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We demonstrate theoretically the possibility of spinodal de-wetting in heterostructures made of
light–atom liquids (hydrogen, helium, and nitrogen) deposited on suspended graphene. Extending
our theory of film growth on two-dimensional materials to include analysis of surface instabilities
via the hydrodynamic Cahn–Hilliard-type equation, we characterize in detail the resulting spinodal
de-wetting patterns. Both linear stability analysis and advanced computational treatment of the
surface hydrodynamics show micron-sized (generally material dependent) patterns of “dry” regions.
The physical reason for the development of such instabilities on graphene can be traced back to
the inherently weak van der Waals interactions between atomically thin materials and atoms in the
liquid. Similar phenomena occur in doped graphene and other two-dimensional materials, such as
monolayer dichalcogenides. Thus two-dimensional materials represent a universal theoretical and
technological platform for studies of spinodal de-wetting.

I. INTRODUCTION

Van der Waals (VDW) forces control a wide variety
of phenomena in nature as they represent interactions
between neutral bodies. Such interactions depend on
the polarizability of individual atoms and materials and
therefore are sensitive to the geometry and screening of
the Coulomb force which is ultimately responsible for
the VDW interaction [1]. VDW interactions can play an
especially important role near surfaces where they con-
trol wetting phenomena of liquids deposited on materials,
contact angles, as well as pattern formation instabilities,
such as spinodal de-wetting [2–5].

One of the greatest developments in condensed mat-
ter physics in the last two decades has been the dis-
covery of novel two-dimensional (2D), atomically thin
materials, such as graphene [6]. Numerous 2D materi-
als structurally similar to graphene also exist, for exam-
ple the large family of transition-metal dichalcogenides
(e.g., MoS2). These can form the building blocks of the
so-called VDW heterostructures [7, 8]. There are sev-
eral important features of 2D materials that make them
uniquely attractive candidates for studies of liquid ad-
sorption, wetting and related VDW-driven phenomena.
(1) First, the polarization function of 2D materials can
be calculated with great accuracy. This in turn leads to
an excellent description of VDW forces. Moreover the
polarization of graphene reflects its characteristic Dirac-
like electronic dispersion which can be affected by ex-
ternal factors such as application of mechanical strain
[9–11], change in the chemical potential (addition of car-
riers) [6, 12], change in the dielectric environment (i.e.,
presence of a dielectric substrate affecting screening), etc.
This means that VDW-related properties can be in prin-
ciple effectively manipulated. (2) Being purely 2D struc-
tures, materials like graphene can be engineered and ar-
ranged in various configurations. From the point of view
of the present work, the possibility to have a “suspended”
configuration, i.e., graphene without an underlying sub-
strate, is the most important one. A liquid (of thickness

h) formed on graphene in this configuration is shown in
Fig. 1. This is one of several configurations suggested to
be of particular interest for studies of wetting phenom-
ena in Ref. [13]. It is important to note that graphene
is impermeable even to small atoms [14, 15]. Because

h

FIG. 1. Liquid film of thickness h formed on suspended
graphene.

an additional (bulk) substrate is not present in the case
of suspended graphene, we will see that, as expected,
graphene by itself exerts a relatively weak VDW force on
the atoms of the film. This leads to the possibility of de-
wetting at the liquid-vapor interface, and consequently a
spinodal de-wetting pattern can form.

The purpose of the present work is to study in de-
tail the conditions for spinodal de-wetting and the main
characteristics of the surface spinodal patterns, for three
light elements, He, H2, and N2, forming a liquid layer on
top of suspended graphene. The phenomenon of spinodal
de-wetting itself has a long history [16, 17] and has been
theoretically predicted and detected in numerous situa-
tions involving polymers, liquid metals, etc. [3, 5, 18–
28]. This type of de-wetting and the corresponding de-
scription bears much conceptual and technical similarity
to spinodal decomposition which describes phase separa-
tion, commonly modeled via the Cahn–Hilliard equation
(CHE) [29]. The main equation governing the fluctua-
tions of the surface that describe spinodal decomposition
(the analog of the CHE in this case) appear in the origi-
nal literature [16]. We will use the formulation [20] which
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adopts the notion of disjoining pressure Π(h) – an effec-
tive repulsion between the substrate (graphene)–liquid
and the liquid–vapor interface. A change in the sign of
Π(h) at a critical h = hc guarantees a minimum of Π(h)
at h∗ > hc, with a change in the sign of dΠ(h)/dh at h∗,
signaling the onset of instability.

In order to calculate Π(h), we rely on a previous
work [13] where we present a detailed description of
the gaphene–liquid–vapor configuration. In addition,
the analysis of that work is also applicable to any
atomically thin 2D material with liquid on top. It is
based on the so-called Lifshitz theory (or Dzyaloshinskii–
Lifshitz–Pitaevskii theory) [30, 31], which is the stan-
dard many-body approach for VDW forces in a three-
layer (substrate–liquid–vapor) configuration with given
dielectric functions. This approach provides a very reli-
able description, well verified by experiment for differ-
ent substrates and liquids [1, 32]. The work [13] ex-
tends/modifies the original Lifshitz approach (designed
for bulk materials) to the case of 2D substrates such as
graphene. For the suspended configuration in Fig. 1 it
was noted in [13] that Π(h) goes through zero at hc and
dΠ(h)/dh > 0, h > h∗, for practically all 2D materials
and atoms studied there. The values of hc and h∗ depend
strongly on the type of liquid and 2D material substrate,
but the existence of an instability appears to be generic
to the suspended configuration. In the present work we
study in detail the spinodal patterns that emerge.

The rest of the paper is organized as follows. In Sec-
tion II we present results for the disjoining pressure for
three types of light liquids on graphene. In Section III we
analyze the surface hydrodynamics equation (CHE) and
present results for the characteristic spinodal scales in
the linear stability approximation as well as using finite
element methods to numerically simulate the CHE. In
Section IV we provide a detailed description of the spin-
odal de-wetting pattern formation and evolution. Section
V contains our conclusions. In Appendix A we present
details of the disjoining pressure calculation.

II. DISJOINING PRESSURE FOR LIGHT
LIQUIDS ON GRAPHENE

Our starting point is the analysis of Ref. [13], where
the VDW interaction energy of the configuration in Fig. 1
was calculated. We consider three types of light atoms:
He, H2 and N2. The energy is very sensitive to the
atomic parameters, most notably the atomic polarizabil-
ities, which are known quite accurately. The dynamical
polarization of graphene is also well known and is an im-
portant ingredient of the calculation. For the purpose
of studying the spinodal instability, it is convenient to
introduce the disjoining pressure Π(h), which is related
to the derivative of the VDW energy as summarized in
Appendix A.

The form of Π(h) is an important ingredient for all sub-
sequent calculations. Based on our previous results [13],
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FIG. 2. Disjoining pressure Π(h) for N2. Inset: Dimensionless

disjoining pressure as defined in the text, Π̃(h̃) = γ2

h̃3

(
1−h̃
β+h̃

)
,

where h̃ = h/a, and the notation a ≡ hc is defined in (2).
The parameter β = 0.37, appropriate for N2, and γ = 5.13
(see text).

which are summarized in Appendix A, the function Π(h)
can be parametrized with high accuracy in the following
way:

Π(h) =

{
−|Π0|+

Π1

h+ L

}
1

h3
=
|Π0|
h3

(
hc − h
h+ L

)
. (1)

The film thickness hc where Π(h) changes sign, which
from now we label as a ≡ hc, depends on the parameters
in the first part of the equation in the following way:

hc =
Π1

|Π0|
− L ≡ a. (2)

The crossover length L is the characteristic length-scale
which separates the −1/h3 and 1/h4 behavior of Π(h).
As emphasized in [13] and Appendix A, the existence of
this crossover in the range of distances relevant to wetting
that we study here (up to several hundreds Å) is due
to the fact that the dynamical polarization of graphene
has a very strong momentum dependence, reflecting the
motion of Dirac quasiparticles in the layer. Relativistic
effects become important at much larger distances.

It is clear from Eq. (1) that h = hc(= a) is the point
where Π(h) changes sign. Our fits for the values of the
relevant parameters for the three types of atoms, as ex-
plained in Appendix A, lead to the following results:

N2 : |Π0| = 72.8 K, Π1 = 3592 KÅ, L = 13.3 Å,

⇒ a = 36 Å (3)

H2 : |Π0| = 14.5 K, Π1 = 1901 KÅ, L = 18.0 Å,

⇒ a = 114 Å (4)

He : |Π0| = 2.09 K, Π1 = 676 KÅ, L = 22.1 Å,

⇒ a = 301 Å (5)
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A representative plot of Π(h) for N2 is shown in Fig. 2.
The minimum of Π(h) occurs at a distance which we label
as:

h∗ = (2a− L+
√

(2a− L)2 + 9La)/3. (6)

It is worth noticing that the values of the critical distance
a (as well as h∗) are quite different for the three elements.
Armed with the precise form of Π(h), Eq. (1), we proceed
to study spinodal de-wetting pattern formation.

III. SURFACE HYDRODYNAMICS:
CAHN-HILLIARD EQUATION AND SPINODAL

DE-WETTING INSTABILITY

In this section we discuss the main equations of the
theory and the linear stability analysis, appropriate for
small initial perturbations of the surface. These are com-
pared to numerical simulations based on the finite el-
ement method which provide a complete solution and
describe the full evolution in space and time.

A. Main Equations

The equation describing the evolution of h has the form
[5, 16, 20]:

∂th = ∇ ·
{
h3

3η
∇ (−σ∆h−Π(h))

}
. (7)

This is the 2D analog of the CHE, which describes bulk
phase separation. We use the standard notation:

h = h(x, y, t), ∇ = (∂x, ∂y), ∆ = ∇2 = ∂2x + ∂2y . (8)

Here (x, y) is the in-plane coordinate, η is the liquid vis-
cosity and σ is the surface tension (between the liquid
and its vapor). Equation (7) has the standard form de-
scribing fluctuations of the surface [5, 16, 20]. The first
term describes the resistance of the system to change of
curvature (due to the Laplace pressure) and the second
term is due to the disjoining pressure.

It is convenient to re-write the equation in dimension-
less coordinates. First we observe that the following two
dimensionless combinations can be constructed naturally

α ≡ |Π0|
a2σ

, β ≡ L/a . (9)

Next, we choose to measure the height h in units of the
critical value a and introduce new length and time scales
ξ, τ . The dimensionless height and space/time coordi-
nates will be denoted by tilde:

h̃ = h/a, x̃ = x/ξ, ỹ = y/ξ, t̃ = t/τ. (10)

By substituting this form into the main equation we find
that we can choose:

ξ =
aγ√
α
, τ =

3ηa

σ

γ4

α2
, (11)

where γ is an arbitrary constant and will be commented
on below. With these choices the original Eq. (7) be-
comes:

∂t̃h̃ = ∇·
{
h̃3∇

(
−∆h̃− Π̃(h̃)

)}
, Π̃(h̃) ≡ γ2

h̃3

(
1− h̃
β + h̃

)
.

(12)
For simplicity of notation from now on we use the same
notation for gradients with respect to the dimensionless
coordinates: ∇ = (∂x̃, ∂ỹ), ∆ = ∇2 = ∂2x̃ + ∂2ỹ .

A plot of Π̃(h̃) is shown in Fig. 2. By construction,

Π̃(h̃) changes sign at h̃ = 1. We will summarize the
values of the parameters and scales β, ξ, τ that appear in
Eq. (12), for different liquids, in Section III B. In Section
IV, we will use for convenience γ = 5.13 (for reasons
described in Section III D). However, any other value

can be used (notice that γ appears both in Π̃ and the
new scales ξ, τ).

One can write Eq. (12) as a continuity equation

∂t̃h̃ = ∇ · J̃ (13)

where

J̃ = h̃3∇ν(h̃) (14)

is the dimensionless particle flux vector field. Here we
have defined for convenience the quantity ν(h̃) = −∆h̃−
Π̃(h̃), later used in our numerical simulations, Section
III C. It follows from the form of Eq. (13) that the mass of
the liquid over a given area of the substrate is conserved,
provided appropriate boundary conditions are enforced.
Indeed, integrating over a surface S̃ in the x̃, ỹ plane and
applying the 2D version of the divergence theorem, we
obtain ∂t̃

∫
h̃dS̃ =

∫
h̃3(∇ν · n̂)dl, where the integral is

over the boundary curve C and n̂ is unit normal vector to
the boundary. The boundary condition used in Section
III C is

∇ν · n̂ = 0 on C, (15)

implying the conservation of dimensionless “mass” M =∫
h̃dS̃. (The mass with all units restored is nliquid

∫
hdS,

where nliquid is the liquid density.)

B. Summary of Parameters for N2, H2, He

In the following sections, we characterize the short and
long time scale behavior of the CHE through linear sta-
bility analysis and numerical simulations. Therefore, we
summarize here the relevant scales and physical param-
eters for different liquids:

N2 : β = 0.37, a = 36 Å, h∗ = 49 Å,

ξ = 409γ Å, τ = 4γ4 µs (16)

H2 : β = 0.16, a = 114 Å, h∗ = 153 Å,

ξ = 4116γ Å, τ = 392γ4 µs (17)
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FIG. 3. The dimensionless spinodal wavelength λ̃m = λm/ξ,
normalized to g1 (see (22a)) versus the dimensionless uniform

film height h̃0 = h0/a. For β = 0.37 (blue), the value for N2,

the onset of instability is at h̃∗ = 1.359. For β = 0.16 (red),

the value for H2, the onset of instability is at h̃∗ = 1.346. For
β = 0.073 (black), the value for He, the onset of instability is

at h̃∗ = 1.339. Symbols correspond to values obtained from
FEM simulations.

He : β = 0.073, a = 301 Å, h∗ = 403 Å,

ξ = 27197γ Å, τ = 75.5γ4 ms (18)

The values of β, a, h∗ are based on (3),(4),(5),(6),(9),
while ξ, τ follow from (11) where the following values of
the surface tension and viscosity are taken from standard
tables and literature found in [33]. For N2 at tempera-
ture 70 K, σ = 10 mN/m, η = 220 µPa·s; for H2 at
temperature 20 K, σ = 2 mN/m, η = 13.5 µPa·s; for He
at temperature 2.5 K, σ = 0.26 mN/m, η = 3.26 µPa·s.
The temperatures are chosen so that a liquid phase ex-
ists.

We observe that the parameter β, which appears in
Eq. (12), has quite different values depending on the type
of liquid, although we find that the solution depends on β
relatively weakly. More importantly, the relevant length
and time scales can differ by orders of magnitude.

C. Finite Element Simulations

Numerical simulations of Eq. (12) were performed
in Python with the FEniCS automated finite element
method (FEM) package [34–36]. A standard Lagrange
finite-element basis was used to solve the the partial dif-
ferential equation (first-order in time and fourth-order
in space) by casting the weak form of the CHE as two
coupled equations (Eqs. (13) and (14)) that are solved
variationally [35]. Time integration was performed us-
ing the standard finite difference Crank–Nicolson method
[37]. Sufficiently small time steps were chosen in order
to facilitate convergence of the FEM solvers depending

FIG. 4. The dimensionless time constant characterizing spin-
odal growth, τ̃m = τm/τ normalized to g2 (see (22a)), versus

the dimensionless uniform film height h̃0 = h0/a. The depen-
dence on β is more pronounced compared to the wavelength
λm. Symbols correspond to values obtained from FEM simu-
lations.

on the parameters for each species (see Table I) and film
thickness values. Numerical accuracy was monitored by
checking conservation of total mass at each time step
( dM
Mtotal

< 10−14).
The starting condition for all simulations corresponded

to the spatially uniform film of thickness (h̃0) with very

small random fluctuations (< h̃0 × 10−5). Neumann
boundary conditions were applied at the edges of the
simulation box (Eq. (15)). Analysis of the FEM simula-
tions was performed with the NumPy and SciPy libraries
[38, 39].

D. Linear Stability Analysis

It is known that the spinodal decomposition (instabil-
ity) regime starts at the value of h corresponding to the

minimum of Π̃(h̃) [20]. In our dimensionless notation,

h̃∗ = h∗/a, the minimum is located at

h̃∗ = [(2− β) +
√

(β − 2)2 + 9β]/3. (19)

Thus, the instability regime occurs for h̃ > h̃∗, where
Π̃(h̃) is negative and its derivative is positive. Let us see
in more detail how the instability develops within the
framework of linear stability analysis [16, 17].

We apply a small-amplitude perturbation (ε) at a given

wavenumber k̃ and imaginary frequency ω̃ (both dimen-

sionless), i.e., h̃(x̃, ỹ, t̃) = h̃0(1 + ε eik̃·r̃e−ω̃t̃), where h̃0
is the initial uniform film height. By expanding to first
order we obtain

ω̃(k̃) = h̃30k̃
2
(
k̃2 − k̃2c

)
, (20)
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FIG. 5. Spinodal de-wetting time evolution observed in FEM simulation of N2 on graphene for a liquid of initially uniform
height h̃0 = 3.0 (above h̃∗ = 1.36). During the initial stages of the simulation, the initial random fluctuations (< h̃0 × 10−5)
lead to gradually increasing variations in the liquid height (left panel). These eventually form a well-defined spinodal de-wetting

pattern (middle panel) where interconnected regions with excess liquid, h̃(x, y) > h̃∗, (light green/yellow colors) are surrounded

by nearly flat regions with liquid height satisfying: 1 . h̃(x, y) < h̃∗ (dark blue color). Note that the fact that h̃(x, y) < h̃∗

in the background regions is consistent with that reported in the literature; see, e.g., [23]. At long times, the regions of excess
liquid continuously merge into larger “lumps”.

where the critical wavenumber, k̃c, is defined by:

k̃2c =
γ2

h̃40

(
h̃0 − 1

h̃0 + β

)[
3− h̃0(1 + β)

(h̃0 − 1)(h̃0 + β)

]
=
dΠ̃(h̃0)

dh̃0
.

(21)

Note that k̃2c > 0 for h̃0 > h̃∗.

When the quantity ω̃ is negative, the solution is unsta-
ble. This happens for wavenumbers where k̃ < k̃c. The
fastest growing mode is the one that has the largest (−ω̃),

which corresponds to the wavenumber k̃m = k̃c/
√

2. This

maximum instability growth rate is |ω(k̃m)| = h̃30k̃
4
m,

which leads to the time constant τ̃m = (h̃30k̃
4
m)−1, mean-

ing that the perturbation grows as ∼ et̃/τ̃m . The spinodal
wavelength (corresponding to the fastest growing mode)

is λ̃m = 2π/k̃m = 2π
√

2/k̃c.

According to (20), an unstable mode exists as long as

k̃2c > 0. From (21), one can show that this occurs for

h̃0 > h̃∗, where h̃∗ is defined in (19). Thus, films thicker

than h̃∗ are unstable. For values of h̃0 that significantly
exceed h̃∗, one extracts the asymptotic behavior

λ̃m ∼ g1 h̃20, τ̃m ∼ g2 h̃50, for h̃0 � 1, (22a)

where

g1 =
2π
√

2

γ
√

3
, g2 =

4

9γ4
. (22b)

The choice γ = 5.13 results in g1 = 1, which leads to
a convenient form of the asymptotic dependence of the
most unstable wavelength on the film height (in non-
dimensional units). This is a convenient choice for the
numerical simulations, but any other choice of γ is also
acceptable.

Plots of the spinodal wavelength (Fig. 3) and the
spinodal growth time constant (Fig. 4) show divergence
at the instability threshold and then increase as power
laws for larger film heights. At the onset of instabil-
ity, i.e., for h̃ → h̃∗ + 0, the critical wavenumber is
k̃c ∼ (h̃− h̃∗)1/2, and therefore the spinodal wavelength,

λ̃m ∼ (h̃ − h̃∗)−1/2, grows slowly (Fig. 3). On the other

hand, the time scale of the instability, τ̃m ∼ (h̃− h̃∗)−2,
diverges much stronger than the wavelength (Fig. 4). In

Fig. 3 and Fig. 4 we also include values λ̃m and τ̃m ob-
tained from numerical simulations (see Section III C) by
calculating a radially averaged 2D Fourier transform of
h̃(x, y) at each time step and identifying the fastest grow-
ing modes. We find excellent agreement between the re-
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sults from linear stability analysis and numerical simula-
tions across all values of the initial heights tested. The
dependence on the parameter β, which varies with the
type of liquid, is relatively weak, practically non-existent
for λm and somewhat more pronounced for τm.

Atom a ξ τ β

N2 36 Å 209.8 nm 2.77 ms 0.37

H2 114 Å 2.11 µm 0.271 s 0.16

He 301 Å 13.9 µm 52.3 s 0.073

TABLE I. Time and length scales for different elements, com-
puted from Eqs. (16)–(18) for γ = 5.13. Here a represents
the scale of the height h, and ξ is the scale in the planar (x
and y) direction as introduced in Eq. (10), and τ is the time
scale. The quantity β is defined in (9).

IV. TIME EVOLUTION OF SPINODAL
DE-WETTING PATTERNS

The spinodal de-wetting patterns for N2 (taken as an

example) with h̃0 = 3 obtained from numerical simula-
tions are presented in Fig. 5 for three different times (cor-
responding to the free energy evolution in Fig. 6). These
show the characteristic spinodal surface patterns as time
increases, culminating in large height fluctuations at late
times. For N2 (Fig. 5), the observed distance between
features at the initial/intermediate stages is ∼ 1 µm in
agreement with the spinodal wavelength values shown in
Fig. 3 (in units of the length scale ξ ≈ 0.2 µm, see Table
I).

The observed time evolution of the liquid film can be

100 101
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3 )

t = 1 t = 9 t = 50

FIG. 6. Evolution of the free energy Eq. (23) with time for
the N2 film, obtained by FEM. Total value of the free energy
depends on the area of the system (A = 100ξ × 100ξ)

further characterized by considering the free energy:

F =

∫∫ {
1

2
|∇h̃|2 + U(h̃)

}
dx̃dỹ, (23)

where the potential energy U(h̃) is defined as ∂U/∂h̃ =

−Π̃(h̃),

U(h̃) =
γ2

2β

1

h̃2
− γ2(1 + β)

β2

1

h̃
+
γ2(1 + β)

β3
ln

(
1 +

β

h̃

)
.

(24)
The free energy in Eq. (23) decreases with time and is
constant only on stable stationary solutions if/when they
exist: dF

dt ≤ 0 [20]. Values of the free energy for the N2

numerical simulation are shown in Fig. 6. During the
initial time evolution, t̃ < 5, the small scale height fluc-
tuations in the fluid are reflected in the approximately
constant energy. At intermediate times, 5 < t̃ < 20, the
energy rapidly changes as the spinodal fluctuations grow
macroscopically and well-defined ridges of material accu-
mulate above a nearly uniform film surface of thickness
h̃ & 1 (see caption for Fig. 5). At larger time scales,
t̃ > 20, the energy enters a slowly changing regime as
the ridges merge into “lumps” that accumulate the ex-
cess liquid. Based on this, the expected configuration of

FIG. 7. Close-up of the flux vector field (J̃, red arrows) for
the N2 FEM simulation shown in Fig. 5 (center panel). Ar-
row sizes are scaled by the magnitude of the flux vector at
a particular x − y location. Note how the flux vector field
depicts different types of motions within the fluid including
the translational motion of large features as well as the merg-
ing of neighboring ones (regions with high density of arrows).
Height data shown in the background where purple/dark col-

ors correspond to values of h̃ ≈ 1 and yellow/light green colors

to h̃ ≤ 9.
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FIG. 8. Comparison of spinodal de-wetting patterns observed in FEM simulations of liquids on graphene for N2 (left panel), H2

(center panel), and He (right panel). For all three cases shown, the dimensionless parameters are the same (h̃0 = 3.0, t = 8τ ,
and 50ξ simulation size) except for β (see Table I). While the patterns are qualitatively similar regardless of the liquid, the
length and time scales are vastly different as discussed in the main text.

the liquid at an infinitely long time would show a single
large-scale feature surrounded by a flat surface.

The redistribution of mass in the process of de-wetting
can be more clearly observed with the help of the flux vec-
tor, J̃, as shown in Fig. 7. While the total mass is con-
served, as discussed previously, there is significant flow
toward regions of larger height, relative to the uniform
value.

Beyond N2, the time and length scales for the three
elements are quite different (Table I). Namely, the time
scale is the shortest for N2 and longest for He; this results
in the evolution of He being much slower than that of the
other two liquids in physical units. For example, for the
nondimensional height h̃0 = 3, the spinodal growth time
scale for He is τm ∼ 10 s, while this time scale for H2

and N2 is ∼ 10−1 s, 10−3 s, respectively. Moreover, as
shown in Fig. 8, the same dimensionless simulation time
results in patterns corresponding to much later stages of
evolution for He than for H2 and N2. Finally, for the
same h̃0 = 3, the characteristic spinodal wavelength for
N2 is λm ∼ 1 µm, while for H2 we have λm ∼ 10 µm,
and for He, λm ∼ 100 µm.

V. CONCLUSIONS

This work is devoted to prediction of surface de-
wetting patterns for liquids on graphene. We empha-
size that the first important step in the problem is the
knowledge of the disjoining pressure Π(h). This function
can be determined very accurately for various elements
on graphene since the atomic parameters and graphene’s
polarization can be calculated with great accuracy. In
fact the general shape shown in Fig. 2 is quite univer-
sal and representative of numerous two-dimensional ma-
terials such as members of the dichalcogenides family

(MoSe2, MoS2, WSe2, WS2). For all of these, the film
thickness h∗ at which spinodal de-wetting starts (for He
liquid) is between 100 Å and 300 Å [13]. Applying addi-
tional perturbations on graphene itself, such as electronic
(or hole) doping via external voltage, also affects h∗, gen-
erally increasing it [13]. Therefore spinodal patterns are
possible for liquids on all of those materials as well, the
main difference being in the various characteristic length
and time-scales which are very material specific. We also
point out that the most important physical assumption
in our analysis leading to Fig. 2 and everything that fol-
lows is that graphene (or any of the other 2D materials)
are in the suspended configuration, since only in this case
a finite h∗ is predicted, whereas the presence of an addi-
tional (bulk) substrate creates too much VDW attraction
and sends h∗ to infinity. Of course the possibility of sus-
pended configurations is one of the most exciting features
of 2D materials.

The spinodal de-wetting patterns we predict (Fig. 5)
for various liquids on graphene are quite universal in
shape and time evolution when written in dimensionless
form. The main difference is in the time and length-scales
for different elements (Table I and Figures 3, 4). The
spinodal wavelengths are generally quite long compared
to the critical film thickness for spinodal onset (which is
up to several hundred Å), and range between 1 µm and
100 µm depending on the liquid. On a technical level, our
linear stability analysis and the full numerical analysis of
the CHE are in excellent agreement (for weak initial per-
turbations and initial stages of pattern evolution). The
full numerical implementation of course also provides de-
tailed spinodal patterns and evolution of mass flow at
long times and quite far from the instability threshold.

We hope this work stimulates further theoretical and
experimental research related to the physics of spin-
odal de-wetting on 2D atomically thin crystals, especially
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since this phenomenon appears to be a universal feature
for this class of materials. We emphasize again the most
important advantages of 2D materials, such as graphene:

− The spinodal de-wetting instability is a generic phe-
nomenon in such materials and occurs spontaneously
at the instability onset h∗ due to the fact that 2D struc-
tures are weak adsorbers, i.e., their VDW potential
is not strong enough to maintain a film with uniform
thickness in excess of h > h∗.

− Given that 2D material parameters are known with
great accuracy, the spinodal de-wetting onset h∗ and
the evolution of the spinodal de-wetting patterns can
be reliably predicted for liquids with well-established
polarization characteristics.

− Because graphene and 2D materials can be also ma-
nipulated via external factors such as carrier doping,
strain, etc., this can be used as a guiding principle
for creation and control of de-wetting patterns. For
example a range of values h∗ was found in [13] for
graphene and other 2D materials, such as monolayer
dichalcogenides, which could lead to applications in
micro-pattern design [24].
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Appendix A: Details of Disjoining Pressure
Calculations for Light Atoms on Graphene

Here we summarize the results of calculations related
to the determination of the disjoinging pressure Π(h),
Eq. (1), which is used to extract the relevant parame-
ters for different atoms, Eqs. (3),(4),(5). The form of
Eq. (1) follows from microscopic Lifshitz theory, when
applied to 2D materials, which describes VDW interac-
tions in anisotropic (layered) situations such as liquids
on solid substrates [1, 30, 31]. The standard calculations
and typical applications assume a bulk (usually dielec-
tric) substrate with a liquid formed on top, in equilib-
rium with its vapor. In [13] one of us and collaborators
extended the standard theory to several physical situ-
ations involving 2D materials, and in particular to the
case when a 2D semimetal, such a graphene, is used as a
substrate instead of a bulk material (as shown in Fig. 1).
We refer the reader to [13] for details of calculations. The
ground state energy of this system can be written as (we
set ~ = 1):

Uvdw(h) =
1

(2π)3

∫
d2q

∫ ∞
0

dω(Ud(q, iω) + Ug(q, iω)),

(A1)

where Ud(q, iω) describes the liquid with dielectric func-
tion ε(iω) and thickness h, without a substrate and with
liquid vapor on top (taken as vacuum, dielectric constant
equal to one),

Ud(q, iω) =
(ε(iω)− 1)(1− ε(iω))

(ε(iω) + 1)(1 + ε(iω))
e−2qh, (A2)

and Ug(q, iω) is the graphene substrate–liquid interaction
part:

Ug(q, iω) =

(
−4πe2χ(q,iω)
q(ε(iω)+1)

)(
ε(iω)−1
ε(iω)+1

)(
2ε(iω)
ε(iω)+1

)
1− 4πe2χ(q,iω)

q(ε(iω)+1)

e−2qh.

(A3)
Equations (A2) and (A3) follow from more general ex-
pressions (describing different geometries) derived in [13].
Here q = |q| is the magnitude of the in-plane momentum
and χ(q, iω) is graphene’s polarization function which is
known to be [12]:

χ(q, iω) = −1

4

q2√
v2q2 + ω2

, (A4)

where v = 6.6 eV Å is the velocity of the Dirac quasipar-
ticles. We have modified somewhat the notations used
in [13] in order to achieve consistency with the symbols
across the present paper.

It should be emphasized that Eq. (A1) describes any
2D material (not only graphene), with a dynamical po-
larization χ(q, iω), in the suspended configuration. This
allows one to compute the spinodal instability thresh-
old h∗ and indeed the function Π(h) with high accuracy.
We also note that the energy in Eq. (A1) is written at
zero temperature since finite-temperature effects in the
VDW energy expression are negligibly small in the range
of distances studied (as shown in Ref. [13](Supplementary
Material)). Of course the various atom-related character-
istics have to be used in the temperature regime where
the liquid phase is stable, as in Section III B.

Several additional comments are in order. First, the
fact that Uvdw(h) involves integration over the imagi-
nary frequency axis is a common mathematical feature
when writing the ground state energy of the system
[1, 30, 31]. Second, notice that Ud(q, iω) < 0, while
Ug(q, iω) > 0 (since we always have ε > 1 , which re-
flects screening). This will be important in what fol-
lows. Third, the terms Ud and Ug depend on h only
through the exponential factor. The nontrivial depen-
dence of Uvdw(h) on h arises after integration over the
momentum q. Notice also that graphene’s polarization
χ(q, iω) has a pronounced momentum dependence which
reflects the motion of graphene’s quasiparticles.

For completeness we also summarize the dielectric
functions of the three liquids used in this work, as de-
scribed in [13], which cites additional literature. For He-
lium the dynamical dielectric constant is

ε(iω) = 1 + 4πnHeα(iω), α(iω) =
αHe

1 + (ω/ωHe)2
, (A5)
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FIG. 9. The function f(h), defined so that the disjoining pres-
sure has the form Π(h) = f(h)/h3. For N2, f(h) is calculated
by evaluating the microscopic expressions Eqs. (A1),(A7), and
is shown as a solid line in the main panel. The red circles rep-
resent a fit to the form f(h) = −|Π0| + Π1

h+L
(as in Eq. (1)),

with |Π0| = 72.8 K, Π1 = 3592 KÅ, L = 13.3 Å. These
are the values used in the main text, Eq. (3). Inset: The full
function Π(h) = f(h)/h3.
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FIG. 10. Results for He, following the same procedure as
in Fig. 9. With Π(h) = f(h)/h3, the main panel shows the
exact numerical evaluation of f(h), solid line. The red circles
represent a fit to the form f(h) = −|Π0|+ Π1

h+L
(as in Eq. (1)),

with |Π0| = 2.09 K, Π1 = 676 KÅ, L = 22.1 Å. These are
the values used in the main text, Eq. (5). Inset: The full
function Π(h) = f(h)/h3. Notice the different scales on this
graph compared to Fig. 9.

where the density nHe = 2.12× 10−2 Å
−3

, the static po-

larizability αHe = 1.38 a.u., and the characteristic os-
cillator frequency ωHe = 27.2 eV. The atomic unit of

polarizability is defined as 1 a.u. = 0.148 Å
3
. For Nitro-

gen and Hydrogen, which have densities comparable to
Helium but significantly larger polarizabilities, more ac-
curate formulas based on the Clausius–Mossotti relation
are typically used:

ε(iω) = 1 +
4πnAα(iω)

1− 4π
3 nAα(iω)

, A = N2,H2 (A6)

The dynamical polarizability α(iω) is defined as in
Eq. (A5), i.e. has the form α(iω) = αA

1+(ω/ωA)2 .

For H2 the parameters are: nH2 = 2.04× 10−2 Å
−3

,
αH2 = 5.44 a.u., ωH2 = 14.09 eV. For N2: nN2 =

1.73× 10−2 Å
−3

, αN2
= 11.74 a.u., ωN2

= 19.32 eV.

The VDW energy defined in Eq. (A1) has physical di-
mensions of energy per unit area. The disjoining pressure
is defined as:

Π(h) = −
∂Uvdw(h)

∂h
, (A7)

and describes the effective force per unit area between the
two boundaries of the system (liquid–vapor and liquid–
graphene). It is clear that the part of Π(h) which comes
from Ug(q, iω) > 0 leads to positive pressure, i.e. favors
film growth, while the part associated with Ud(q, iω) < 0
is always negative, i.e. favors an instability. It is the
competition between these two terms that leads to the
spinodal de-wetting instability phenomenon.

Finally we return to the way we determine the all-
important functional form of Π(h), Eq. (1), which follows
from the microscopic expressions Eqs. (A1),(A7). First
we present the following qualitative considerations. As
mentioned previously, it is useful to consider the con-
tributions of the Ud,g(q, iω) terms separately. The (at-
tractive) Ud part clearly leads to dependence of the form
Π(h) ∼ − 1

h3 which follows from counting powers of mo-
menta in the integrals. The (repulsive) Ug part, however,
exhibits a higher power due to the presence of graphene’s
polarization χ(q, iω). Since at intermediate frequencies,
which are dominant in the integration, the dependence
of χ(q, iω) on momentum is quadratic for low momenta,
this leads to Π(h) ∼ 1

h4 . The exact way this crossover
happens has to be determined numerically, by evaluating
the expression Eqs. (A1),(A7), which can be done with
high accuracy. In Fig. 9 we show the way this proce-
dure works for N2 and, as another example, in Fig. 10
we present the results for He. Most importantly, we can
conclude that the functional form of Π(h), Eq. (1), used
in the main text, is very accurate.
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