regarding Refs. [2], [4], [10] in
Section 1. The parameters for the simulations were as listed

in the caption to Fig. 2, except for the initial condition and
the values of h.

III. EXTENSION TO THE SECOND-ORDER SCHEME

Here we illustrate how the above approach is extended to
the second-order MoC scheme (32), (33) while continuing
working with the reduced model (9). We replace the O(h)-
accurate BC (15) with their O(h2)-accurate counterpart:

E+
0 + η+

l ∆2E
+
1 = Rl

[
E−0 + η−l ∆2E

−
1

]
, (25a)

E−M + η−r ∆2E
−
M−1 = Rr

[
E+
M + η+

r ∆2E
+
M−1

]
, (25b)

where ∆2Ej ≡ Ej−1−2Ej +Ej+1. Using Taylor expansion
of the smooth (i.e., physical) part of the numerical solutions
(E±)nm, one can show that these equations are the most general
form of a second-order approximation to the exact BC (4)
that uses variables at the latest time level. This observation
addresses criterion (ii) listed before (15). To address criterion
(i), one uses the reasoning found before Eq. (16) and obtains
the effective reflection coefficient for the unphysical modes:

Rl, eff = Rl

(
1 + 4η−l
1 + 4η+

l

)
. (26)

Then, similarly to the text found after (16), one predicts that
the most efficient suppression of unphysical modes will occur
around η−l = −0.25, as long as η+

l is far from −0.25.
This prediction is confirmed by Fig. 4. We also verify, in
Fig. 3(b), that the accuracy of the second-order scheme (32),
(33) with the modified BC (25) is indeed O(h2). Similarly
to the situation with the first-order scheme and modified BC,
here also the magnitude of the error (but not its order in h)
is greater for η±l 6= 0; however, the benefit of suppression of
unphysical modes far outweighs the modest increase in the
error. Also, since in the case that we consider here Rr = 0,
then varying η±r has practically no effect on the results.

Fig. 4. Numerical values of the quantity defined in (21) found by the second-
order scheme with modified BC (25). The simulations parameters are as
described in the caption to Fig. 2. The standard deviation (not shown) was
under 0.03 for all (η+

l , η
−
l ) except at the corner near (−0.1, 0.1). Note

three things when comparing this figure with Fig. 2(a). First, the shapes of
the surfaces are very similar; second, the domain in this figure is about half
that in Fig. 2(a) along each direction; third, the orientation of each of the
horizontal axes in the two figures is opposite. The last two observations are
consistent with the factors multiplying Rl in (26) and (16).
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IV. FULL MODEL WITH THE SECOND-ORDER SCHEME

We have verified that the modification of the BC described
above eliminates the high-frequency artifact in the simplified
model considered in Section 1; the solutions so obtained ap-
pear visually indistinguishable from those shown in Fig. 1(a).
We now consider the full model (1)–(4) where we take
dimensional parameters to be similar to those listed in [2]:

L = 400µm, vg = c/3.7, N0 = 1.5 · 1018 cm−3, (27a)

g = 10−16 cm−2, ∆ = 5, ε = 3 · 10−17 cm3,

αloss =40 cm−1, κ=40 cm−1, J = 5000 A/cm2, d = 0.2µm,

τ = 10 ns, B = 10−10 cm3/s, C = 3 · 10−29 cm6/s;

(27b)
also, the speed of light is c = 3 · 108 m/s and the charge of

electron is q = 1.6 · 10−19 A·s. The gain coefficient listed in
(27b) corresponds to that in [2] where the confinement factor
Γ is included. The BC in our simulations are given by (8b)
(i.e., with a nonzero reflectivity of the left mirror), whereas
in [2] the mirror reflectivities were zero, but there was a λ/4-
phase shift in the middle of the medium. Using normalization
(7a) and rounding to one or two significant figures, we obtain
the following nondimensional values for parameters (27b):

g = 6, ε = 45, αloss = 0.8, κ = 1.6,

J

qd
= 5·10−3,

1

τ
= 5·10−4, B =

1.5

τ
, C =

0.7

τ
. (28)

We set D±ζ = 0 in the initial condition (6) and consider two
values for D+

ξ = D−ξ ≡ Dξ that result in a solution dominated
by noise (Dξ = 5 ·10−8) and one that is close to being visibly
noise-free (Dξ = 5 · 10−10). We simulate this model with the
second-order scheme (32), (33) and the modified BC (25). The
spontaneous emission (i.e., the noise terms) in (1) is simulated
by Eqs. (37). To ameliorate the unphysically slow decay of the
highest-frequency modes, we used η+

l = 0 and η−l = −0.2.
Due to the reflection coefficient at the right boundary being
zero, the BC there had the original form as in (11) (i.e., η±r =
0). The above values for η±l may not have been optimal, but
are still sufficient to perform the required task of suppressing
the unphysical modes compared to the physical ones even in
the presence of a significant amount of external noise, as it
is apparent from Fig. 5(d). Let us note that even though the
plots of the output power in both Figs. 1(c) and 5(c) appear
“filled” (especially for the grey line in Fig. 5(c)), the reasons
for that are different: In Fig. 1(c) the “filling” is due to the
numerical artifact, while in Fig. 5(c) it is due to the physical
noise.

V. SUMMARY AND EXTENSIONS

We considered one aspect of the numerical solution
of coupled-mode-type equations that describe dynamics of
distributed-feedback semiconductor lasers, which have a par-
tially reflecting mirror at (at least one of) the end points. The
difficulty that such solution by, e.g., the method of character-
istics (see below) faces is the artifact that the unphysical (i.e.,
highest-frequency) modes do not decay fast enough compared

to the physical (i.e., O(1)-frequency) modes, as the physics of
the problem would dictate. Thereby, the numerical solution is
significantly contaminated by noise,2 even when the original
physical problem does not include noise.

We demonstrated that this numerical artifact can be effi-
ciently suppressed by modifying the numerical implementation
of the boundary conditions (BC) at the partially reflecting end
point(s) of the medium. The modified implementation, on one
hand, preserves the original form of the BC for the physical
modes; on the other, it can lower the reflection coefficient for
the unphysical modes, thus facilitating their leakage out of
the medium and hence causing them to decay faster than the
physical modes. The technique proposed is not expected to be
effective for gratings without reflective interfaces; however,
such gratings are not usually considered for lasing, which
is the context where the aforementioned artifact occurs. Let
us also point out that the effectiveness of the modified BC
technique does not depend on the grid spacing h.

We explained (see Appendix A.2) that it was essential to
use a numerical scheme of deterministic order higher than
one, even when the equations contain external noise, modeling
which would typically lower the overall accuracy of the
scheme. A scheme with second-order deterministic accuracy
has been found to be adequate for this purpose. The modified
form of the BC consistent with the second order of the scheme
is given by Eqs. (25). We noted that the modification of the
BC generally increases the numerical error by a factor of order
two or sometimes higher. Therefore, if it is desired to minimize
such an increase, an alternative to (25) could be used that has
third-order accuracy:

E+
0 + µ+

l ∆3E
+
1 = Rl

[
E−0 + µ−l ∆3E

−
1

]
, (29a)

E−M + µ−r ∆3E
−
M−2 = Rr

[
E+
M + µ+

r ∆3E
+
M−2

]
, (29b)

where ∆3Ej = Ej−1 − 3Ej + 3Ej+1 − Ej+2. Considera-
tions similar to those found after (25) suggest that efficient
suppression of unphysical modes will occur for µ−l ≈ −1/8
and µ+

l ≥ 0, and similarly at the right boundary.
Finally, let us point out two extensions of the results

described above. First, we note that the idea of modifying
BC in order to suppress reflection of the unphysical modes
and thereby make them decay faster than physical ones, can
be applied not only at the boundaries of the grating but also at
any discontinuity, such as the λ/4-phase shift (see, e.g., [2],
or [12] for a more recent reference). Below we discuss the
first-order accurate modeling of this situation since a second-
order numerical treatment of the condition satisfied at the λ/4-
discontinuity is not available in the literature. The first-order
accurate condition is found, e.g., in [13]:

(E±)S±1 = i (E±)S , (30a)

where the discontinuity is assumed to be at node m = S, and
we have omitted the time index n. According to the method
introduced in this work, a first-order accurate modification of
this equation is, by analogy with (15):

E+
S+1 + σ+

a ∆1E
+
S+1 = i

[
E+
S + σ+

b ∆1E
+
S−1

]
; (30b)

2In the Introduction we hypothesized how this issue could be circumvented
in earlier studies.
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Fig. 5. Similar to panels (b)–(d) of Fig. 1, but obtained by the second-order scheme and modified BC (25) and with the external noise terms ξ±. System
parameters are listed in Section 4, and simulation parameters are h = 0.01 and t = 800 (corresponding to dimensional time of approximately 4 ns).
Black and grey lines are for Dξ = 5 · 10−10 and 5 · 10−8, respectively. In panel (a), solid and dashed lines correspond to E+ and E−. In panel (d),
‖F [E]‖ =

√
|F [E+]|2 + |F [E−]|2.

and similarly for E−; here σ+
a,b are constants similar to θ+

l,r.
Following the logic of Section 2, the choice (1− 2σ+

a ) =
−i
(
1 + 2σ+

b

)
would preserve the pattern Em ∝ (−1)m

across the node m = S and thereby make that node (almost)
transparent to the most rapidly oscillating, unphysical modes.
If, in addition, one requires that |σ+

a |2 + |σ+
b |2 = min (since

nonzero σ+
a,b moderately increase the numerical error; see

Sections 2 and 3), then one finds:

σ+
a = −(σ+

b )∗ = (1 + i)/4 . (30c)

In Fig. 6 we show the field and its spectrum obtained by
solving Eqs. (1) by the first-order scheme (32), (34) with:
ξ± ≡ 0; the λ/4-discontinuity at x = 0.5 and the reflectivities
of both left and right mirrors being 0 (as in [2]); and the
rest of the parameters being the same as those used in Fig. 5
(i.e., also the same as in [2] except for κ). When the λ/4-
discontinuity is modeled by (30a), one observes a strong
high-frequency artifact in the simulated field and also its
manifestation in the field’s spectrum. On the other hand, when
the λ/4-discontinuity is modeled by the modified condition
(30b) with σ±a,b being given by (30c), this numerical artifact
is suppressed. Note that plotting power alone (as opposed to
the field) may not reveal the artifact.

As the second extension, we note that the numerical artifact
of slow decay of unphysical modes (before the modified BC
are implemented) is not limited to the method of character-
istics. For example, we have observed it when simulating

Eqs. (1)–(4) by both forms of the split-step method, consid-
ered in [14] and [15] and described in Appendix A.3. The
mathematical reason for this is given in that Appendix. We
also verified that the use of modified BC, such as (25), can
efficiently suppress this high-frequency numerical artifact for
the split-step method.

APPENDIX A
NUMERICAL SCHEME

A.1: Method of characteristics schemes
Using characteristics-based spatial variables χ(±) = x ∓ t

(recall that vg = 1 as per (7)) and the change of variables
(x, t) → (χ(±), t) in Eqs. (1a), while using the original
variables in (1b), one rewrites system (1) as a set of pseudo-
ODEs (ordinary differential equations):

∂tE
± = f (±)(E+, E−, N) along χ(±) = const,

∂tN = f (N)(E+, E−, N) along x = const,
(31)

where we have included the noise terms into f (±). The nu-
merical grid is: xm = mh, m = 0, 1, . . . M and tn = nh; any
node (xm, tn) ≡ (m,n) is an intersection point of some triplet
of characteristics {χ(+) = const, χ(−) = const, χ(N) ≡ x =
const}. Different variants of MoC schemes are obtained by
using different ODE solvers along the characteristics. Below
we present the scheme based on the explicit trapezoidal solver:

(E±)m = (E±)nm∓1 + h
(
f (±)

)n
m∓1

, (32a)
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Fig. 6. Setup is described in main text after Eq. (30c). Simulation parameters
h and tmax are the same as in Fig. 5. Results only for E+ are shown; E− is
reflectionally symmetric to E+ about x = 0.5. (a): Solid black and dashed
green lines correspond to the discontinuity modeled by (30a) and by (30b)
& (30c), respectively. Thick and thin lines correspond to power and squared
real part. The powers almost coincide. (b): Fourier spectrum of the solution
obtained with (30a) (solid black) and (30b) & (30c) (dashed green).

Nm = Nn
m + h

(
f (N)

)n
m

; (32b)

(E±)n+1
m = (E±)nm∓1 +

h

2

[(
f (±)

)n
m∓1

+
(
f (±)

)
m

]
,

(33a)

Nn+1
m = Nn

m +
h

2

[(
f (N)

)n
m

+
(
f (N)

)
m

]
; (33b)

where (
f (±)

)n
m
≡ f (±) ((E+)nm, (E

−)nm, N
n
m) ,(

f (±)
)
m
≡ f (±)

(
(E+)m, (E

−)m, Nm

)
,

etc. Note that if one lets

(E±)m ≡ (E±)n+1
m , Nm ≡ Nn+1

m (34)

in (32), then (32), (34) becomes a first-order accurate MoC
scheme.

The implementation of BC (4) for the second-order scheme
(32), (33) is:

(E+)0 = Tl (E
+
inc)n+1 +Rl (E−)0 ,

(E−)M = Tr (E−inc)n+1 +Rr (E+)M ,
(35a)

(E+)n+1
0 = Tl (E

+
inc)n+1 +Rl (E

−)n+1
0 ,

(E−)n+1
M = Tr (E−inc)n+1 +Rr (E+)n+1

M .
(35b)

When restricted to the first-order scheme (32), (34), the BC
are given by (35a).

A.2: Modeling noise in Eqs. (1)

The following is based on two observations. First, mod-
eling of noise with second-order accuracy in time is quite
challenging (see, e.g., [16]); therefore, we model it here only
with the half-order accuracy (i.e., the ensemble average of
the numerical solution approaches the exact ensemble average
as O(h1/2)). Second, the discrete version of the correlation
relations (3) is given by:

〈(ξ±)n
′

m′(ξ±)nm〉 = 2D±ξ
1

h
δnn′

1

h
δmm′ , (36)

where δnn′ is the Kronecker delta and we have used the fact
that the step size in both x and t equals h. Combining these
observations, we model ξ± in (1a) by adding the noise term
to the “corrector” equations (33a):

(E±)n+1
m =(same as in (33a))+

√
D±ξ

[
(r±Re)n+1

m +i (r±Im)n+1
m

]
,

(37)
where (r±Re, Im)nm are independent identically distributed nor-
mal variables with zero mean and variance one. The noise term
in (1b) is modeled similarly, with the values for (r±)n+1

m for
the given n taken to be the same as in (37).

One can ask: Why use a numerical scheme whose determin-
istic order of accuracy (second) is higher than its stochastic
order (half)? The justification for this has two aspects. First,
the noise level in the device of interest is typically several
orders of magnitude lower than the deterministic part of the
solution (see Fig. 5). The second-order scheme (33) resolves
that deterministic part, while the low-order treatment of the
noise presented below accounts for the evolution of weak
fluctuations on the background of the deterministic solution.
Second, and more importantly, a first-order scheme has an
O(h)-error not only in the shape of the solution (which most
of the time would be acceptable), but also in the exponent
governing the time evolution (i.e., the βt-term in (18) and
(22b)); see also Fig. 3. Since one can easily have t = O(1000)
in simulations, an O(h)-error in β may significantly change
the magnitude and phase of the solution (which we did, in fact,
observe with the first-order scheme). Therefore, a O(h2), or
higher-order, error in β is essential.

A.3: On two forms of a split-step method applied to Eqs. (1)

The authors of Ref. [14] proposed the following form of the
split-step method to solve Eqs. (1a) for E± (without the ξ±-
terms). In the first substep, variables E± are advanced in time
and space using only the first term (that in large parentheses)
on the r.h.s. of (2a). In the second substep, according to
[14], they need to be “evolved” in space only using only the
∂x-terms on the l.h.s. of (1a) and only the κ-terms on the
r.h.s. of (2a). We point out, however, that this second substep
as described in the previous sentence and in [14]), cannot
be implemented while respecting correct BC. The correct
interpretation of this substep, which is able to respect the BC,
should involve both partial derivatives on the l.h.s. of (1a).
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The corresponding corrected formula is found in, e.g., Eq. (4)
of [12]; in the notations introduced above it is:(

E+
m+1

E−m

)n+1

= exp[Gh]·(
sech(κh) i tanh(κh)
i tanh(κh) sech(κh)

)(
E+
m

E−m+1

)n
;

(38)

here G denotes the expression in the large parentheses in (2a).
A different form of the split-step method was described,

e.g., in Sec. 2.4 of [15]. There, one of the substeps evolves
the variables in (1a) using the full expression on the r.h.s.
but disregards the ∂x-terms on the l.h.s.. The other substep
accounts for these omitted terms using the (exact) method of
characteristics while setting the r.h.s. of (1a) to zero. One can
straightforwardly show that the first-order accurate version of
this form of the split-step method is given by the same Eq. (38)
with sech and tanh being replaced by cos and sin. A second-
order version of this method can be constructed as shown in
[15], provided that the former substep is implemented with a
second-order solver, such as the explicit trapezoidal solver.

It is easy to see that both these forms of the split-step
method will exhibit the high-frequency numerical artifact
whose suppression is addressed in this work. Setting G = 0
in (38) for the purpose of this argument and applying the
von Neumann analysis to (38), one finds that the amplification
factor λ for this scheme is:

λ = sech(κh) cos(kh)±
√

sech2(κh) cos2(kh)− 1, (39)

and thus for all wavenumbers k, one has |λ| = 1. It was shown
in [17] that non-periodic BC, such as (4), will modify |λ| = 1
for all k away from 0 and kmax = π/h (so that the solution’s
Fourier spectrum will look like that shown in Fig. 1(d)).
However, they will leave |λ(k ≈ 0)| = |λ(k ≈ kmax)| intact,
which means that the unphysical, highest-frequency Fourier
harmonics will evolve at the same rate as the physical ones
with k = O(1). The same considerations apply to the other
form of the split-step method considered above.

APPENDIX B
AMPLIFICATION FACTOR |λ| OF PHYSICAL MODES OF THE

NUMERICAL SOLUTION OF EQS. (9)

The main outcome of this Appendix will be justification of
Eq. (18) for the evolution of the physical modes.

Substitution of (12) into (10) yields:(
C+ρ−1 + C−ρ− λI

)
u = 0 . (40)

Our goal is to find ρ satisfying (13a) and then the cor-
responding λ. As an aside, let us note that an analogous
analysis was performed in [17], but it explicitly excluded the
modes satisfying (13a) because it had a different focus. In this
Appendix, we limit ourselves to the physical modes, satisfying
the first relation in (13a). Thus, let

ρ = 1 + αh+O(h2) for some α = O(1). (41)

In Appendix C we will handle the unphysical modes. Let us
note that a more comprehensive and mathematically different

analysis of Eqs. (9) with zero BC, leading to a counterpart of
Eqs. (47) below, was first done in the classical paper [18].

The condition u 6= 0 in (40) implies(
ρ−1 − λ

)
(ρ− λ) + h2κ2 = 0 . (42)

For ρ given by (41), one verifies that λ must satisfy

λ = 1 + βh+O(h2) , (43a)

where in the main order,

α2 = β2 + κ2 . (43b)

Recall that |λ| is the amplification factor of the mode whose
spatial profile is characterized by parameter ρ.

Thus, for a given value of β (or, equivalently, λ), there are
two roots α satisfying (43b):

α± = ±
√
β2 + κ2 ; (43c)

note that α± are, in general, complex. Also note that the
subscript ‘±’ in (43c) and below in this Appendix corresponds
to the sign in that equation and is in no way related to the
superscript ‘±’ in the main text, which refers to forward- and
backward-propagating fields. To each α (i.e., to each mode;
see (41)) there corresponds an eigenvector u:

u± =

(
β − α±
iκ

)
; (44)

the subscript of u has the same meaning as that in (43c).
Next, we substitute

E = c+u+ + c−u− (45)

with yet undetermined constants c± into BC (15), where we
make two simplifications. First, since (15) reduce to (11) up
to O(h) terms (see (17)), we will discard terms that are O(h)
relative to the main-order terms in all subsequent calculations.
Thus, we can use the original BC (11) instead of (15a) in
this Appendix. Second, for simplicity only, we set Rr = 0,
consistently to the specific set of parameters (8b) that we use
in this text for illustration of our theory. Thus, (45), (11), and
(41) yield, in the main order:(

β − α+ − iκRl β + α+ − iκRl
−iκ(1 + hα+)M −iκ(1− hα+)M

)(
c1
c2

)
= 0 ,

(46)
where M is defined after (31). The condition that a nontrivial
solution to (46) exists can be put into the form:

β = −α+ cothα+ + iκRl , (47a)

where we have used the approximation (1 ± hα+)M ≈
exp[±α+(hM)] = exp[±α+], the last equation being due to
hM = L = 1 as per (7b). Equation (47a) can be used to find
β once α+ is known. To find an equation for the latter, one
can square (47a) and use (43b) to eliminate β2. After some
algebra, the result is:

α+ = iκ sinhα+

(
Rl coshα+ ±

√
R2
l sinh2 α+ + 1

)
.

(47b)
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in the panels. Note that the vertical scale in panel (b) is greater than that in (a) and (c) to emphasize a significant reduction of Re(β) occurring in this case.

Note that in the last equation, the ‘±’ sign is not related
to the superscripts and subscripts ‘±’ used earlier; it simply
indicates that α+ can satisfy (47b) with either ‘+’ or ‘−’. This
equation, of course, agrees with that derived in [19] (see also
[20]) for the more general case of Rr 6= 0. It can be solved
numerically with, e.g., the Newton–Raphson method.

Thus, the time evolution of the physical modes, satisfying
(41), is governed by the parameter β found from (47b) and
(47a). Namely, via (43a) and the approximation

(1 + βh)n ≈ eβt, (48)

where t = nh, one finds that the mode amplitudes satisfy (18).
Figure 7 shows the phase plots of β for some representative
values of κ and Rl. In particular, in cases (a) and (b), the
grating and the BC support a single main (longitudinal) mode,

while in cases (c) and (d) they support two such modes (with a
third mode with Imβ = 0 in case (d) also playing a significant
role in the dynamics for a very long time, since its Reβ is
smaller than that of the two main modes by a very small
amount). The former design would correspond (if the system
had gain) to the stable single-mode lasing regime observed in
Fig. 5(c), while the latter design would show oscillating output
power due to mode competition.

APPENDIX C
AMPLIFICATION FACTOR OF THE MOST UNPHYSICAL
MODES OF THE NUMERICAL SOLUTION OF EQS. (9)

Here we follow the steps presented in Appendix B. All
these steps up to and including Eq. (45) are repeated verbatim,
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except that (41) and (43) are replaced, respectively, with

ρ = −(1 + αh), λ = −(1 + βh) , (49)

where we have omitted O(h2) terms. The minus sign above
is consistent with that for ρunph in (13a).

To obtain the counterpart of (46), one needs to use Eqs. (15)
(with Rr = 0, as before). The corresponding result is obtained
straightforwardly but is quite cumbersome, and hence we do
not display it. From that result, one derives, in the main order
in h, the following counterpart of (47a):

β = −α+ cothα+ + iκRl, eff , (50)

where Rl, eff is defined in (16). Thus, quite intuitively, we
have obtained the same result as if we had started with BC
(11) where for the modes at hand (i.e., unphysical ones), the
reflection coefficient is replaced with its main-order approx-
imation [11]. Using (50) and (43b) one then finds that α+

satisfies the same equation as (47a) with Rl being replaced
with Rl, eff . Representative solutions for β obtained with that
equation and (50) are plotted in Fig. 8. The time evolution
of the modes’ magnitude is given by relation (18), and hence
the smaller values of Re(β) correspond to greater suppression
of unphysical modes relative to physical ones. Comparison of
Figs. 8 and 7(b) shows that such a suppression can be expected
for a large range of values θ−l . This expectation is confirmed
by direct numerical simulations reported in Sections 2 and 3.

REFERENCES

[1] P. Vankwikelberge, G. Morthier, R. Baets, “CLADISS — A longitudinal
multimode model for the analysis of the static, dynamic and stochastic
behavior of diode lasers with distributed feedback,” IEEE J. Quantum
Electron., vol. 26, pp. 1728–1741, 1990.

[2] L.M. Zhang, S.F. Yu, M.C. Nowell, D.D. Marcenac, J.E. Carroll,
R.G.S. Plumb, “Dynamic analysis of radiation and side-mode sup-
pression in a second-order DFB laser using time-domain large-signal
traveling wave model,” IEEE J. Quantum Electron., vol. 30, pp. 1389–
1395, 1994.

[3] L.A. Coldren, S.W. Corzine, M.L. Masanovic, Diode Lasers and Pho-
tonic Integrated Circuits, 2nd Ed. Hoboken, NJ: Wiley, 2012, Chaps. 5,6.

[4] A.J. Lowery, “Comparison between two recent large-signal dynamic
DFB laser models,” IEE Proc.–J, vol. 139, pp. 402–406, 1992.

[5] C.F. Tsang, D.D. Marcenac, J.E. Carroll, L.M. Zhang, “Comparison be-
tween ‘power matrix model’ and ‘time domain model’ in modelling large
signal responses of DFB lasers,” IEE Proc.–Optoelectron., vol. 141,
pp. 89–96, 1994.

[6] A.J. Lowery, “New dynamic model for multimode chirp in DFB
semiconductor lasers,” IEE Proc.–J, vol. 137, pp. 293–300, 1990.

[7] N.G.R. Broderick, C.M. de Sterke, K.R. Jackson, “Coupled mode equa-
tions with free carrier effects: a numerical solution,” Opt. Quant. Elec-
tron., vol. 26, pp. S219–S234, 1994.

[8] J. Chi, A. Fernandez, L. Chao, “Comprehensive modeling of wave
propagation in photonic devices,” IET Commun., vol. 6, pp. 473–477,
2012.

[9] T.I. Lakoba, J.S. Jewell, “Higher-order Runge–Kutta-type schemes
based on the Method of characteristics for hyperbolic equations
with crossing straight-line characteristics,” Numer. Meth. PDEs,
https://doi.org/10.1002/num.22770.

[10] B.-S. Kim, J.-K. Kim, Y. Chung, S.-H. Kim, “Time-domain large-signal
analysis of widely tunable DBR laser diodes with periodically sampled
and chirped gratings,” IEEE Photon. Technol. Lett., vol. 10, pp. 39–41,
1998.

[11] Let us note that the derivation of (50) assumes that the omitted terms,
which are, in fact, O(h|α+|), are small compared to |1− 2θ±r,l|. This
assumption is clearly violated in the case where (1− 2θ−l ) ≈ 0, which
is most interesting for our purpose of reducing the effective reflection
coefficient as per (16). Yet, the same derivation implies that in that
case, Rl, eff still has a small value, on the order of the omitted terms
O(h|α+|), and this leads to the same end result of having a smaller
reflection coefficient for the unphysical modes.

[12] G. Zhao, J. Sun, Y. Xi, D. Gao, Q. Lu, W. Guo, “Design and
simulation of two-section DFB lasers with short active-section lengths,”
Opt. Express, vol. 24, pp. 10590–10598, 2016.

[13] H.T. Hattori, V.M. Schneider, C.L. Barbosa, “Analysis of distributed-
feedback lasers with fractionally organized gratings,” Appl. Opt., vol. 46,
pp. 1283–1289, 2007.

[14] B.-S. Kim, Y. Chung, J.-S. Lee, “An efficient split-step time-domain
dynamic modeling of DFB/DBR laser diodes,” IEEE J. Quantum Elec-
tron., vol. 36, pp. 787–794, 2000.

[15] T.I. Lakoba, “Numerical study of solitary wave stability in cubic
nonlinear Dirac equations in 1D,” Phys. Lett. A, vol. 382, pp. 300–308,
2018.

[16] P.E. Kloden, E. Platen, Numerical Solution of Stochastic Differential
Equations. Berlin: Springer, 1992, Chap. 10 .

[17] T.I. Lakoba, Z. Deng, “Stability analysis of the numerical Method
of characteristics applied to a class of energy-preserving hyper-
bolic systems. Part II: Nonreflecting boundary conditions,” J. Com-
put. Appl. Math., vol. 356, pp. 267–292, 2019.

[18] H. Kogelnik, C.V. Shank, “Coupled-wave theory of distributed feedback
lasers,” J. Appl. Phys., vol. 43, pp. 2327–2335, 1972.

[19] W. Streifer, D.R. Scifres, R.D. Burnham, “Longitudinal modes in
distributed feedback lasers with external reflectors,” J. Appl. Phys.,
vol. 46, pp. 247–249, 1975.

[20] H. Ghafouri–Shiraz, Distributed Feedback Laser Diodes and Optical
Tunable Filters. Chichester, England: Wiley, 2003, Sec. 3.2.

Taras I. Lakoba received his M.S. degree in physics from Moscow State
University in 1989 and Ph.D. degree in applied mathematics from Clarkson
University in 1996.

He worked as a postdoctoral researcher at the University of Rochester and
University of Central Florida, as well as a Member of Technical Staff at Bell
Labs, Lucent Technologies, where he analyzed and simulated LambdaXtreme,
an ultra-long-haul WDM transmission system. Since 2003, he has been
with the Department of Mathematics and Statistics, University of Vermont,
Burlington, VT, USA, where he is currently a Professor.

Prof. Lakoba’s research interests include mathematical modeling of optical
propagation in telecommunication fibers and photonic devices and develop-
ment and analysis of numerical methods for nonlinear wave equations.

Benjamin L. Kotzen received a B.S. degree in mathematics from the
University of Vermont in 2019.

Colin J. McKinstrie received a B.Sc. degree in mathematics and physics
from the University of Glasgow, UK, in 1981 and a Ph.D. degree in plasma
physics from the University of Rochester, USA, in 1986.

From 1985 to 1988, he was a Postdoctoral Fellow of Los Alamos National
Laboratory, where he was associated with the Applied Physics Division and
the Center for Nonlinear Studies. In 1988, he returned to the University of
Rochester as a Professor of Mechanical Engineering and a Scientist in the
Laboratory for Laser Energetics. While there, his main research interests were
laser fusion and nonlinear fiber optics. From 2001 to 2014, he was a Member
of the Technical Staff at Bell Laboratories, where his research concerned the
amplification and transmission of optical pulses in communication systems,
and applications of parametric devices in quantum information science. From
2014 to 2016, he continued this research at Applied Communication Sciences.
In 2016 Dr. McKinstrie joined Futurewei Technologies, where he worked on
semiconductor lasers, and in 2019 he joined CACI International, where he
works on fiber lasers.


