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A B S T R A C T 

Observations suggest that coherent radio emission from pulsars is excited in a dense pulsar plasma by curvature radiation 

from charge bunches. Numerous studies propose that these charge bunches are relativistic charge solitons that are solutions 
of the non-linear Schr ̈odinger equation (NLSE) with a group velocity dispersion ( G ), cubic non-linearity ( q ), and non-linear 
Landau damping ( s ). The formation of stable solitons crucially depends on the parameters G , q , and s as well as the particle 
distribution function (DF). In this work, we use realistic pulsar plasma parameters obtained from observational constraints to 

explore the parameter space of NLSE for two representative DFs of particles’ momenta: Lorentzian (long-tailed) and Gaussian 

(short-tailed). The choice of DFs critically affects the value of | s / q | , which, in turn, determines whether solitons can form. 
Numerical simulations show that well-formed solitons are obtained only for small values of | s / q | � 0.1, while for moderate and 

higher values of | s / q | � 0.5 soliton formation is suppressed. Small values for | s / q | ∼ 0.1 are readily obtained for long-tailed DF 

for a wide range of plasma temperatures. On the other hand, short-tailed DF provides these values only for some narrow range 
of plasma parameters. Thus, the presence of a prominent high-energy tail in the particle DF fa v ours soliton formation for a wide 
range of plasma parameters. Besides pair plasma, we also include an iron ion component and find that they make a negligible 
contribution in either modifying the NLSE coefficients or contributing to charge separation. 

Key words: plasmas – radiation mechanisms: non-thermal – relativistic processes – waves – pulsars: general. 

1

U
p
d  

i
s
a
1
s  

a
p
m
G

d  

n  

t  

A
fi
o
m  

o  

�

s
p  

a
S  

k  

c
c
S
fi  

2  

c  

d
c
(
≈
p  

p  

t  

a
p  

c  

p
a

©
P

 I N T RO D U C T I O N  

nderstanding the mechanisms of coherent radio emission from 

ulsars has been a challenging astrophysical problem since the 
isco v ery of pulsars. Most models of coherent radio emission
nvolve growth of instability in strongly magnetized relativistically 
treaming pair plasma and are broadly classified into maser or 
ntenna mechanisms (see e.g. Ginzburg, Zhelezn yako v & Zaitsev 
969 ; Kazbegi, Machabeli & Melikidze 1991 ; Melrose 1995 ). Recent 
ingle-pulse polarization observ ations, ho we ver, strongly fa v our the
ntenna mechanism, where the radio emission is excited in pair 
lasma by coherent curvature radiation (hereafter CCR) due to 
otion of charge bunches along curved magnetic field lines (Mitra, 
il & Melikidze 2009 ). 
Observations have further established that the radio emission 

etaches the pulsar magnetosphere from around 500 km abo v e the
eutron star surface (Kijak & Gil 1997 , 1998 ; Mitra 2017 ), where
he magnetic field topology is purely dipolar (Mitra & Li 2004 ).
t the radio emission region, due to enormously strong magnetic 
eld, the motion of plasma particles can be approximated to be 
ne-dimensional. The primary source of pair plasma in pulsars is 
agnetic pair production by high-energy photons at the polar cap. In

ur study, we consider the scenario for � · B < 0 in which a charge-
 E-mail: rahaman.minhajur93@gmail.com 
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tarved inner accelerating region (IAR) region develops above the 
olar cap where unscreened electric field exists and the primary pairs
re formed and accelerated to extremely high Lorentz factors γ p (see 
turrock 1971 ; Ruderman & Sutherland 1975 , hereafter RS75 ). One
ind of charges is accelerated away from the polar cap, and these
harges can radiate high-energy photons, which in turn produce a 
ascade of secondary pair plasma moving with Lorentz factor γ s . 
everal lines of evidence suggest a strongly non-dipolar magnetic 
eld topology at the surface (Geppert 2017 ; Arumugasamy & Mitra
019 ; Mitra et al. 2020 ) and in such strong fields copious pair creation
an occur. As a result, dense and hot pair plasma is produced. The
ensity of the pair plasma exceeds the co-rotation Goldreich–Julian 
harge density (Goldreich & Julian 1969 ) by a factor κ ∼ 10 4 –10 5 

Arendt & Eilek 2002 ), streaming with a bulk Lorentz factor γ s 

10 2 –10 3 in the observer’s frame of reference. Observations of 
ulsar wind nebulae have also confirmed the presence of a dense pair
lasma (Blasi & Amato 2011 ). In the IAR, the charge that accelerates
owards the polar cap can heat the polar cap to high temperatures,
nd X-ray observations have revealed the presence of such hot 
olar cap in se veral pulsars. Ho we v er, e xtremely high temperatures
ould be expected if the polar cap discharges were to occur under
ure vacuum conditions, which is not observed. Hence, to properly 
ccount for the polar cap temperature, Gil, Melikidze & Geppert 
 2003 ) suggested that the IAR is a partially screened gap (PSG). The
SG model is a variant of the pure vacuum models and takes into
onsideration the binding energy of iron ions on the surface. The
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eating due to backflowing charges unpins iron ions from the surface
nd contributes close to 90 per cent of the co-rotational charge
ensity. The flow of ions is thermostatically regulated as follows:
f the surface is heated beyond some critical temperature T ion , the
ap closes completely, while for surface temperature below T ion the
ap is partially screened. Under equilibrium conditions, the surface
emperature is only slightly offset from the critical temperature and
ny greater offset is corrected on time-scales of a few hundred
anoseconds. Owing to a heavier mass, the iron ions are accelerated
o Lorentz factors, γ ion , close to the Lorentz factor of the secondary
lasma, γ s . The PSG model is a very successful phenomenological
odel for explaining the subpulse drift rates, mode changing, and

hermal X-ray luminosity (see e.g. Szary, Melikidze & Gil 2015 ; Basu
t al. 2016 ; Rahaman et al. 2021 ). The presence of an additional iron
omponent in the pulsar plasma is hence an important ingredient.
o summarize, magnetically induced pair cascades and outflow of

ons abo v e the polar cap giv e rise to an ultrarelativistic, collisionless,
nd multicomponent plasma outflow strictly along the open magnetic
eld lines of the pulsar (Goldreich & Julian 1969 ; Sturrock 1971 ;
S75 ). 
On the theoretical front, the formation of stable charge bunches

apable of explaining coherent radio emission from pulsars has
een a long-standing puzzle (Ginzburg et al. 1969 ; Melrose &
edalin 1999 ). Earlier studies suggested that in the radio emission

one linear Langmuir waves can be unstable due to plasma two-
tream instability, and as a result, linear charge bunches can radiate
oherently ( RS75 ; Cheng & Ruderman 1977 ). Ho we ver, it was soon
ealized that the v ery high-frequenc y linear Langmuir waves disperse
he linear bunch well before it can emit coherently (Lominadze
t al. 1986 ; Melrose & Gedalin 1999 ; Melikidze, Gil & Pataraya
000 , hereafter MGP00 ; Lakoba, Mitra & Melikidze 2018 ). In
rder to circumvent this problem, studies like those of Karpman
t al. ( 1975 ), Melikidze & P ataraia ( 1980 ), P ataraia & Melikidze
 1980 ), Melikidze & Pataraya ( 1984 ), and MGP00 explored the
on-linear regime of Langmuir waves to provide a time-stable
harge distribution. A necessary condition for exploring the non-
inear regime is the presence of strong plasma turbulence in the
inear regime, and Asseo & Melikidze ( 1998 ) and more recently
ahaman, Mitra & Melikidze ( 2020 , hereafter Paper I ) showed that
ery ef fecti ve two-stream instabilities can provide this condition
ithin 1000 km from the neutron star surface. Recent particle-in-cell

imulations by Manthei et al. ( 2021 ) also established the presence
f strong Langmuir turbulence in pulsar plasma. In the non-linear
egime, the linear Langmuir waves with frequency ω 1 interact to
roduce low-frequency beats ( �ω � ω 1 ) that modulate the envelope
 of the high-frequency linear Langmuir waves. The linear waves
o not maintain a definite phase relationship with each other o v er
he spatial scale. As a result, the envelope electric field E itself has a
hite-noise character and the initial envelope electric field is assumed

o be completely disordered. The envelope E is governed by the non-
inear Schr ̈odinger equation (hereafter NLSE) with a non-local term
see e.g. Melikidze & Pataraia 1980 ; Pataraia & Melikidze 1980 ;

elikidze & Pataraya 1984 ; Melikidze et al. 2000 ): 

∂ t E + G∂ 2 xx E + q| E| 2 E + s P 

∫ 
d x ′ V ( x , x ′ ) = 0 . (1) 

he term G∂ 2 xx E represents the group velocity dispersion (here-
fter GVD) of the linear Langmuir waves. The term q | E | 2 E rep-
esents cubic non-linearity (hereafter CNL). The non-local term
 P 

∫ 
d x ′ V ( x , x ′ ) represents the non-linear Landau damping (here-

fter NLD). NLD represents a resonant interaction at the group
elocity of the Langmuir waves with plasma particles. The interaction
NRAS 00, 1 (2022) 
t group velocity not only gives rise to NLD but also modifies CNL.
he coefficient q represents the strength of local (in space) non-linear

nteractions. The coefficient s represents a non-local interaction via
 cascade of energy from higher length-scales (lower wave numbers)
o shorter length-scales (higher wave numbers; see Section 3.3 ). The
ime-stable solution of equation ( 1 ) is referred to as solitons, which
re considered as candidates for charge bunches giving rise to CCR
t radio wavelengths. 

In the absence of NLD, equation ( 1 ) represents a purely local
LSE. Lighthill ( 1967 ) showed that this equation admits analytical

olutions as solitons, provided that the so-called Lighthill condition
epresented as 

q > 0 (2) 

s satisfied and the initial electric wave field is a phase-coherent
lane wave. Previous studies by Melikidze & Pataraia ( 1978 , 1980 ),
ataraia & Melikidze ( 1980 ), Melikidze & Pataraya ( 1984 ), and
GP00 neglected NLD to get analytical solutions and conjectured

hat the Lighthill condition can be satisfied in pulsar pair plasma.
akoba et al. ( 2018 , hereafter LMM18 ) pursued numerical solution
f equation ( 1 ) and confirmed a previously known fact that purely
ubic NLSE cannot give rise to long-living solitons either from an
nitially disordered electric field E (the most natural state for the
angmuir envelope) or even from a phase-coherent plane w ave-lik e

nitial electric field. More importantly, LMM18 found that for finite
ut sufficiently weak non-locality of the non-linear interactions, i.e.
or finite but small values of | s / q | , formation of long-living solitons
id occur. LMM18 estimated a range of | s / q | values where such
ormation takes place, but did not address the question whether
hat range values of | s / q | could actually exist under generic hot
lasma conditions in pulsar magnetosphere. Answering it requires
odelling of group velocity interaction of Langmuir waves with

lasma particles, which depends on the choice of particle momentum
istribution function (hereafter DF). Therefore, for such modelling,
ne needs to consider physically moti v ated and representati ve forms
f DF in pulsar plasma. To our knowledge, this has not been done in
ny previous studies and thus has been an open issue. 

In order to obtain solitons that can have properties of a charge
unch, the electron–positron DFs of the pair plasma must separate to
reate charge-separated structures in the configuration space. These
harge-separated structures have been proposed as candidates for
CR charge bunches. MGP00 also suggested that the presence of
eavier ion species, that had been proposed by the PSG model, can
lso aid in charge separation. Ho we ver, the relati ve contribution of
he two effects has not been studied before. Thus, the presence of
ons is an important ingredient that has not been considered in earlier
tudies and hence also needs to be explored. 

This study is focused on addressing the two open issues stated
bo v e. Namely, it has the following objectives. First, we want to
stimate the ratio of s / q and explore the parameter space for pulsar
lasma DFs and then simulate numerically the soliton profiles for
he s / q range obtained. Secondly, we want to estimate the relative
ontribution of the separation of the electron–positron DF and the
resence of ions in determining the charge separation in soliton
rofiles. 
The paper is organized as follows. We introduce the NLSE in

ection 2 . The parameter space and soliton solutions of NLSE are
xplored in Section 3 . Typical estimates of the charge separation of
he Langmuir solitons are presented in Section 4 . Our conclusions
re summarized in Section 5 . 
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 I N T RO D U C T I O N  TO  NLSE  WITH  N L D  

e identify three frames of reference. We have a plasma frame of
eference (hereafter PFR) where the average velocity of the pair 
lasma particles is zero. The PFR mo v es with a Lorentz factor γ s 
ith respect to the observer frame of reference (OFR). The moving 

rame of reference (MFR) mo v es with respect to PFR at the group
elocity of the linear Langmuir waves v gr in PFR. Quantities in 
FR are primed while the quantities in PFR are unprimed. The 

nvelope ( E ) of the Langmuir waves is governed by the NLSE with
he NLD, 

 

∂E 

∂τ ′ + G 

∂ 2 E 

∂ξ ′ 2 + q E | E| 2 + s 
1 

π
P 

∫ +∞ 

−∞ 

d ξ ′′ | E( ξ ′′ , τ ′ ) | 2 
ξ ′ − ξ ′′ E = 0 , (3) 

here the quantities τ
′ 
and ξ

′ 
represent the slow time and space vari- 

bles in MFR, respectively (see equation A1 and A2 in Appendix A;
he appendices are available online). It must be noted that while 
he equation itself is written in MFR, the coefficients ( G , q , s ) are
omputed in PFR. Here, the symbol P stands for the principal value
auchy integral. 
A complete formal deri v ation of equation ( 3 ) is found in Ap-

endix A. Equation ( 3 ) was derived by MGP00 (see also Melikidze &
 ataraia 1980 ; P ataraia & Melikidze 1980 ; Melikidze & Pataraya
984 ), ho we ver, our deri v ation dif fers from MGP00 in one crucial
spect. It allows contributions for arbitrary species of mass m α and 
harge e α (in particular, ions) to be taken into account, while the
riginal deri v ation of MGP00 was for an electron–positron plasma. 
nclusion of ions as an additional plasma component and e v aluation
f their contribution to the coefficients of the NLSE ( 3 ) is one of the
tated goals of this study. It must also be noted that in our deri v ation,
ertain integrals where MGP00 missed the charge dependences, 
ave been updated. The setup for the introduction of ions and 
racking the charge dependence of multiple species is described in 
ppendix B. 

.1 The NLSE coefficients 

he coefficients of equation ( 3 ) can be represented in their dimen-
ionless form as (see MGP00 ; also equations B6, B8, and B11 of
ppendix B) 

G = 

c 2 

ω p 

(
γ 3 

gr g d 
)

= 

c 2 

ω p 
G d , (4) 

q = 

1 
ω p 

(
e 

m e c 

)2 
q d , (5) 

s = 

1 
ω p 

(
e 

m e c 

)2 
s d , (6) 

here the coefficients ( G d , q d , s d ) are dimensionless. We will first
resent an estimate for the plasma frequency ω p in equations ( 4 )–
 6 ) and then discuss factors that affect ( G d , q d , s d ). Values of these
oefficients themselves are discussed later in the text. 

The typical plasma frequency at a distance r from the neutron star
urface in OFR is 

 p , OFR = 

√ 

4 πn s e 2 

m e 
, (7) 

here m e is the mass of electron, e is charge of electron, n s = κB /( Pce )
s the number density of the pair plasma, κ is the ratio of the number
ensity of the pair plasma to the Goldreich–Julian number density 
 GJ = B /( Pce ), B = B d ( r / R NS ) 3 is the magnetic field strength, P
s the period of the pulsar, and c is the speed of light. For typical
ulsar parameters with period P = 1 second, dipolar magnetic field 
 d = 10 12 gauss, and radius R NS = 10 km, the corresponding plasma
requency ω p in PFR can be obtained by the Lorentz transformation
o be 

 p = 

ω p , OFR 

γs 
≈ 10 8 

(
200 

γs 

)√ ( κ

10 4 

) (
1 s 

P 

)(
500 km 

r 

)3 

rad s −1

here the Lorentz factor γ s was discussed in Section 1 . 
The coefficients ( G d , q d , s d ) depend only on the plasma particles’
omentum DF (see equations B7, B9, and B12 in Appendix B).
herefore, we now review various relevant models of DF so as to

ustify its representative forms that we will use in this study. As stated
n Section 1 , it is well established that normal-period radio pulsars
ave a strong non-dipolar surface component (see Arumugasamy & 

itra 2019 and the references therein) along with an thermionic 
on flow from the surface (Cheng & Ruderman 1980 ; Gil et al.
003 ). While some semi-analytical estimates of the pair cascade 
n strong non-dipolar fields have been made (Szary et al. 2015 ),
he generic shape of the pair plasma DF is not kno wn. Ho we ver,
umerical simulations like those by Arendt & Eilek ( 2002 ) show
hat the shape of the DF is strongly affected by the opening angle
etween the ambient magnetic field and the initial seed photon, the
trength of the magnetic field and the seed photon energy . Namely , for
ow-opening angles, the DF is well described by the J ̈uttner–Synge
istribution, so that the number of particles with high dimensionless 
omenta p (defined in equation 9 ) falls off as exp ( − K (ln p / p o ) 2 ),
here K is inverse width of the DF and p o is the dimensionless
omentum corresponding to the peak of the DF. In this paper, we

efer to this behaviour of the DF as ‘short-tailed’. On the other hand,
t large opening angles, the DF of the number of particles was found
o fall off as exp ( − p 0.2 ) at high momenta. In general, Arendt &
ilek ( 2002 ) found these latter DFs to be significantly broader than

hose at small opening angles. Therefore, we refer to this type of
Fs as ‘long-tailed’. It must be kept in mind that the simulations
y Arendt & Eilek ( 2002 ) assume the initial seed photons to be
ono-energetic, and relaxing this condition may lead to significant 

hanges in the resulting DFs. Among other pair cascade models, like
hose by Hibschman & Arons ( 2001 ) and by Suvorov & Chugunov
 1973 ) exhibit the presence of a power-law ‘long-tail’ that falls off
nversely as the third power of the particle momentum. On the other
and, Monte Carlo models used by Daugherty & Harding ( 1982 )
how a ‘short-tail’ in the particle DF (see fig. 5 of Hibschman &
rons 2001 for comparison). Thus, earlier studies demonstrate the 
ossibility of having both types, short- and long-tailed DFs in pulsar 
lasma. 
For the soliton formation based on the NLSE model ( 3 ), we will

ho w belo w that the presence/absence of an extended tail in the
F is of paramount importance. Namely, it eventually determines 

he number of plasma particles contributing to the NLD and CNL
erms in the NLSE. In order to explore this aspect, we choose
wo representative forms of particle DF, viz., a Gaussian with an
xponentially decaying tail (‘short-tail’) and a Lorentzian with a 
ower-law tail (‘long-tail’). 
The particle DF f (0) 

α is taken to be a function of the dimensionless
omentum p , which is defined as 

 = 

P α

m αc 
= 

γm αv 

m αc 
= γβ ≡ β√ 

1 − β2 
, (9) 

here P α is the relativistic momentum and m α is the mass of the
lasma particles of the αth species. For the rest of the analysis,
he term ‘momentum’ would be used to refer to dimensionless 

omentum of the plasma particles. For both Gaussian and Lorentzian 
MNRAS 00, 1 (2022) 
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M

Figure 1. The figure shows temperature dependence of NLSE coefficients for separated Lorentzian DF as defined in equation ( 29 ). Top: Panel (a) shows a 
particular example of separated electron and positron DF along with the group velocity pole p gr as defined in equation ( 13 ) for a particular temperature. Panel 
(b) shows the variation of p gr , s / q , and q d / G d as a function of temperature at the same separation of DF as shown in panel (a). Middle: Panel (c) shows that p gr 

at a given plasma temperature decreases as the separation of the DF increases. Panel (d) shows that the ratio s / q remains tightly clustered to values within 0.1 
from zero for moderate separation of DF. Only at sufficiently high separation of DF can the s / q ratio increase to values higher than 0.5. Lower: Panel (e) shows 
that Q stays within the range (0 . 1 , 0 . 3) for the range of plasma temperatures considered; in particular, the Lighthill condition ( 2 ) is satisfied. Panel (f) shows 
that the GVD at any temperature decreases with increasing separation. 
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l  
Fs, the term ‘temperature’ will be used to refer to their widths
n the momentum space. We will also sometimes refer to the
ail of the Lorentzian DF as ‘high-energy’ tail, since particle
nergy scales approximately as momentum in the ultrarelativistic
egime. 

As seen from Tables B2 and B3 in Appendix B, the integrals in
he dimensionless coefficients G d , q d , and s d require the estimation
f the group velocity of the particles. For a given DF, the wave
roup velocity (normalized to speed of light c ) is estimated from the
NRAS 00, 1 (2022) 
xpression (see equation B3 in Appendix B) 

gr = 

1 

c 

d ω 

d k 
= 

1 + 

∑ 

α

(ω p ,α

kc 

)2 ∫ +∞ 

−∞ 

d p 

∂f 
(0) 
α

∂p 

β

( βph −β) 2 ∑ 

α

(ω p ,α

kc 

)2 ∫ +∞ 

−∞ 

d p 

∂f 
(0) 
α

∂p 
1 

( βph −β) 2 

, (10) 

here βph corresponds to the non-dimensional phase velocity of the
inear Langmuir waves (normalized to the speed of light c ) and the
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Figure 2. Simulation results of soliton formation for Lorentzian DF ( Q = 0.25 and s / q = 0.1) by the numerical method described in Lakoba ( 2017 ). Panel 
(a) shows the mo v ement of a prominent secondary peak (circled) to k < 0 at few representative times. Panel (b) shows the corresponding soliton formation 
in configuration space in the limited range ( −15, 25) for clarity. The actual simulation box has the range ( −60, 60). The legends in both panels indicate the 
dimensionless time t . The black curve in both panels shows the initial condition at t = 0. Panel (c) shows the Miller force associated with the soliton electric field 
at t = 30. Here, ‘soliton’ is the envelope of the pulse with � x ∼ 3 units while ripple is what appears to be a ‘carrier wave’ with wavelength δx ripple ∼ 0.15 units. 
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imensional wavenumber k is given by the expression 

 = 

1 

c 

[ ∑ 

α

ω 

2 
p ,α

∫ +∞ 

−∞ 

d p f (0) 
α

1 

γ 3 ( βph − β) 2 

] 1 / 2 

, (11) 

here ω p, α is the plasma frequency associated with αth species in 
he plasma and is defined as 

 p ,α = 

√ 

4 πn αe 2 α

m α

. (12) 

Note that the dependence of ω p, α on the particle species comes 
rom its dependence on mass m α , number density n α , and the charge
 α of the species. 

In Section 3 , we will also e xtensiv ely refer to the momentum
orresponding to the group v elocity, giv en according to equation ( 9 ),
y 

 gr = γgr βgr . (13) 

This p gr appears as a pole in the integrals for s d and q d (see Tables
2 and B3 in Appendix B). The location of this pole determines the
agnitude of s / q (see equation B23 in Appendix B). Physically, | s / q |

s higher if the pole p gr is near the peak of the DF since then the
umber of particles interacting with Langmuir waves is greater, and 
ice versa. 
In Section 2.2 , we discuss under what condition charge separation

ccurs in the configuration space and how the presence of an iron
pecies component may potentially enhance the charge separation. 
MNRAS 00, 1 (2022) 
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M

Figure 3. Simulation of pulse evolution for Lorentzian DF ( Q = 0.25 and s / q = 0.5) by the numerical method described in Lakoba ( 2017 ). The black curve 
in both panels shows the initial condition at t = 0. Panel (a) shows the absence of a prominent secondary peak as was seen in Fig. 2 . Panel (b) shows the 
corresponding wave field evolution in the configuration space in the limited range ( −15, 25) for clarity. The actual spatial range of the simulation box is ( −60, 
60). It can be seen that the amplitude of the envelope of the pulses at any time does not exceed the amplitude of the initial wave electric field. Thus, soliton 
formation is suppressed for s / q � 0.5. 
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.2 Charge separation in configuration space 

he slowly varying charge density (in electrostatic units per cubic
entimetres) corresponding to the envelope field of equation ( 3 ) is
iven by (see equation A23 of MGP00 ) 

= μ

(
1 

4 πk 2 c 2 

) ( | e| 
m e c 2 

)
∂ 2 | E| 2 
∂ξ ′ 2 , (14) 

here 

= 

∑ 

α sgn( α) ϕ α ω 

2 
p ,αP 

∫ +∞ 

−∞ 

d p 

1 
( β−βgr ) 

∂ 
∂p 

[ 
( β−βgr ) 

( βph −β) 2 
∂f 

(0) 
α

∂p 

] 
∑ 

α ω 

2 
p ,αP 

∫ +∞ 

−∞ 

p 

1 
( β−βgr ) 

∂f 
(0) 
α

∂p 

, (15) 

here sgn( α) is + for positrons and ions, and is − for electrons, and
 α = ( | e α| / e ) × ( m e / m α). 
Equation ( 15 ) shows that for coinciding electron and positron

F, the terms pertaining to electrons and positrons in the numerator
f ( 14 ) cancel each other. Then, integral μ vanishes and there is
o charge separation. Physically, this effect of charge separation
an be understood as follows. The term ∂ 2 | E | 2 / ∂ξ

′ 2 represents the
onderomotive/Miller force. The Miller force is a pressure force
hat pushes plasma particles from regions of strong to low electric
elds. The force is independent of the sign of the charge particles but
epends on the magnitude of charge to mass ratio of the αth plasma
pecies. F or e xample, in an electron–ion plasma, the Miller force can
ush an electron farther away compared to an ion, and hence ef fecti ve
harge separation can be achieved. In the case of pair plasma, since
he charge to mass ratio is same for both species, there is no such
NRAS 00, 1 (2022) 
harge separation possible. Thus, in pulsar relativistic pair plasma for
 coinciding electron–positron DF, no charge separation is possible.
o we ver, it was pointed out by MGP00 that due to flow of pair
lasma along curved magnetic field lines, the electron and positron
F of pair plasma can separate (Cheng & Ruderman 1977 ; Asseo &
elikidze 1998 ; Paper I ; also see Appendix F for full deri v ation)

nd hence relativistic masses of the electrons and positrons can be
nequal. Thus, the separation of electron–positron DF can produce
n ef fecti ve charge separation in plasma. As shown in Paper I , the
xtent of the separation is determined by the arrangement of the
on-dipolar surface magnetic field. For various arrangements of that
eld, the separation of the DF remains nearly constant for around
000 km abo v e the neutron star surface. In this context, we can treat
he separation of the DF as a free parameter, and therefore we will
onsider se veral representati ve v alues of DF separation in Section 3 .

MGP00 also suggested that the presence of an additional heavier
ron ion 56 

26 Fe with a high magnitude of charge component can
nhance the charge separation. The PSG model provides an important
oti v ation for inclusion of an iron ion species as an additional

omponent in the pulsar plasma. One of the goals of this study is to
nd out if indeed the presence of an ion species can have appreciable
ffects on charge separation. 

In Section 3 , we will e v aluate the dimensionless coefficients of
LSE expressed in equation ( 4 ) to equation ( 6 ) and the charge

eparation integral μ from equation ( 15 ) as a function of plasma
emperature and the separation of the DF. We also include the
ontribution of a low-density ion component (see Appendix B3). 
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Figure 4. The figure shows temperature dependence of NLSE coefficients for separated Gaussian DF as defined in equation ( 30 ). Top: Panel (a) shows a 
particular example of separated electron and positron DF along with the location of the group velocity at the same temperature. Panel (b) shows the variation 
of p gr , s / q , and Q as a function of temperature at the same separation of DF as shown in panel (a). Middle: Panel (c) shows that the p gr for a given plasma 
temperature increases as the separation of the DF increases. Panel (d) shows that the ratio s / q remains large for all separation of DF. The moderate values of s / q 
are available only near a certain temperature σ sp where s / q changes sign. The value of σ sp decreases with decreasing separation of the DF, until below some 
separation it vanishes and the magnitude of s / q ratio settles at around 0.5. Lower: Panel (e) shows that the Lighthill condition ( 2 ) is satisfied across the range of 
plasma temperatures. Panel (f) shows that the GVD remains clustered around 0.4 for all separation of DF across a wide range of plasma temperatures. 

3
S

T  

(

i

w

θ

 P  ARAMETER  SP  AC E  F O R  NLSE  F O R  

O L I TO N  F O R M AT I O N  

he NLSE with NLD can be converted into the dimensionless form
see equation 20 of LMM18 ) as 

 

∂u 

∂t 
+ 

∂ 2 u 

∂x 2 
+ Qu 

(
| u | 2 + 

s 

πq 
P 

∫ 
d x ′ 

| u ( x ′ , t) | 2 
x − x ′ 

)
= 0 , (16) 
here 

u = 

E 
E o 

, (17) 

x = 

ξ ′ 
lθ

, (18) 

t = 

ω p G d 
2 τ ′ , (19) 
MNRAS 00, 1 (2022) 
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M

Figure 5. The figure shows the histogram for the earliest soliton formation 
time t (with Q = 0.25) that satisfies the constraint ( 31 ) for 200 random seeds in 
equation ( 25 ) for both positive s / q = + 0.1 (shown in solid blue) and ne gativ e 
s / q = −0.1 (shown in dashed red). The histogram for t is divided into 5 bins 
in the range (10, 55) while the error bars = 

√ 

N , where N is the number of 
entries in each bin. It can be seen that the average time for soliton formation 
is ∼30 units for both signs of s / q . 
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Q = 

[
θ2 

(
e 

m e c 2 

)2 ( | E o | 2 
8 ω 2 p γ

)](
2 q d 

G d 

)
, (20) 

here u is the non-dimensional amplitude of the Langmuir wave
nvelope, x is the non-dimensional space variable, t is the non-
imensional time variable, and Q represents the non-dimensional
atio of the CNL coefficient q to the GVD. Here, the characteristic
ength l of the linear Langmuir waves is given by 

 = 

2 π

k 
, (21) 

here k is the wavenumber as defined in equation ( 11 ). The quantity
/2 π is a spatial scaling variable that characterizes the ratio of the
patial extent of the non-linear wave envelope to the characteristic
ength l of linear Langmuir waves. Similarly to LMM18 , we will use
 value θ = 100 in the estimates of typical soliton properties, which
ill be presented in Section 3.1 . For simplicity, the term in the square
rackets in equation ( 20 ) for Q will be taken to equal 1, given that E o 

s an unknown field amplitude. The quantity Q = 2 q d / G d has to be
ositive to fulfill the Lighthill condition ( 2 ). Physically, the typical
oliton formation time-scales are of the order of ∼ O(1 /Q ). Thus,
oliton formation is delayed for smaller Q and vice versa. 

Solving equation ( 16 ) requires us to specify an initial condition.
MM18 represented the initial condition as a combination of

he constant electric field component and a random electric field
omponent. For our analysis, we discount any constant electric field
nd use only a completely disordered electric field ( LMM18 ): 

 ( x, 0) = 

∫ +∞ 

−∞ 

d k 
ˆ w ( k ) exp [ −0 . 5( k /k corr ) 2 − ik x] √ √ 

πk corr 

. (22) 

ere, k corr is the wavenumber corresponding to the correlation length
 corr such that 

 corr = 

2 π

l corr 
, (23) 

nd quantity ˆ w ( k) denotes a white noise field described by 

〈 ˆ w ( k 1 ) ̂  w ( k 2 ) 〉 = 0 , (24) 

〈 ˆ w 

� ( k 1 ) ̂  w ( k 2 ) 〉 = 2 δ( k 1 − k 2 ) , (25) 
NRAS 00, 1 (2022) 
here the angle brackets denote ensemble average. Let us mention
hat increasing k corr has the same effect as decreasing Q : they both
ncrease the time at which solitons emerge (see table 2 of LMM18 ).

To solve equation ( 16 ) numerically, we use the integrating factor-
eap-frog method by Lakoba ( 2017 ). Simulation parameters of the
umerical scheme are summarized in Appendix C. 
Next, the maximum dimensionless time for soliton formation can

e estimated as follo ws. The deri v ation of equation ( 16 ) assumes that
ackground plasma conditions as captured by the coefficients ( 4 )–
 6 ) are steady during the evolution of the wave electric field. For any
iven separation of the DF, this condition requires that the plasma
requency ω p should not change drastically during the evolution of
he wave electric field. From equation ( 8 ), the change in plasma
requency �ω p for segments of � r km along a field line can be
stimated to be �ω p / ω p = 1.5 � r / r . Thus, if we choose � r = 3 km and
 = 500 km, the change in plasma frequency is less than 1 per cent
nd can indeed be neglected. Since the outflow is ultrarelativistic,
 typical time-scale associated with this spatial length segment is
 t OFR = 3 km/ c ≈ 10 −5 s. We assume that the PFR mo v es with
 Lorentz factor γ s ≈ 200 with respect to OFR. Then, the typical
ime-scale in the PFR is � t PFR = γ s � t OFR ≈ 2 × 10 −3 s. The MFR

o v es relativ e to OFR in the same direction as PFR (away from the
ulsar along the magnetic field lines) with a typical Lorentz factor
gr ≈ p gr (see equation 13 ) with respect to PFR. Combining Lorentz

actors for ultrarelativistic co-propagation (see Appendix G), we find
hat the maximum time-scale in MFR is 

′ 
max ≈ 2 p gr �t PFR . (26) 

Next, at a typical distance of 500 km from the surface we find,
sing equation ( 19 ), that the maximum dimensionless time t max is
iven by 

 max ≈ 10 4 
( ω p 

10 8 rad s −1 

)(
100 

θ

)2 

G d τ
′ 
max , (27) 

here we have used that for the typical parameters assumed in this
tudy, ω p ∼ 10 8 rad s −1 (see equation 8 ). In Section 3.1 , we will see
hat in those cases when solitons are formed, one can take p gr ≈ 6 and
 d � 10 as representati ve v alues. Then equation ( 26 ) yields τ ′ 

max ≈
 × 10 −2 s and equation ( 27 ) yields the following estimate for the
aximum dimensionless time t max where the ( 3 ) can be applicable: 

 max ∼ 2 × 10 3 
( ω p 

10 8 rad s −1 

)(
100 

θ

)2 (
G d 

10 

)(
τ ′ 

max 

2 × 10 −2 s 

)
. 

(28) 

hus, for the Lorentzian DF, the maximum dimensionless time of
he simulation can be restricted to about 2000 units. 

In fact, we observed solitons form over dimensionless times that
re some two orders of magnitude smaller than the abo v e estimate.
his indicates that either solitons can form o v er distances much less

han the abo v e estimate of � r = 3 km, or that the factor in the
quare brackets in ( 20 ), which we had assumed to equal 1, can in fact
e much smaller (thereby allowing a larger range of values for the
imensional field intensity | E o | 2 , or a combination of both). In other
ords, a large range of values for the intensity of the initial linear
eld will be able to lead to soliton formation as long as the condition
n | s / q | stated in the next subsection is fulfilled. 

.1 Lorentzian DF 

et us use the Lorentzian DF to get representati ve v alues of the ratios
 / q , q d / G d and the dimensionless GVD G d . After obtaining these
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epresentati ve v alues, we will explore soliton formation numerically 
ollowing the method of Lakoba ( 2017 ) and LMM18 . 

The Lorentzian DF for the αth species is given by 

 

(0) 
α = 

1 

π

1 
2 �p 

( p − p α) 2 + 

(
1 
2 �p 

)2 , (29) 

here � p is the width of the DF and p α is the peak of the DF. Here,
= ± refers to the positron and the electron DF, respectively. In

his section, we refer to � p of equation ( 29 ), which characterizes
he spread of particles’ momenta, as ‘temperature’. In relativistic hot 
lasma, this spread of the momenta is assumed to be a significant
raction of the mean momentum. Contrarily, in a cold plasma, the 
pread is small. Next, in this study we assume the peak momentum
f the particle DF to vary in the range 1–3. Thus, to keep the ratio of
he width to the peak in the DF to vary from the cold limit to hot limit
t all values of peak separation, p + 

− p −, the plasma temperature � p
s chosen to be in the range (0.5, 2.0) in this study. In dimensional
nits, this temperature range corresponds to 5 × 10 9 K to 2 × 10 10 

. 
We e v aluate the NLSE coef ficients at dif ferent separations of the

F as a function of the plasma temperature using equations B6, B9,
nd B12 of Appendix B. The results are shown in Fig. 1 and can
e understood physically as follows. Panel (a) shows for a given 
eparation of the DFs, the pole due to group velocity p gr is at the tail
f DF. The upper subpanel of panel (b) shows that the pole p gr shifts
o higher values as the temperature of the plasma is increased. Thus,
he number of interacting particles at the group velocity decreases 
s the temperature is increased. It is reflected in the lower subpanel
f panel (b), which shows that the magnitude of s / q decreases with
ncreasing plasma temperature. Next, we explore the location of the 
ole due to group velocity p gr for different separation of DF. Panel (c)
hows that at a given plasma temperature (say � p = 1.0), the pole p gr 

hifts to lower values as the separation of the DFs increases. It means
hat with increasing separation of DF, the pole shifts towards the 
entre of the DF, thereby increasing the number of plasma particles 
nteracting with the Langmuir waves, thereby increasing the effect of 
he NLD relative to the instantaneous CNL. Consequently, panel (d) 
hows that for moderate separation values, the magnitude of s / q is
lustered within ∼0.1 from zero for a range of plasma temperatures. 
o we ver, for larger separation of DF, the magnitude of s / q increases

o about 0.5 or even higher, especially for colder plasma. Finally, 
anel (e) shows that the quantity Q is of the order of ∼0.25 for
ll separations of the DF across the range of plasma temperatures. 
hus, we take s / q = 0.1 and 0.5 for small/moderate and for larger
F separation, respecti vely. The v alue of Q can be taken to have a

onstant value of 0.25. 
Simulation results for ( Q = 0.25, s / q = 0.1) and the initial condition

 22 ) are shown in Fig. 2 . Following LMM18 , we used a representative
alue k corr = 2. In panel (a), soliton formation can be clearly identified
ith the mo v ement of a well-formed secondary spectral peak from
 = 0 to k < 0. This peak in the Fourier spectrum corresponds to
 soliton in physical space ( LMM18 ), seen in panel (b). Panel (c)
hows the Miller force associated with the envelope soliton. 

The following remark about identifying soliton formation from 

he field’s spectrum needs to be made. In panel (a), one sees that
he amplitudes of the secondary peak, corresponding to the soliton 
n the physical space, and of the spectrum of the initial field are
bout the same. Yet, the amplitude of the soliton in the physical
pace (panel b) is several times greater than that of the initial field.
hus, this amplitude increase must occur via increased coherence 
f the field ‘inside’ the secondary spectral peak compared to the 
nitial fully random field. As was noted in LMM18 , this formation of
igh-amplitude solitons out of an initial disordered state is a generic
eature that occurs in many (but not all) so-called near-integrable but
ot exactly integrable non-linear wave models. (Here, the case s / q =
 is that of the integrable NLSE with purely local cubic non-linear
erm; for it, formation of a long-living soliton out of a disordered state
ill not occur.) The specific contributions of this study, and earlier of
MM18 , was to show that this soliton formation does indeed occur

or the NLSE with a sufficiently small NLD term, and that it occurs
ithin the time t max that corresponds to realistic parameters in pulsar
lasma. (In contrast, soliton formation in another model, considered 
n Jordan & Josserand 2001 , occurred o v er a time of many tens of
housands dimensionless units.) 

The simulation results for ( Q = 0.25, s / q = 0.5) are shown in Fig. 3 .
nlike in Fig. 2 , here no spectral peak is seen to form in panel (a),

nd, instead, energy gets more uniformly distributed among spectral 
omponents of the field. One can interpret this as the field becoming
ess coherent for those larger values of s / q . In physical space (panel
), this is manifested by the absence of well-localized, long-living, 
nd high-amplitude bunches of electric field. It must be noted that the
ehaviours, shown in Figs 2 and 3 , at small and large s / q were found
n LMM18 , whereas here we demonstrated that they can actually
ccur in pulsar plasma. 

Next, since our assumptions at the beginning of this section about
he strength of the electric field (i.e. parameter Q ) and the measure
f disorder of the initial field (i.e. k corr in 22 ) are somewhat arbitrary,
elow we explore the effect of these parameters on soliton formation.
he simulation setup and technical details of the results are described

n Appendix D; here, we present only their gist. First, we found that
he effect of decreasing k corr from 2 to 1 led only to the decrease
f the soliton formation time, in accordance with the statement at
he beginning of this section; no statistically significant changes 
ere found in the distribution of the amplitude of the long-living

olitons that formed. Second, we doubled the initial amplitude of 
 ( x , 0), which is tantamount to quadrupling Q . In this case, the final
mplitude of the formed solitons was, on average, lower than for the
riginal u ( x , 0); ho we ver, qualitati vely, the distribution of the final
oliton amplitudes remained similar to the original case. (We also 
ound that, in agreement to the statement at the beginning of this
ection, the soliton formation time decreased approximately four- 
old.) 

To summarize, soliton formation for long-tailed DF can occur for 
 wide range of plasma temperature for moderate separations of the
lectron–positron DF. Large separation of the DF increases the value 
f s / q , which necessarily leads to suppression of soliton formation
ia the mechanism explained in our discussion about Fig. 1 

.2 Gaussian DF 

he Gaussian DF for αth species is given by 

 

(0) 
α = 

1 √ 

2 πσ
exp 

{
− ( p − p α) 2 

2 σ 2 

}
, (30) 

here σ is the width of the DF and p̄ α is the peak of the DF. In
his section, we will refer to σ as the plasma ‘temperature’. Like in
he previous subsection, in our study the plasma temperature σ is 
estricted to the range (0.5, 2.0). 

Similar to the previous section, we evaluate the NLSE coefficients 
or different separations of the Gaussian DF as a function of the
lasma temperature σ . The results are shown in Fig. 4 and can be
nderstood physically as follows. Panel (a) shows that for a given
eparation of the DF, the pole due to group velocity p gr is near the
MNRAS 00, 1 (2022) 
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entre of the positron DF. The upper subpanel of panel (b) shows that
hile pole p gr shifts to higher values with increasing temperature, it

till lies very close to the peak of the positron DF. Thus, the number
f particles that can interact at the group velocity of linear Langmuir
aves remains high. This is reflected in the lower subpanel of panel

b), which shows that the magnitude of s / q generally remains high
cross a range of σ . Next, we explore the location of p gr for different
eparations of DF. Panel (c) shows that for all temperature values
onsidered, the pole p gr remains close to the centre of the positron
F. Panel (d) shows that small values of s / q can be obtained only

n a very narrow range of σ where the quantity s / q changes sign.
he location of this temperature range varies with the DF separation
nd, in fact, for sufficiently small separation, there is no temperature
in the range considered here) where s / q would be as small as 0.1.
amely, for p ± ∼ ±1, one has s / q ∼ −0.5. 
As shown in Fig. 3 and in LMM18 , higher values of s / q � 0.5,

bserved for most temperature values in the above range, lead to
uppression of soliton formation. 

To summarize, the Gaussian DF provides small values of s / q � 0.1
nly in a narrow interval of temperatures and for moderate separation
f DF. As the DF separation decreases, the interval where s / q remains
mall, shrinks, and eventually vanishes, and the ratio stays too high:
 / q ≈ −0.5, for solitons to form. This leads us to conclude that soliton
ormation for short-tailed DF can occur only in a very restrictive
arameter regime. As a result, short-tailed DF seems to be unlikely
andidates for sustaining soliton formation under generic hot plasma
onditions. 

.3 Dependence of soliton formation on sign of s / q 

t can be seen from panel (d) of Figs 1 and 4 that the ratio s / q
an be both positive and ne gativ e. Physically, the sign of s / q only
etermines the direction of the mo v ement of the secondary peak
ssociated with soliton formation to a higher wavenumber in the
 ourier space ( LMM18 ). F or ne gativ e s / q , the secondary peak in the
ourier space moves to k > 0 and vice versa. Physically, there is no
ifference as the presence of a secondary peak for both k > 0 and k
 0 gives rise to envelope solitons in the configuration space. The

oliton formation time-scale is not affected in a statistical sense. To
how that this is indeed the case, we simulate soliton formation for
 = 0.25 for s / q = 0.1 and s / q = −0.1 for 200 random seed values

or the white noise in equation ( 25 ). Fig. 5 shows the histogram for
he time t of soliton formation, defined as 

ax | u ( x, t > 0) | ≥ 3 × max | u ( x, 0) | . (31) 

t can be seen that the statistics of soliton formation times indeed
oes not depend on the sign of s / q . 

.4 Role of ions in modifying the coefficients of NLSE 

he DF of ions are expected to be near the electron and positron
F . W e treat the location of the ion DF as a free parameter wherein

he maximum contribution to the NLSE coefficients due to ions can
nly come if the centre of ion DF is near the pole p gr . The setup
or maximizing the contribution to NLSE coefficients due to ions
s described in Appendix B4. We find that the presence of ions

odify the dimensionless coefficients of NLSE (i.e. G d , q d , s d ) by
ess than 10 −8 . The result can be understood qualitatively as follows.
t must be noted in the PSG model (Gil et al. 2003 ), the number
ensity of ions is close to 90 per cent of the Goldreich–Julian co-
otational number density. As defined in Section 1 , κ is the ratio
f the number density of the pair plasma to the Goldreich–Julian
NRAS 00, 1 (2022) 
umber density. Thus, for simplicity, the ratio of the number density
f pair plasma to the number density of ions can be assumed to
e κ . Then, the number density of the ions is ∼10 4 times smaller
han that of the pair plasma while the mass of the ions is ∼10 4 

imes higher than that of electrons and positrons. A combination of
hese two effects reduces the contribution of ions to the coefficients
f NLSE by the factor 10 −8 . A more expanded discussion of these
spects will be presented in the following section. We conclude
hat ions make negligible contribution in modifying the coefficients
f NLSE. 

 TYPI CAL  PROPERTIES  ASSOCI ATED  W ITH  

A N G M U I R  SOLI TO NS  

he typical properties of Langmuir solitons such as spatial extent,
tructure, and charge are crucial in determining whether these
olitons can be a suitable candidate for the observed coherent
adio emission in pulsars. In this section, we briefly discuss these
spects. 

.1 Typical length and ripple associated with the solitons 

n this section, following LMM18 , we estimate the typical size of
he soliton and the ripple associated with it (in dimensional units)
t a distance of r = 500 km abo v e the neutron star surface. Using
quations ( 11 ) and ( 8 ), the typical Langmuir length-scale l in PFR is
iven by 

 = 

2 π

k 
= 

π c 

ω p 
√ 

γ
≈ 6 × 10 2 

(
3 

γ

)1 / 2 

cm , (32) 

here γ = 

∫ 
d p 

√ 

1 + p 

2 f (0) 
α is the average Lorentz factor of the

lectron/positron DF of the pair plasma in PFR and depends on the
emperature of the particles. For the cold plasma limit, γ equals the
orentz factor at the peak of the electron/positron DF, whereas for
ot plasma, γ can be as much as twice the Lorentz factor e v aluated
t DF’s peak. For the rest of the analysis, we choose a representative
alue of γ to be 3. 

From panel (c) of Fig. ( 2 ), the typical size of the soliton envelope
 PFR in PFR is given as 

� PFR = 

�ξ ′ 

γgr 
= 

lθ�x 

γgr 

≈ 3 × 10 4 
(

6 

γgr 

)(
θ

100 

)(
�x 

3 

)(
3 

γ

)1 / 2 

cm , 

(33) 

hile the typical ripple size � ripple, PFR from panel (c) of Fig. 2
ssociated with the soliton in PFR is given as 

� ripple , PFR = 

lθδx ripple 

γgr 

≈ 10 3 
(

6 

γgr 

)(
θ

200 

)(
δx ripple 

0 . 15 

)(
3 

γ

)1 / 2 

cm . 

(34) 

hen, in OFR, the typical soliton size is 

� OFR = 

� PFR 

γs 

≈ 10 2 
(

6 

γgr 

)(
θ

100 

)(
�x 

3 

)(
3 

γ

)1 / 2 (200 

γs 

)
cm , 

(35) 
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hile the ripple size is 

� ripple , OFR = 

� ripple , PFR 

γs 

≈ 5 

(
6 
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)(
θ
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)(
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0 . 15 

)(
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γ

)1 / 2 (200 

γs 

)
cm . 

(36) 

or the case considered in Section 3.1 where solitons could form
i.e. s / q = 0.1) and for representative parameters values considered
here, the typical size for the envelope and the ripple associated with
olitons are about 100 and 5 cm, respectively. 

These spatial scales correspond to a frequency range from 

00 MHz to 6 GHz, which spans the observed broad-band frequen- 
ies of curvature radiation. For a typical radius of curvature r c ≈
0 8 cm in the radio emission zone, the characteristic frequency of
urvature radiation is νc ≈ 3 γ 3 

s c/ 4 πr c ≈ 2 GHz, which indeed falls
nto the abo v e range (0 . 3 , 6) GHz. Ho we ver, the calculation of an
ctual radiation pattern due to CCR by an ensemble of such rippled
tructures, as can be expected in pulsar plasma, is beyond the scope
f this work and will be studied elsewhere. 
It must also be noted that the temperature dependence of the size

f the solitons is due to the average Lorentz factor γ of the plasma
articles and the Lorentz factor corresponding to the group velocity of
he plasma waves γ gr . As mentioned earlier, γ for a high-temperature 
lasma can be twice as large as the Lorentz factor associated with
he peak of the electron/positron DF and enters as a square root
ependence in the size estimates of equations ( 35 ) and ( 36 ). As seen
rom panel (c) of Figs 1 and 4 , the group velocity changes only
arginally within the range of temperature considered. Thus, an 

ncrease in temperature can decrease the estimates of the soliton size 
nd ripple size by at most ∼30 per cent . 

It must also be mentioned that the number of ripples within the
oliton can vary significantly. Fig. 5 shows that, for ( Q = 0.25, s / q =
.1, k corr = 2), the time of soliton formation (see equation 31 ) has
 significant spread and depends on the particular realization of the 
andom initial condition ( 22 ). As a result, location (in Fourier space)
f the secondary spectral peak has a wide variation. In Appendix E,
e sho w representati ve cases of the location of the peak in Fourier

pace and the Miller force associated with the solitons. We find that
hile the size of the solitons is roughly the same, the number of

ipples within the soliton depends on the location of the secondary 
eak. In particular, the number of ripples increases as the secondary 
eak shifts towards higher k values. The impact of the variation of
he ripple size on radiation pattern will be studied in an upcoming
ork. 

.2 Charge separation associated with Langmuir solitons 

he slo wly v arying charge density ( 14 ) can be rewritten using
quations ( 17 ), ( 18 ), and ( 21 ) as 

= μ

(
e 

m e c 2 

) | E o | 2 
4 π k 2 c 2 

1 

l 2 θ2 

∂| u | 2 
∂x 2 

, (37) 

here the field amplitude | E o | 2 can be expressed in the form 

 E o | 2 = κ 8 πρGJ κc 2 γ, (38) 

here ρGJ is the co-rotational Goldreich–Julian charge density in 
FR, κ is the ratio of the number density of the pair plasma to the

o-rotational Goldreich–Julian number density, γ ≈ p + 

is the average 
orentz factor of the plasma particles in PFR, and κ is the ratio of

he energy density associated with the envelope field and the particle 
nergy density in PFR. 
Using the same representative values as abo v e and a typical value
 ∼ 0.1 (from MGP00 ), equations ( 37 ) and ( 38 ) can be combined to
ive 

ρ

ρGJ 
≈ μ

[ (
κ 

0 . 1 

)(γ

3 

)( κ

10 4 

)(
100 

θ

)2 ( 1 

4 × 10 4 
∂| u | 2 
∂x 2 

)] 

, (39) 

here the quantity μ defined in equation ( 15 ) can be expressed in
he form 

= μ± + μion , (40) 

here μ± is the contribution due to separation of electron–positron 
F and μion is the contribution due to iron ion DF near the pole p gr 

see Appendices B3 and B4). The variation of μ with temperature 
s shown in Fig. 6 . It can be seen that separation of electron and
ositron DF leads to μ± ∼ 10. It can also be seen that ions play
egligible role in charge separation since the highest value of μion 

10 −4 . The result can be understood physically as follows. The
esponse of αth species to the Miller force ( ∇ 

2 | E | 2 ) depends on the
ass and density of the species. We find that the very small number

ensity of the ions and their heavier mass lead to this response being
eak. On the other hand, the separation of electron and positron DF

n the pair plasma changes the ef fecti ve relati vistic mass (‘inertia’) of
he electrons and positrons. Thus, the Miller force acts differently on
oth species to create a spatial charge separation. Panel (a) shows that
± for Gaussian DF varies with temperature, while panel (b) shows 

hat for Lorentzian DF, μ± remains steady across a wide range of
lasma temperatures. This implies that for the same separation of the
F, the ef fecti ve mass is temperature dependent for short-tailed DF

nd is nearly temperature independent for long-tailed DF. For ions, 
he nature of the DF determines the number of interacting particles at
 gr . For ions with large mass m ion = Am p , where m p is the mass of the
roton and A is the atomic weight, the choice of DF has negligible
ffect on the change in ions’ relativistic mass. 

Let us now demonstrate that there is no physically feasible solution
here contribution of ions to the charge density separation could be
on-negligible (i.e. comparable to the contribution from electrons and 
ositrons). The expression μion can be written from equations ( 15 )
nd ( 40 ) as 

ion ≈ 10 −4 

[ ( F 

10 5 

) (
10 4 

κ

)(
Z 

26 

)3 (56 

A 

)2 
] 

, (41) 

here F is the contribution from the integrals involving DF in ( 15 )
nd Z is the charge of the ions. First, we note that decreasing κ ,
hile formally increasing μion , will not lead to an increased ion’s

ontribution to charge separation, because the latter is proportional 
o μκ as seen in equation ( 39 ). Secondly, considering heavier ions is
ot an option, either, given that A ∝ Z and one need to increase μion 

y a factor ∼10 4 to bring it to the size of μ±. Thirdly, decreasing the
idth of the DF so as to boost F is also not an option as cold plasma

pproximation is non-physical for the ion DF. 

 C O N C L U S I O N S  

s pre viously sho wn in LMM18 , soliton formation in the NLSE with
LD requires small values of the ratio of the NLD to the local CNL,

 s / q | � 0.1, and is suppressed for higher values of | s / q | � 0.5. In this
ork, moti v ated by the PSG model, we consider an admixture of

lectron–positron pairs and ions in the pulsar plasma and derived the
LSE for the envelope of Langmuir waves in the plasma. We found

hat due to the low density of ions compared to the density of the pair
lasma, the ion species contribute negligibly in modifying both the 
MNRAS 00, 1 (2022) 
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M

Figure 6. Variation of the charge separation integral μ as defined in equation ( 15 ) for different separation of the DF. Panels (a) and (b) show the integral as a 
function of the plasma temperature for Gaussian and Lorentzian DFs, respectiv ely. P anels (c) and (d) shows the contribution to the integral due to the presence 
of an iron ion component. Note the vertical axis scale in panels (c) and (d) is 10 −5 and 10 −4 , respectively. 
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oefficients of the NLSE and the charge separation. For subsequent
nalysis, we neglected the ions and explored the parameter space of
ifferent separation of the electron and positron DF across a wide
ange of plasma temperatures, obtaining estimates for the range of
 / q values and charge separation. 

We considered two types of DF: a Lorentzian DF with a prominent
ower-law tail and a Gaussian DF with an exponentially decaying
ail. The long-tailed Lorentzian DF provides small values of | s / q |

0.1 across a wide range of plasma temperatures for moderate
eparation of the electron and positron DF. On the other hand, the
hort-tailed Gaussian DF provides a very restrictive parameter space
here small values of s / q � 0.1 can be attained. In reality, the DF

an have a tail in between those of a Gaussian and Lorentzian DF.
o we ver, as long as DF’s tail falls of f ‘suf ficiently slo wly’ for some

xtended range of momenta, soliton formation is feasible in pulsar
lasma and thus can be considered as a viable candidate to explain
ccurrence of CCR charge bunches. The radiation pattern due to
urvature radiation under hot plasma conditions will be treated in an
pcoming work. 
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