
Efficient simulations of Hartree–Fock equations by an accelerated gradient

descent method

Y. Ohno,1 A. Del Maestro,2, 3, 4 and T.I. Lakoba1, ∗

1Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05405, USA
2Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA

3Min H. Kao Department of Electrical Engineering and Computer Science,

University of Tennessee, Knoxville, TN 37996, USA
4Institute for Advanced Materials & Manufacturing,

University of Tennessee, Knoxville, TN 37920, USA

We develop convergence acceleration procedures that enable a gradient descent-type iteration

method to efficiently simulate Hartree–Fock equations for many particles interacting both with each

other and with an external potential. Our development focuses on three aspects: (i) optimization of

a parameter in the preconditioning operator; (ii) adoption of a technique that eliminates the slowest-

decaying mode to the case of many equations (describing many particles); and (iii) a novel extension

of the above technique that allows one to eliminate multiple modes simultaneously. We illustrate

performance of the numerical method for the 2D model of the first layer of helium atoms above a

graphene sheet. We demonstrate that incorporation of aspects (i) and (ii) above into the “plain”

gradient descent method accelerates it by at least two orders of magnitude, and often by much more.

Aspect (iii) — the multiple-mode elimination — may bring further improvement to the convergence

rate compared to aspect (ii), the single-mode elimination. Both single- and multiple-mode elimina-

tion techniques are shown to significantly outperform the well-known Anderson Acceleration. We

believe that our acceleration techniques can also be employed by other iterative methods, especially

those handling hard-core-type interaction of many particles.
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I. INTRODUCTION

The phases and phase transitions of system of adsorbed bosonic atoms on a substrate at low temperatures

have received much attention in the past two decades. One of the most studied systems is one or two

monolayers of 4He atoms on top of graphite, graphene, or more complex carbon or other compounds [1–

14]. Earlier work [2–4, 7] focused on determination of the phase diagram of the first monolayer and, in

particular, explored energies per helium atom of the liquid and various commensurate and incommensurate

solid states relative to one another. Formation of vacancies and domain walls for the helium coverage near

the value corresponding to the commensurate C1/3 state (see Sec. II C for an illustration) was also studied

[2, 5, 15]. Later research moved on to the exploration of commensurate solid, superfluid, and supersolid

phases in the second adsorbed monolayer of helium [3, 6, 7, 9, 16]. While the existence of the first two phases

has been consistently established by many authors, that of the supersolid state remains controversial. The

origin of this controversy may lie both in the utilization of different adsorption potentials (see, e.g., [15, 17]

and references therein), as pointed out in many of the aforementioned studies, and in the complexity of

performing ab initio 3D simulations with different flavors of the quantum Monte Carlo method. More recent

studies went on to explore various commensurate solid states of 4He monolayers adsorbed on other carbon

and non-carbon compounds [10–14] and the possibility of experimentally realizing a spatially modulated

superfluid state for the second monolayer of 4He on graphite substrates [18–20].

Quantum Monte Carlo methods which were used to obtain many of the theoretical results mentioned

above require many days of simulation time per set of system parameters and have high complexity of

implementation. Thus, there is a need to reduce the complexity of the numerical method and enhance

throughput of the determination of the adsorbed many-body wavefunction of 4He on substrates with complex

atomic-scale adsorption potentials. Seeking to address this need, we present a relatively simple and time-

efficient gradient descent-type iterative method to solve self-consistent Hartree–Fock (HF) equations that

describe particles interacting with each other via hard core-type potentials (i.e., those leading to strong

repulsion at short distances) as well as being influenced by an external adsorption potential. Simulations

of the full many-body wavefunction by quantum Monte Carlo methods produce more physically accurate

results for adsorbed phases of atoms than the HF equations. However, simulations of the latter by the

numerical method presented in this work are substantially less computationally costly. The same numerical

method can also be used in other applications, which we will briefly discuss in the concluding section.

An early non-optimized version of the algorithm presented below was employed in a recent study by two

of the authors [21] seeking to determine a low-energy effective model for a single layer of 4He atoms adsorbed

on a graphene membrane. Here we present the details of an improved algorithm, whose convergence is
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accelerated by preconditioning and slow-mode elimination, where the following main issues where addressed.

First, we show how to optimize the preconditioning operator in the presence of a hard-core-type interatomic

potential. Second, we show how the acceleration that relies on elimination of the mode decaying the slowest

from one iteration to the next, should be carried out for multiple equations. Third, we present a novel

extension of the above technique that eliminates several slowly decaying modes simultaneously.

We emphasize that our numerical technique is complementary to many existing HF-based electronic struc-

ture computations, which are designed to handle thousands of particles. Those approaches seek the solution

of the many-body wavefunction as an expansion over a basis of localized functions [22–26]. In contrast, the

approach described in this paper is based on iteratively solving HF equations for smaller numbers of adsorbed

particles, representing them in the coordinate space. We will explain that our approach is different from

the Self-Consistent Field method commonly used in electronic and nuclear structure calculations. The value

of our numerical approach is in the relative simplicity of its implementation compared to other numerical

techniques. The novel contribution of this work is in significant acceleration of convergence of the gradi-

ent descent method, as well as in providing understanding of what factors slow down the non-accelerated

method.

Anderson Acceleration [27], also known under the names Pulay Mixing and Direct Inversion of the Iteration

Subspace, is a widely used acceleration technique for gradient descent-type methods in electronic structure

calculations; see, e.g., [28–30] and references therein. We will show that our slow-mode elimination-based

acceleration significantly outperforms the Anderson Acceleration. We also mention that in a recent paper

[30], its authors demonstrated that an acceleration by the Heavy Ball algorithm, widely used in Optimization,

significantly reduces the number of iterations of a gradient descent method applied to the so-called Energy

Density Functional calculations of atomic nuclei. (The latter model is of the HF type, but more complicated.)

However, optimal performance of this acceleration algorithm relies on having a satisfactory estimate for the

condition number of the linearized iteration operator. While in [30] the authors were able to obtain such

an estimate, it is unclear how to do so in other models, including that considered here. Optimization of

performance of our acceleration techniques does not rely on knowing properties of the linearized iteration

operator (other than it is Hermitian).

A number of other iterative methods for HF equations including quasi-Newton, fixed-point, and extrapolation-

based methods were reviewed in, e.g., [28]. Examples considered there pertained to solving a Hartree-type

equation for electrons in single light atoms, C and Na, and in a single diatomic molecule, CO. The baseline

method was the standard gradient descent method, with the only kind of acceleration used being taking a

weighted average between two successive values of the potential. In those examples, the number of iterations

of the baseline method was under 50, and an extrapolation-based acceleration (the most efficient one of
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all types of acceleration considered there) reduced that number by some factor of two or less. In contrast,

for the model considered in our study, the number of iterations of the baseline method (i.e., of the same

non-accelerated method as used in [28]) is in the (many) tens of thousands. Our acceleration techniques

reduce that number by at least two orders of magnitude, and often by much more.

The main part of this work is organized as follows. In Sec. II we present the HF equations and the

general form of the numerical method used to solve them. In Sec. III, we begin by discussing specifics of

the convergence acceleration technique used by the method, including an optimal choice of its parameters.

This leads us to presenting, in Sec. IV, a non-trivial and novel generalization of the mode elimination

technique, which allows one to eliminate multiple slow modes. In Sec. V, we use our numerical method to

obtain results for the 4He atoms covering a graphene sheet at various filling fractions. Among those there

are a few patterns which, to our knowledge, have not been depicted in the literature. We summarize in

Sec. VI. We note that presentation in Secs. III and IV refers to a (non-physical) 1D model so as to focus

on exposition of the underlying concepts of the numerical method. The same concepts apply to higher-

dimensional generalizations of the method, and 2D results are presented in Sec. V. The reader who is

interested only in the implementation steps of the numerical method can find them referenced compactly

in Sec. VI. Appendices contain technical information that could be useful for either understanding or

implementation of the methods discussed. Supplemental Material [31] contains technical details that are less

essential for the understanding and implementation than those found in the Appendices. It also includes

Refs. [32, 33] not otherwise cited in the main text.

II. HARTREE–FOCK EQUATIONS AND NUMERICAL METHOD

A. Hartree–Fock equations

The model for which we will illustrate our numerical method is a system of 4He atoms (bosons) interacting

with each other and with the graphene sheet above which they are located. Full determination of the

wavefunction of N bosons via Monte Carlo simulations is computationally costly. An alternative is to follow

an approximate — HF — description, where the full wavefunction Ψ is replaced with an ansatz:

Ψ(r1, r2, . . . , rN ) =
1√
N !

∑
symm, q

N∏
j=1

ϕj(rq), (1)

where rq are the coordinates of particle q, j is the label of a quantum state where particle q is found, and the

summation is over all N ! permutations of the N particles. Ansatz (1) assumes that the bosons, interacting

via hard-core-type potential, cannot occupy the same spatial location. Therefore, the quantum state index

‘j’ of ϕj in fact labels the particle’s location. The one-particle “wavefunctions” (in what follows we will drop
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the quotes) satisfy the orthonormality condition

〈ϕi|ϕj〉 ≡
∫
R2

d2rϕ†i (r)ϕj(r) = δi,j , (2)

and † stands for Hermitian conjugation. Thus, wavefunctions of particles occupying different locations are

orthogonal. It should be clarified that the functions ϕi, ϕj are scalars, and the transposition, implied by the

†, will be only used in the presentation of the numerical method below where some of the quantities will be

vectors or matrices.

The wavefunctions ϕi can be shown to satisfy the HF equations (see, e.g., [34, 35]):

L0ϕj ≡ L00ϕj −
∑
i

〈ϕi|L00ϕj〉ϕi = 0, (3)

where

L00ϕj ≡
(
−∇2 + Vext(r)

)
ϕj +

∑
i ̸=j

〈ϕi|Vint |ϕi〉ϕj +
∑
i ̸=j

〈ϕi|Vint |ϕj〉ϕi, (4)

〈ϕi|Vint |ϕj〉 ≡
∫
R2

d2r′ ϕ∗i (r
′)Vint(r− r′)ϕj(r

′) .

Equations (3) arise from minimizing the Hamiltonian functional, whose variational derivative is the L00-

term, subject to the constraints (2), which give rise to the sum in (3), with 〈ϕi|L00ϕj〉 being Lagrange

multipliers. In deriving (4), one uses the fact that the particles (helium atoms in our case) are hard-core

bosons, which cannot occupy the same site due to strong repulsion via the interaction potential Vint. Also, ∇2

in (4) is the Laplacian and Vext is the external potential; the third and fourth terms describe the mean-field

(Hartree) and exchange (Fock) contributions, respectively. The spatial variables are nondimensionalized to

some scale d0, usually taken to be a period of Vext, and all energies are nondimensionalized to the recoil

energy ER = h2/(8md0), where h is the Planck constant and m is the particle mass.

Potential Vext describes the effect on helium atoms by the hexagonal lattice of graphene. It is obtained

from the 3D Steele potential [36] as explained in [21]. This Vext has the standard honeycomb shape with

minima over the centers of the graphene cells and maxima over the carbon atoms. Focusing here on the

numerical method rather than on fine aspects of the physical model, we use the simplest such shape:

Vext = V0 (cosg1r+ cosg2r+ cosg3r) , (5a)

g1 =
2π

d0

[
1,

1√
3

]
, g2 =

2π

d0

[
−1,

1√
3

]
, g3 = g1 + g2; (5b)

where the distance between centers of graphene cells is d0 = 2.46Å and V0 is chosen so as to yield (Vext)max−

(Vext)min = 2.5ER ≈ 25K, consistently with the value used in [21]. The recoil energy corresponding to the

above d0 is ER = 9.9K.

The helium–helium interaction potential Vint is taken from [37]. Its numerical modeling in (4) is discussed

in Appendix A.1.
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B. Numerical method

We will solve Eqs. (2), (3) by the Accelerated version of the Imaginary-Time Evolution Method (AITEM)

given by Eqs. (6)–(8) below [38]:

(ϕj)n+1 = (ϕj)n −∆t
[
P−1

(
L(0)ϕj

)
n
− Γslow,n (uslow,j)n

]
, (6a)

where n is the iteration number, ∆t > 0 is an auxiliary parameter called the “imaginary time step,”
(
L(0)ϕj

)
n

is the modification of (3) that takes into account the preconditioning operator P−1:

(
L(0)ϕj

)
n

≡ (L00ϕj)n − (ϕ⃗)n 〈P−1(ϕ⃗)n |(ϕ⃗)n〉−1 〈P−1ϕ⃗ |(L00ϕj)n〉 , (6b)

with

(ϕ⃗)n ≡
(
[ϕ1, ϕ2, . . . , ϕN ]

)
n
; (6c)

and the positive definite operator P being chosen as

P = c−∇2 (7)

for some constant c > 0. The specific form of the second term on the r.h.s. of (6b) is derived in Supplemental

Material [31] based on the general formula presented in [38]. There we also show that equation L(0)ϕj = 0

is equivalent to Eq. (3).

The purpose of the Γ-term in (6a) is to perform mode elimination (ME), i.e., eliminate the slowest-decaying

mode from the iterative solution [39]. This slowest mode is approximated by:

(uslow,j)n = (ϕj)n − (ϕj)n−1, (8a)

and for a single equation (i.e., N = 1 and solution ϕ1 ≡ ϕ above), the coefficient Γslow,n is to be chosen as

[39]:

Γslow,n = γslow,n

〈uslow, n|
(
L(0)ϕ

)
n
〉

〈uslow, n|P uslow, n〉
, γslow,n = 1− s

αn∆t
, (8b)

where αn is an approximation of the eigenvalue of the slowest-decaying eigenmode. For the case of a single

equation, one has

αn =
〈uslow, n|Luslow, n〉
〈uslow, n|Puslow, n〉

. (8c)

The form of Γslow,n and αn for N > 1 coupled equations (3) will be discussed in Sec. III. The parameter

s ∈ (αn∆t, 1) in (8b) determines how much of the slowest mode is being subtracted at each iteration, with

s = αn∆t and s = 1 corresponding to 0 and 100% of the mode, respectively. An optimal range for s will
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also be discussed in Secs. III–V. Operator L in (8c) is the linearized operator of (6b), defined as follows: If

ϕ⃗ satisfies (3) and ‖˜⃗ϕ‖ � ‖ϕ⃗‖, then in the linear approximation:

L(0)

(
ϕ⃗+

˜⃗
ϕ

)
≡ L(0)ϕ⃗+ L

˜⃗
ϕ = L0ϕ⃗+ L

˜⃗
ϕ = L

˜⃗
ϕ , (9)

where in the last step we have used (3). Per the note after (7), L is also the linearized operator of L0.

Conveniently for the method, the L-term in (8c) does not need to be computed exactly but can instead be

approximated by:

L(uslow,j)n ≈
(
L(0)ϕj

)
n
−

(
L(0)ϕj

)
n−1

, (8d)

assuming that (ϕ⃗)n is sufficiently close to the exact solution ϕ⃗. (For future reference, we have written this

relation for the case of multiple coupled equations, i.e., with the index j.) The final step of the iteration

method is the Gram–Schmidt orthonormalization of ϕj ’s so as to ensure condition (2) to hold to numerical

precision.

Eight remarks about the above numerical method are in order. First, the main contributions of this work,

listed in the order in which they are discussed in Sec. III, are: (i) Finding a range of values of parameter c in

(7) that significantly accelerates convergence of the iterations; (ii) Extension of the ME technique, i.e., the

form of the Γ-term in (6a) and of the expressions in (8b) and (8c), from a single equation to a system; and

(iii) Extension of the same technique that allows one to eliminate multiple slow modes simultaneously. Thus,

there are two ways in which the textbook ITEM is accelerated by our AITEM (6a): via the preconditioning

by operator P and via ME by the Γ-term.

Second, in Supplemental Material [31] we discuss in detail that the AITEM is conceptually different

from the Self-Consistent Field iterative method, commonly used in the electronic and nuclear structure

calculations. ITEMs that are conceptually similar to the AITEM were considered in, e.g., [40] (coordinate-

based nuclear structure calculations) and [41] (Bloch functions basis-based electronic structure calculations).

Third, a necessary condition for iterations (6a) to converge is that the eigenvalues of the linearized operator

L be positive. This cannot be guaranteed without knowing the solutions ϕj . However, it was shown in [38]

that if ϕj are dynamically stable (usually, ground-state) stationary solutions of time-dependent evolution

equations i(ϕj)t = L0ϕj , where L0ϕj is a Schrödinger-type operator, as in (3), and ‘i’ is the imaginary

unit, then iterations (6a) without the Γ-term and for a sufficiently small ∆t, do converge. In this case they

will also converge with a properly designed Γ-term, since it does not change the sign of eigenvalues of the

linearized operator L but effectively changes only the magnitude of the slowest-decaying eigenmode of L [39].

Fourth, parameter ∆t needs to be chosen to satisfy a relation:

∆t < 2/maxλP−1L (10)
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so as to ensure convergence of the iterations; see, e.g., [42] or [43]. The denominator in (10) is the maximum

eigenvalue of operator P−1L. Since this eigenvalue is usually not known, ∆t is chosen empirically from a

small number of trial simulations. More will be said about this in Sec. III.

Fifth, for periodic boundary conditions, which we use in this study, the Laplacian operator in (4) and

(7) is efficiently computed using the Fast Fourier Transform. An efficient computation of the Vint-terms is

discussed in Appendix A.1.

Sixth, the exchange interaction between helium atoms (the Fock term in (4)) is much weaker than the

mean-field interaction (the Hartree term). Therefore, one does not need to compute the Fock term until

the iteration error becomes comparable in size to it. This can be monitored by computing the exchange

interaction between any one pair of neighboring atoms every so many (say, O(10)) iterations and comparing it

to the mean-field interaction between the same two atoms. Moreover, the Fock term is also more expensive to

compute, as its computation scales with the number of helium atoms as O(N2), whereas the computation of

the Hartree term can be implemented to scale as O(N) (see Appendix A.1). Therefore, we used a well-known

method from molecular dynamics (see, e.g., [44, 45]) whereby this small but expensive term is computed only

every nFock � 1 iterations, in between which one uses its latest computed value. Furthermore, we verified

for a number of selected cases (for high filling fractions) that using any value nFock from 1 to infinity (i.e.,

not including the Fock term at all) makes very little difference for the final solution: it changed the central

peak of any of the wave functions by a negligible amount and the much weaker side peaks (see, e.g., Fig. 7

in [21]), by some 10–20%.

Seventh, the Conjugate Gradient Method (CGM) is known to be the fastest generic fixed point-type

method for problems with Hermitian positive definite operators, as far as the iteration count is concerned.

An extension of the CGM to nonlinear wave equations with quadratic constraints, such as (2), was presented

in [46]. We tried to employ this method instead of the simpler AITEM (6)–(8), but did not succeed. First

and most importantly, the CGM iterations diverged. We extensively tested our implementation of the GCM

on a simpler model described in the preamble to Sec. III (1D, Hartree-only) but were unable to determine

a reason for that divergence. Second, while the CGM requires a factor of two to three fewer iterations to

converge than the ME-accelerated method (6)–(8) [46], the cost of each iteration may be more than twice

greater for the CGM. This is due to two factors. (i) The CGM computes both L(0)ϕj and L acting on

some auxiliary quantity (versus one L(0)ϕj for the AITEM), as well as computes two constraint-enforcing

terms (those with angle brackets in (6b)), per iteration. (ii) Moreover, the linearized operator L must be

computed explicitly, contrary to that in (8d). In examples considered in [46], nonlinear terms had much

simpler form than the Vint-terms in (4) and evaluation of the corresponding terms in L was not the most

computationally expensive part of an iteration. In contrast, not only are the Vint-terms in (4) the most
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expensive ones to evaluate, but also their linearization is quite cumbersome to code. Thus, even if CGM

iterations had converged, their computational time might not had been less than that of the simpler method

(6)–(8), and the coding of the CGM is significantly more complex.

Finally, we chose to use a fixed point-type method over a Newton-type one, considered, e.g., in [28],

because for the former methods, it is straightforward to compute spatial derivatives using the time-efficient

and spectrally accurate Discrete Fourier transform, whereas it is not possible to do this time-efficiently for

Newton-type methods. Moreover, Newton-type methods require the explicit computation of the linearized

iteration operator, the technical difficulty of which for the problem considered here was noted in the previous

paragraph.

C. Initial condition for the iterations

The ratio of the number N of helium atoms and the number Ncells of graphene cells defines the filling

fraction, ff , of the lattice by the atoms. Examples of commensurate ff = 1 and ff = 1/3 are shown in

Fig. 1; examples of incommensurate filling fractions, where helium atoms are not located over the centers

of the graphene cells, will be presented in Sec. V. The lattice has periodic boundary conditions to ensure

consistency with the discrete Fourier transform used to compute the ∇2- and nonlocal terms in (4); see

Appendix A. Due to this periodicity, non-unit filling fractions impose restrictions on the number of lattice

periods within the computational window. For commensurate filling fractions, these restrictions can be found

by inspection. For example, for ff = 1/3, one needs to have the number of graphene cells in the x-direction,

Ncells, x, to be a multiple of 3. (Note that in Fig. 1, this restriction is violated intentionally in order to

illustrate that without it, ff = 1/3 could not be realized with periodic boundary conditions.) For other

filling fractions to result in periodic patterns, restrictions on Ncells, x and Ncells, y need to be found by trial

and error on a case-by-case basis; see Sec. V for examples. In addition, forall filling fractions, one needs to

have Ncells, y to be a multiple of 2 in order to fit a hexagonal lattice to a rectangular computational window

while respecting periodic boundary conditions.

For the helium-over-graphene system considered here, fillings fractions with high ff are only relevant for a

strictly 2D system. In 3D simulations, or in experiments, a second layer of helium atoms begins to form above

the first one for ff ≈ 0.62 (equivalently, for area coverage of about 0.118 Å−2) [1, 5, 6] over either graphite

or graphene. To prevent this from occurring and thereby achieve higher values of ff in 3D simulations, one

would restrict the motion of helium atoms away from the surface by placing a “cap” on the simulation box,

as was done in Ref. 21. In the 2D model considered here, we can meaningfully study filling fractions in the

entire range ff between 0 and 1.

To create an initial condition (ϕj)0 for unit-filling simulations, one places identical copies of a 2D Gaussian
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FIG. 1. Schematics of helium atoms over a hexagonal graphene lattice. Small (large) circles denote carbon (helium)

atoms. Thin lines are used to improve visibility of the lattice. Filled circles show the 1/3-filling of the lattice by

helium.

function (with width of about a quarter of the lattice side) at the center of each graphene cell. For a non-

unit filling p/q, we experimented with two alternative initial placement procedures of the aforementioned

Gaussian. These details are described in Appendix A.3. The initial placement of helium atoms does not need

to be (and in most cases is not) close to that obtained at the outcome of the simulation, as the equations

themselves will “dictate” the equilibrium placement of the atoms.

III. CHOOSING PARAMETERS OF THE NUMERICAL METHOD

In Sec. III A, we will discuss an optimal choice of parameter c in the preconditioning operator P (7). In

Sec. III B we will discuss the form of the slow mode-eliminating term (the Γ-term) in (6a) for the case of

multiple coupled equations. In Sec. III C we will demonstrate that ME accelerates the “original” AITEM

(i.e., method (6) without the Γ-term) by well over an order of magnitude. However, we will also reveal a

problem of convergence of this ME-accelerated AITEM, which we will seek to overcome by presenting a

novel, multiple-mode eliminating technique in Sec. IV.

The discussions in Secs. III A,III B rely on the following well-established fact. Consider a fixed point

iteration method whose linearized form is

q⃗n+1 = q⃗n −∆tA q⃗n, (11)

where q⃗ is the iterated quantity and A is a Hermitian positive definite matrix; compare with (6a). Quantity

q⃗ can be expanded over the set of eigenvectors a⃗i of A: q⃗ =
∑

i bi a⃗i, where the expansion coefficients in
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subsequent iterations satisfy:

(bi)n+1 = (1−∆tλA,i)(bi)n, (12)

with λA,i being eigenvalues of A. Based on (12), convergence rate of (11) for an optimal choice of ∆t can

be shown to be (see, e.g., [42] or [43]):

‖q⃗n‖
‖q⃗n+1‖

=
1 + (λA)min/(λA)max

1− (λA)min/(λA)max
, (13)

Thus, to ensure the fastest convergence of (11) with a (nearly) optimal ∆t, one needs to modify A so as to

minimize condA ≡ (λA)max/(λA)min > 1.

In the context of iteration method (6), the role of A is played by P−1L, where L is the linearized operator

introduced in Sec. II B.1 It is not feasible to find λP−1L for the 2D problem (6). Therefore, for the purposes

of convergence analysis of the AITEM, we considered a 1D and Hartree-only reduction of (6) instead, for

which we were able to find those quantities numerically for a small number of atoms N . Those numerics used

the idea of plane-wave expansion of the eigenfunctions of a Shrödinger-type operator (see, e.g., [47]), but

were more technically complex due to the presence of the second term on the r.h.s. of (6b) and the nonlocal

nonlinear terms in (4). Since details of those numerical implementations are not central to this work, we

omit them and below will present only the setup (in this paragraph) and the results (in Secs. III A,III B).

The Hartree-only reduction implies dropping the Fock term in (4) and using only N normalization conditions

(2) with i = j:

L1D,H
0 ϕj ≡ L1D,H

00 ϕj − 〈ϕj |L1D,H
00 ϕj〉ϕj = 0, 〈ϕj |ϕj〉 = 1, (14a)

L1D,H
00 ϕj ≡

(
−∂2x + Vext(r)

)
ϕj +

∑
i ̸=j

〈ϕi|Vint |ϕi〉ϕj . (14b)

The discrete version of P−1L is a NMx × NMx matrix, where Mx is the number of grid points. For the

results below, we chose, as representative values:

Vext = −2 cos(2x), Eclip = 100 (see Appendix A) (15)

in nondimensional units.

For the purpose of illustrating the behavior of the AITEM (6), all examples considered in this section will

be for the 1D, Hartree-only, model (14), (15). The behavior of the AITEM for the 2D HF model (2)–(4) are

qualitatively the same. The results for it will be presented in Sec. V.

1 Here we adopt a simplified point of view that the Γ-term merely reduces the amplitude of L’s eigenmode with (λA)min [39].

In reality, the situation is more complicated, as evidenced by the numerics presented in Sec. III C, but this would require a

separate study. Thus, we focus on the eigenvalues (and eigenfunctions) of P−1L.
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A. Optimal value of c in (7)

The role of P−1 is to reduce large eigenvalues of L associated with high wavenumbers k (see, e.g., [42]); the

same preconditioning is widely used in computational condensed matter and nuclear physics: see, e.g., [30]

and references therein). While the concept of preconditioning (7) is well-known, the question of an optimal

c value has not been, to our knowledge, systematically explored. We are aware of only one such study, [42],

where an optimal c value was found for a different class of problems and led to a different result than the

one found below.

Large eigenvalues of L occur due to the Laplacian in (4), whose contribution to the large-k eigenvalues

(with corresponding eigenfunctions containing fast oscillations) dominates that of the Vext- and Vint-terms.

Those eigenvalues of P−1L can be roughly estimated to be:

λP−1L(|k| � 1) ∼ (k2 +O(Vext) +O(Vint-term))/(k2 + c). (16)

An expression for the ‘Vint-term’ is given in Appendix B. When the Laplacian dominates the contributions of

the Vext- and Vint-terms (and the value of c), the above estimate is O(1). If we now, as an initial motivation,

assume that this estimate also holds, in the order of magnitude sense, for all eigenvalues, then we get:

λP−1L(|k| ≲ 1) ∼ (O(Vext) +O(Vint-term))/c. This suggests that if |Vint-term| � 1, then one needs to have

c = O(Vint-term) in order to have λP−1L( |k| = O(1) ) = O(1) also (here we have used that Vext = O(1)).

We stress that the above order-of-magnitude estimate provides only an initial motivation for the choice of

c. Moreover, it is not possible to estimate the Vint-term without actually computing eigenfunctions of P−1L

(see Appendix B), and that computation requires one to assume a specific value of c in P .

To break this circular logic, we instead examined the size of entries of the NMx × NMx matrix P−1L.

Representative results are shown in Fig. 2. This matrix appears to be diagonally dominant (if not in the strict

mathematical sense, then in appearance). The Gerschgorin Circles theorem implies that for a diagonally

dominant matrix A, a necessary (but not sufficient) condition for condA to be O(1) is that the entries along

the diagonal be uniform. From Fig. 2, one sees that this occurs only when

c = O(Eclip). (17)

This implies that for an optimal acceleration with the preconditioner P−1, one needs to choose c according

to (17).

To confirm this, we computed cond(P−1L) for the examples shown in Fig. 2. When P = I (no precondi-

tioning), λmin ≈ 0.61, λmax ≈ 1100, cond(P−1L) ≈ 1800. For P with c = 2 (a representative value of order

O(Vext), as previously found in [42] in the context of nonlinear wave equations), λmin ≈ 0.030, λmax ≈ 35,

cond(P−1L) ≈ 1150. For P with c = 100 = Eclip, λmin ≈ 0.052, λmax ≈ 0.98, cond(P−1L) ≈ 19.
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FIG. 2. Absolute values of entries of P−1L for N = 2 helium atoms in two adjacent wells of Vext (15); Mx = 64. (a)

Top view of panel (d), shown to illustrate the matrix structure: solid lines separate the blocks pertaining to atom i’s

eigenfunction contributing to atom j’s linearized equation (14a), as marked; dashed lines separate the two parts of

the wavenumber vector, as per (41). Panels (b,c,d) show the entries for P = I and P given by (7) with c = 2 and

c = 100, respectively.

Figure 3(a) illustrates that for high filling fractions, i.e., ff ≲ 1, c can be in a rather wide range (17) and

still provide superior performance over the case where c = O(1). Method (6) without the Γ-term was used

to iterate Eqs. (14) for N = 20 helium atoms initially placed exactly at the centers of N adjacent wells of

Vext:

(ϕj)0 = exp
[
−(x− xj)

2/w2
0

]
, (18)

where xj are the locations of Vext’s minima and the width w0 = 0.2π. The exact value of the width is

not important as long as the initial Gaussians do not overlap; the importance of the italicized clause in the

previous sentence and the absence of the need to include the Γ-term in (6) in this case will be explained

in Sec. III B. The values of parameter ∆t for c = 50, 100, 200 were not optimized. We merely checked that

∆t100 = 0.6 worked for c = 100 and then used ∆t = 0.5∆t100 and ∆t = 2∆t100 for c = 50 and c = 200,

respectively. This was motivated by the rough estimate (16), which along with (10) suggested that ∆t

increases with c (again, this is just a very approximate estimate). The point of not optimizing ∆t was to
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emphasize that method (6) with a preconditioner P where c satisfies (17), does not require fine-tuning of

∆t to yield a much faster convergence than when c = O(1). On the contrary, for c = 2 in Fig. 3(a), we

used a (nearly) optimal ∆t = 0.025, which we had found by trial and error. The main conclusion is that for

sufficiently high filling fractions (with ff = 1 considered above as an example), a value of c satisfying (17)

improves the convergence rate by about an order of magnitude.
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FIG. 3. Evolution of (the decimal logarithm of) the error in iterated Eqs. (14) for N = 20 (a) and N = 10

(b) equidistant helium atoms at Vext’s 20 minima. Here and below the error norm is defined as: ∥L1D,H
0 ϕn∥ ≡√∫

dx
∑N

j=1 |L
1D,H
0 (ϕj(x))n|2 /N . See main text for more details. The values of c are listed in the legend. In (b),

the thin and medium solid lines are indistinguishable. Also, in (b) unlike in (a), all ∆t values were optimized by trial

and error, and the corresponding values are ∆t = 2.02, 2.20, 1.02, 0.044, 0.52 for c = 100, 200, 50, 2, 25, respectively.

For low filling fractions, we have found that an optimal value of c is still in the range (17). Figure 3(b)

shows the error evolution for ff = 1/2, which is the largest commensurate filling with ff < 1 in 1D, with ∆t

being optimized for each value of c. One sees that, for this lower ff , the sensitivity of the convergence rate

to c is weaker than for ff = 1, and the gain in improvement of the convergence rate for c = copt is smaller:

some factor of three versus an order of magnitude over the case of a suboptimal c = O(1).

We conclude this subsection with four comments. First, ff = 1/2 in 1D corresponds to ff = (1/2)2 = 1/4

in 2D, which is lower than the commensurate filling with ff = 1/3 in 2D. All filling fractions that we consider

in Sec. V are greater than 1/3. Based on Fig. 3, we then set

c = Eclip (19)

in all simulations presented in this work and do not optimize ∆t, as we focus on other aspects of convergence

acceleration.

Second, for all the simulation results presented in this subsection, the number of numerical grid points per

one period of Vext was 32. However, the main result of this subsection, given by relation (17), is independent

of the spatial discretization size ∆x. Indeed, the value of the c-term affects the preconditioner (7) at low

wavenumbers, while the value of ∆x affects the high wavenumbers |k| ≲ kmax = π/∆x. For the remaining
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results presented in Secs. III and those in IV we used ∆x corresponding to 32 grid points per one period of

Vext while halving that number of points for the 2D simulations reported in Sec. V; see Appendix A.

Third, the effect of the preconditioner on the convergence rate of the (A)ITEM compared to the case

where P = I is discussed in Supplemental Material [31].

Fourth, the relatively low iteration count, in the low hundreds, suggested by Fig. 3, is due to the initial

guesses (18) for the wavefunctions ϕj being centered precisely at the minima of Vext. When this restriction is

lifted (which can be avoided only for a small minority of filling fractions such as 1, 1/3, and a small number

of others), the iteration count goes up by well over an order of magnitude and sometimes much more. This,

as well as the ME-based acceleration technique required to overcome this problem, is considered in the next

subsection.

B. Form of the Γ-term in (6a)

In this subsection we will motivate and present the form of the Γ-term in (6a) for the case of multiple

equations, as in (3). Recall that in (8) in Sec. II A that term was presented for a single equation, as introduced

in [39].

The dashed line with circles in Fig. 4 shows the error evolution for the same setup as in Fig. 3(a), but when

in the initial condition (18) the atoms are shifted slightly (by ∼ 1% of Vext’s period) by random amount from

the minima of their respective potential wells. The iterations converge to the same accuracy as in Fig. 3

in 4930 iterations, i.e., about 50 times slower than in the case when initial conditions are centered exactly

at the minima of the wells. The culprit, then, must be a mode, or modes, of the linearized operator P−1L

which are related to shifts of the atoms from their equilibria (i.e., the wells’ minima) and which must have

much smaller eigenvalues than the other modes, as per (12). It is those modes that will need to be eliminated

by an appropriately chosen Γ-term in (6a). The question is then: Should one eliminate those “shift” modes

one per atom, or are there certain combinations of the shifts that compose the slow (i.e., slowly decaying)

modes? In the latter case, it would be those combinations that need to be eliminated.

The answer to that question is inspired by Fig. 5. A unique mode with the lowest eigenvalue corresponds

to a common shift of all helium atoms. (To see that component j of this eigenfunction corresponds to a shift

of atom j, think about the shape of the derivative of wavefunction ϕj , which is qualitatively similar to (18),

with respect to its center xj .) The next eigenfunction, corresponding to two groups of the atoms shifting

out of sync, has a much larger (by almost 20 times) eigenvalue. Higher modes in that figure correspond to

“breathing” (width–amplitude changes) of ϕj ’s and its combinations with shifts. A discussion about why

the common shift corresponds to the lowest-λ eigenfunction for the system in question, is found in Appendix

C.1.
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FIG. 4. Error evolution for the same setup as in Fig. 3(a) with c = 100, ∆t = 0.6, but when in the initial condition

(18) the atoms are shifted by small random amounts from the minima of Vext. The line with circular symbols shows

the behavior of iteration method (6) without the Γ-term (no slow mode elimination); the other lines show the behavior

of the same method with the Γ-term for different values of parameter s. In those cases, ME was started at the 100th

iteration. Starting it at another iteration between 50th and 200th did not change the results significantly.

 = 0.005322  = 0.090297 (*)

 = 0.258367 (*)  = 0.349529

 = 0.352269  = 0.361250 (*)

FIG. 5. Eigenfunctions of P−1L with c = 100 forN = 6 helium atoms placed in N adjacent wells of Vext, corresponding

to its first few smallest eigenvalues. Thin dashed lines show the locations of the helium atoms. Vertical scale is in

arbitrary units. The modes with asterisks next to the λ value are doubly repeated. In those cases, the second

eigenfunction (not shown) is obtained from the first by a shift by one period of Vext.

Thus, based on the above, the Γ-term must eliminate a single mode common to all ϕj’s. Then, the

following expressions replace their counterparts in (8b), (8c):

Γslow,n = γslow,n

∑N
j=1〈(uslow, j)n|

(
L(0)ϕj

)
n
〉∑N

j=1〈(uslow, j)n|P (uslow, j)n〉
≡ γslow,n

〈
(−−−→uslow

)T
n
|
(
L(0)ϕ⃗

)T
n
〉

〈
(−−−→uslow

)T
n
|
(
P −−−→uslow

)T
n
〉
; (20a)

with γslow,n still being given by (8b), and where now

αn =

∑N
j=1〈(uslow, j)n|L(uslow, j)n〉∑N
j=1〈(uslow, j)n|P (uslow, j)n〉

≡
〈
(−−−→uslow

)T
n
|
(
L−−−→uslow

)T
n
〉

〈
(−−−→uslow

)T
n
|
(
P −−−→uslow

)T
n
〉
. (20b)
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Here −−−→uslow is a row vector defined from its components (8a) similarly to (6c); see (2) for the definition of the

inner product.

The error evolution of such an ME-accelerated AITEM (6) is shown in Fig. 4 for several representative

values of parameter s (see the text after (8c)). We note that in the case of a single equation [39], a relatively

large value s = 0.7 was advocated as optimal. In contrast, here, much smaller values s ∈ [0.1, 0.2] are shown

to result in a considerably faster convergence. Our numerical testing, including that of solving a two-body

3D Schrödinger equation with Vext and Vint similar to those used in this work (to be reported elsewhere),

suggests that those smaller optimal values of s are typical in systems of particles interacting by a hard-core-

type potential. Mathematically, this may be related to the fact that c � 1 in the preconditioner P−1 leads

to the linearized iteration operator P−1L still being quite stiff. For example, for the case shown in Fig. 5,

cond (P−1L) = λmax/λmin ≈ 1.8/0.0053 > 300.

An important note is in order about what mode is eliminated by the ME. Initially, i.e. right after the

ME is started, it is the mode with the smallest eigenvalue of P−1L (or a combination of a few such modes

if their eigenvalues are close to one another). Indeed, it is that mode which, in the absence of the Γ-term in

(6a), “survives” the longest in the iteration error and hence dominates (uslow, j)n in (8a). However, after the

ME has been applied for several tens of iterations, the contribution of those lowest-λ modes to (uslow, j)n is

reduced (by design), and the latter becomes a mix of several low-λ modes, with αn representing some kind

of weighed average of the eigenvalues of those modes at iteration n. This mix of modes and, hence, αn vary

from one iteration to the next. This will be illustrated in Sec. IVB.

Concluding this subsection, we mention that for commensurate filling fractions smaller than 1 in 1D, the

benefits of ME for AITEM (6) are slightly less pronounced. For ff = 1/2, considered in Fig. 3(b), the

AITEM with c = 100, ∆t = 0.6 and without ME converges in about 1450 iterations when initial conditions

are offset from Vext’s minima. ME with s ∈ [0.1, 0.3]2 brings the iteration count below 300. This 5-fold

improvement should be compared to the more than 10-fold one for ff = 1, as shown in Fig. 4. A brief

discussion of this is found in Appendix C.1. We observed a similar relation between iteration counts for

ff = 1/3 and ff = 1 in 2D. It is then surprising that for incommensurate ff < 1, the benefits of ME can be

much greater. This is demonstrated in the next subsection.

C. Performance of the ME-accelerated ITEM in 1D

Here we will examine performance of AITEM (6), (20) for two incommensurate filling fractions. Our

findings will, on the one hand, confirm a very significant benefit of ME for convergence acceleration, but, on

2 Note that this optimal range is slightly higher than that for ff = 1, which is consistent with our hypothesis about it two

paragraphs above and the estimate of cond(P−1L) found in Appendix C.1.



18

the other, highlight a problem, which will be dealt with in the next section.

Figure 6 shows the evolution of the error and the total energy of Eqs. (14):

Etot =

N∑
j=1

∫  (∂xϕj)
2
+

1

2
Vext ϕ

2
j +

1

2
〈ϕj |

∑
i ̸=j

〈ϕi|Vint |ϕi〉ϕj 〉

 dx (21)

obtained by AITEM (6) without ME for 30 periods of Vext and N = 23 and N = 24 helium atoms. The initial

conditions are (18) with xj uniformly placed in the computational window. We used the same simulation

parameters as those used in Sec. III B and listed in the caption to Fig. 4. Not optimizing parameters c and

∆t of the AITEM, as well as the ME parameter s mentioned later, was a deliberate choice made so as to

focus on other issues.

The error in the N = 24 case (ff = 0.8) exhibits a peculiar behavior: After dropping to almost 10−5 in a

couple thousand iterations, it then slowly climbs up almost 2 orders of magnitude before decaying again. The

total energy (21) decays monotonically, with the local maximum of the error corresponding to an inflection

point of the energy curve. Note that the energies of the intermediate solutions corresponding to points

labeled ‘1’ and ‘2’ are O(1) greater than that of the final solution. Moreover, the differences of the solutions

ϕj themselves at these points from the final solution amount to a common shift of all atoms (similar to the

first panel in Fig. 5 but with slightly non-uniform amplitudes) of sizes around 0.5 and 0.25, respectively (i.e.,

both also being O(1)). Interestingly, the difference from the final solution at point ‘2’ is smaller than the

difference at point ‘1’, even though the error at ‘2’ is greater. In other words, even though the error (of the

equations) exhibits a non-monotonic evolution, the iterated solution appears to approach the exact solution

monotonically.

From the error evolution, one can estimate (see Appendix C.2) 3 that for the incommensurate filling

fraction ff = 0.8 (N = 24), the smallest eigenvalue of the linearized operator P−1L is O
(
10−3 . . . 10−4

)
, i.e.,

significantly smaller than that for both commensurate filling fractions considered in Sec. III B. A qualitative

explanation of this is the following. For commensurate filling fractions, when the atoms undergo a common

shift, the energy of each atom increases as it moves away from “its” minimum of Vext. However, for an

incommensurate filling, a (nearly) uniform shift causes external potential energy of some atoms increase

while those of other decrease, with the net amount of energy change being close to zero.

The case N = 23 (ff ≈ 0.767) illustrates the phenomenon of L having extremely small eigenvalues even

more dramatically. In Fig. 6 it may appear that after having decreased to O(10−8), the error stalls, and so

does the total energy. However, the error does actually decay, monotonically, but does so extremely slowly:

it takes about 115 million iterations (and about 5 days on a PC) to reach 10−10. The estimates found in

Appendix C.2 suggest that the minimum eigenvalues of P−1L and L are O(10−7) and O(10−5), respectively.

3 It is not possible to compute eigenvalues of P−1L in this case with the code mentioned earlier in this section because for

N ≳ 10, Matlab runs out of memory.
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FIG. 6. Error (solid lines) and total energy (dashed lines) evolutions of the AITEM (6) without the Γ-term (i.e.,

without ME). See Sec. III C for more details. In the y-label of the right axis, the subscript ‘end’ refers to the last

iteration in each of the two cases: ∼ 158 thousandth iteration for N = 24 and ∼ 115 millionth iteration for N = 23,

when the equation error reaches 10−10. The term 10−11 is added to the argument of the logarithm to avoid running

into log 0. A noisy plateau in the energy evolution between iterations 130K and 160K is a numerical artifact; in the

absence of a machine round-off error, the curve would continue going down at a constant slope.

Figure 7 shows the evolution of the error for the same two cases as in Fig. 6, but with the ME using

parameter s = 0.1. That value was used merely as a representative one advocated for in the previous

subsection. In the case N = 23 the convergence rate is insensitive to s varying in a wide range s ∈ [0.05, 0.4],

while for N = 24 it actually improves for s decreasing towards 0.05.
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FIG. 7. Error evolution of the AITEM (6) for the same cases as in Fig. 6, but accelerated by ME. Points labeled

‘1’–‘3’ here are not related to points ‘1’, ‘2’ in Fig. 6; they are commented on in Sec. VI.

Figure 7 illustrates two salient points about ME. First, it improves the convergence rate of the AITEM

for incommensurate filling fractions even more than for commensurate ones: by over 50 times for N = 24

and by more than four orders of magnitude for N = 23. Second, the error evolution of the AITEM with ME
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can be highly non-monotonic, exhibiting oscillations of some two orders of magnitude (here, for the N = 23

case). Both types of error evolution, of which the one for N = 24 was found to be more common, are also

the typical scenarios in 2D, as we will discuss in Sec. V.

In order to further improve the convergence rate, it is essential to understand an origin of error oscillations

and devise a way to reduce or eliminate them. Especially problematic may seem the large oscillations, where

the error first decreases to a value that appears sufficient for practical purposes (e.g., 10−8 at point ‘1’ in

Fig. 7), but then, unexpectedly, increases for several hundred iterations before starting to decrease again.

We have been unable to understand the origin of those oscillations; this open problem is to be addressed in

future research. We have also tried a number of ad hoc ways to reduce the oscillations, none of which has led

to a significant or consistent improvement. These attempts are summarized in the Supplemental Material

[31], so that future researchers would know what has not worked.

One of our attempts, however, led to a novel and non-trivial extension of the ME technique, with the

motivation being the following. We mentioned in Sec. III B that the ME (20) eliminates not the lowest-λ

eigenmode of P−1L but rather a mix of several low-λ modes that compose (8a). Each of those modes is

multiplied by the same Γslow,n, which represents some “average reduction factor” that is designed to reduce

the amplitude of an “average” mode. As the analysis in [39] suggests, while the lower-λ modes composing

(8a) will be suppressed by such an “average reduction factor,” the higher-λ modes in (8a) will be amplified

by it. This may be a reason leading to an oscillatory evolution of the error. Therefore, one can expect to be

able to reduce error oscillations if one eliminates not a single “average mode” (8a) but instead decomposes

(8a) into several, “more exact,” eigenmodes and eliminates each of them with its proper reduction factor

Γslow,n. This multiple-mode elimination technique is described in the next section.

IV. MULTIPLE-MODE ELIMINATION (MME)

In the first subsection, we will derive equations of the mME, which generalize (20) to the case of multiple

modes being eliminated with their individual reduction factors Γslow, n. In the second subsection, we will

illustrate improvement brought about by this method over the single-mode ME (20) for the 1D Hartree

equations (14), as well as discuss certain technical implementation details of both kinds of ME. In the third

subsection we will show that both ME techniques are superior to the Anderson Acceleration for the type of

problems considered in this work.
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A. Derivation of the mME equations

Here we present a conceptual derivation of the method, which culminates in the Algorithm presented

towards the end of this subsection. Its implementation issues are discussed in Appendix D.

The main idea is to extract the modes, which will be eliminated later, from increments of the solution at

several consecutive iterations. To that end, consider a K × (N ·MxMy) matrix that generalizes (8a):

∆̂ =


−→
∆ϕn−1

...
−→
∆ϕn−K

 , (22)

where: K is the number of modes one plans on eliminating,Mx,My are numbers of grid points (see Appendix

A), and, by analogy with (6c),

−→
∆ϕn−i = (ϕ⃗)n−i+1 − (ϕ⃗)n−i, i = 1, . . . ,K. (23)

Similarly, define another K × (N ·MxMy) matrix:

L ∆̂ ≡


∆
(
L(0)ϕ⃗

)
n−1

...

∆
(
L(0)ϕ⃗

)
n−K

 ≈


L
−→
∆ϕn−1

...

L
−→
∆ϕn−K

 , (24)

where

∆
(
L(0)ϕ⃗

)
n−i

= L(0)(ϕ⃗)n−i+1 − L(0)(ϕ⃗)n−i, i = 1, . . . ,K, (25)

and the approximate equality in (24) holds by analogy with (8d). In what follows we will treat this approx-

imate equality as exact; we verified that for (ϕ⃗)n sufficiently close to the exact solution, it holds with high

accuracy.

We now assume that each of
−→
∆ϕn−i is a linear combination of the eigenmodes u⃗i, i = 1, . . . ,K of the

linearized iteration operator P−1L. Inverting, for future convenience, the relation between
−→
∆ϕn−i’s and u⃗i’s,

we write it as:

Û ≡

 u⃗1
...

u⃗K

 = A ∆̂ (26)

for some K ×K matrix A. Eigenmodes of P−1L are to satisfy the relation

P−1L Û ≡

 P−1L u⃗1
...

P−1L u⃗K

 =α Û , (27)

where

α = diag (α1, . . . , αK). (28)
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Entries αi in (28) denote the “average eigenvalue” corresponding to modes u⃗i. By slight abuse of notations,

the subscripts of αi pertain to different modes, whereas previously subscripts of αn pertained to iterations;

this is not expected to lead to a confusion. As at the end of Sec. III B, we stress that eigenmodes u⃗i are not

the exact eigenfunctions of L but are some mixes of those eigenfunctions, and thus αi are not necessarily

L’s eigenvalues λi, although the former are expected to approximate the latter. More will be said about this

in the next subsection. We will continue to refer to the mixes u⃗i of the exact eigenfunctions of P−1L as

eigenmodes (or modes), thus making a distinction between the modes extracted from ∆̂ with our procedure

described below, on the one hand, and the exact eigenfunctions, on the other hand.

The goal of the subsequent derivation is to find matrix A; then the modes can be recovered from (26) and

αi’s can be found from (27).

Following [38, 42] we will work, instead of P−1L, with a similar operator P−1/2LP−1/2 which, unlike

P−1L, is Hermitian. Eigenmodes of P−1/2LP−1/2 are P 1/2u⃗i, and the latter can be chosen to form an

orthonormal set:

P 1/2 Û
(
P 1/2 Û

)T
= I, (29)

where I is the K×K identity matrix. Here and below we use the fact that solutions of our HF equations are

real-valued; for the case of complex-valued solution the transposition of a matrix would need to be replaced

by Hermitian conjugation. Using (26) and the fact that actions of matrix A and operator P commute, one

rewrites the last equation as

AP 1/2 ∆̂
(
P 1/2 ∆̂

)T
AT = I. (30)

If one writes the Cholesky decomposition of P 1/2 ∆̂
(
P 1/2 ∆̂

)T
as

P 1/2 ∆̂
(
P 1/2 ∆̂

)T
= CCT , (31)

where C is a K ×K matrix, then the last two equations yield

Ã ÃT = I, Ã ≡
(
AC

)
; (32)

i.e., Ã must be an orthogonal matrix.

Next, one acts on both sides of (27) with P , multiplies them by ÛT on the right, and uses (29) and then

(26) to obtain:

ABAT =α, B ≡ L ∆̂ ∆̂T . (33)

Here we have used that actions of A and L commute and that

P Û ÛT = P 1/2 Û
(
P 1/2 Û

)T
, (34)
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which follows from the facts that the matrix product in (34) is the discrete version of the inner product, as

defined in (2), and that P is a Hermitian operator. Using (32), one rewrites (33) as:

C−1 B (C−1)T = ÃT α Ã, (35)

which means that Ã is the orthogonal matrix that diagonalizes the Hermitian matrix C−1 B (C−1)T . The

Hermitian character of the latter matrix follows from that of B, which, in turn, amounts to the equality

L
−→
∆ϕi

−→
∆ϕTj = L

−→
∆ϕj

−→
∆ϕTi . (36)

This last relation follows from the fact that the inner products there are the discrete approximations of

the continuous inner product defined in (2) and that L is a Hermitian operator in the space of functions

satisfying the linearized constraints (2) [38, 42]. Indeed,
−→
∆ϕi =

˜⃗
ϕn−i+1−

˜⃗
ϕn−i (see (9)) satisfy those linearized

constraints by virtue of individual ϕ̃n−i’s satisfying them (when the iterated solution is sufficiently close to

the exact one). This issue is further commented on in Appendix D.1.

The above derivation leads to the following Algorithm of mME.

1. Compute the matrix on the l.h.s. of (31) and find its Cholesky decomposition, given by the r.h.s. of

that equation.

2. Compute matrix B as defined in (33); then find the diagonalization of the matrix on the l.h.s. of (35).

This gives one matrices α and Ã and then, via (32), A.

3. Modes u⃗i (or P
1/2u⃗i) are then computed via (26). The corresponding αi have already been computed

at the previous step.

4. For each mode i we compute its individual γslow, i via (8b) that uses αi computed at Step 2. (Note

that the subscript refers to the mode, not iteration, number.) Then compute Γslow, i by (20a), where

−−−→uslow is replaced by the respective u⃗i.

5. Finally, the entire Γ-term in (6a) is replaced by the sum of all Γslow, i -terms.

B. Performance of mME in 1D

Here we will discuss how mME performs relative to the single-mode ME for the same two cases that were

considered in Sec. III C. Through extensive experimentation, we have found these results to be typical. At

the end we will address some of the implementation details of both kinds of ME; other details are found in

Appendix D. Simulation parameters were the same as those used in Secs. III B and III C.

For the case of N = 23 atoms in 30 minima of Vext, we did not observe any consistent or significant benefit

of eliminating multiple modes versus a single one, for any values of s in the range [0.1, 0.8]. In fact, in
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most of our attempts, an increase of the number of eliminated modes led to an increase in the number of

iterations. We conclude, therefore, that the large error oscillations seen in Fig. 7 must be related to factors

other than the presence of multiple slow modes.

Results for the other case, with N = 24 helium atoms, are shown in Table I. These results show that

increasing the number K of eliminated modes does, on average, tend to decrease the number of iterations.

However, since both the computational time and computer memory usage increase with K, one should focus

on the minimum K value that still provides a sizable reduction of the iteration count. Such a value appears

to be K = 3 or 4. This observation will guide our choice of K in 2D simulations, presented in Sec. V, where

the computational cost of experimentation with mME’s adjustable parameters is more prohibitive than that

in 1D.

s

K
1 2 3 4 5 6 7

0.05 1500 1200 1500 1100 1400 1400 1200

0.1 2700 1400 1700 1500 1200 1300 1000

0.2 4500 1600 1100 1000 1200 1300 1000

0.4 5600 1500 1400 1300 1300 1200 1100

TABLE I. Number of iterations (rounded to the nearest hundred) required for the error to decrease to 10−10, versus

the number of eliminated modes K and parameter s, for N = 24 helium atoms in Vext (15) with 30 minima. Other

adjustable parameters of (m)ME are as stated at the end of Sec. IVB.

For completeness and comparison with the results reported in the next subsection, we mention that

increasing K past seven does not consistently reduce the number of iterations, which stays around 1000 up

to K = 15, the largest number that we tested. Yet, increasing K did improve the convergence rate when the

error got sufficiently small. What made the total number of iterations not decrease with the increase of K

was that the duration of the transient — i.e., when the error would not decay overall, as between iterations

100 and ∼ 300 in Fig. 7 for N = 24, — tended, on average, to be longer for a greater K. In principle,

this would open up the possibility of reducing the total number of iterations by using a smaller K at the

beginning — for a shorter transient — and a grater K later — for a faster convergence rate, — but we did

not explore this further as our focus was not on fine-tuning the performance of the mME.

Now, we again emphasize that the eliminated modes u⃗i are not the exact eigenfunctions of the linearized

iteration operator P−1L and, thus, the corresponding αi are not the exact eigenvalues of P−1L. The

composition of the eliminated modes in terms of the eigenfunctions appears to depend on the number K

of the modes that one sets to eliminate, and, hence, so do the “dynamic average eigenvalues” αi. This is

illustrated in Fig. 8(a,b), where one notices that αi depend on the value of K chosen (and, of course, they

vary from one iteration to the next). Incidentally, the minimum computed values of α1 are seen to agree, by
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the order of magnitude, with the estimates of (λP−1L)min presented in Appendix C.2 for both N = 24 and

N = 23 cases.

We conclude this subsection with two remarks about implementation of the ME. The first remark pertains

to both single- and multiple-mode ME. Parameter(s) αn ((αi)n) found by the code at some iterations can

be quite small and even negative. The former (i.e., αn being “too small”) would make γn, computed by

(8b), very large. While the corresponding Γ-term will reduce the specific mode of the iterated solution, as

intended, it may amplify other modes (unintentionally), thereby impeding the convergence. Similarly, having

αn < 0 would make γn > 0, and this can also impede convergence via the same mechanism. To prevent this

from occurring, we imposed the condition:

−107 ≤ γn ≤ 0, (37)

where the lower bound was found to be overall optimal across many tens of tested cases in both 1D and 2D.

The second remark is specific to the mME. As mentioned earlier, the memory requirements increase with

K, the number of modes one needs to store. Yet, Fig. 8 shows that only few of the αi’s can be as low as

O(10−2) or lower, which per (12) would make the corresponding modes to converge in as many as several

thousand iterations. Such modes indeed need to be eliminated by the ME. However, most other αi’s are

at least an order of magnitude greater and the corresponding modes would decay to the required tolerance

of 10−10 “on their own,” i.e., without being eliminated by the Γ-term, in only a few hundred, or fewer,

iterations. Therefore, to save computational resources, we first computed αi’s as eigenvalues of the l.h.s. of

(35) but then computed and eliminated only the modes with

αi < αmax. (38)

For the results presented in this subsection, we used αmax = 0.2. Note, however, that the exact value of

αmax is not essential for the rate of convergence of the mME and serves only to avoid the calculations in

(20) for those modes for which ME is not needed.

It is important to clarify that while only few αi’s (usually, no more than four) “go” below αmax, increasing

K still may improve the convergence rate, as evidenced by Table I. This is because the allowing for more

modes “pushes” the smaller of their eigenvalues down (compare Figs. 8(a) and 8(b)), thereby making more

of them satisfy (38).

C. Comparison of ME with Anderson Acceleration (AA)

Figure 9 demonstrates that in those cases where the ME accelerates the AITEM so that it converges in

one to two thousand of iterations, the AITEM with the well-known AA [27] performs considerably worse.
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FIG. 8. Evolutions of the error (black thicker line, left axis) and αi’s, i = 1, . . . ,K, computed from (35) (colored

thinner lines, right axis) for the the same cases as considered in Fig. 7, but accelerated by multiple-ME. Panels (a)

and (b): N = 24; panel (c): N = 23. Numbers of eliminated modes are: K = 3 (a,c) and K = 5 (b). In all panels,

s = 0.2. Note that the right axis in (c) has a different scale than that in (a,b).

The AA does not eliminate modes, but instead uses the solution at KAA previous iterations to subtract

their certain combination to minimize the error. The values of KAA ≤ 5 are shown in the legend of panels

(a,b). For those lower KAA, the best result achieved by the AA is about twice as slow as that achieved by

the mME (for N = 24; refer to Sec. IVB regarding N = 23), and for more previous iterations/eliminated

modes (namely, five) than the best results shown in Table I. The benefit of the AA with KAA ≥ 12 becomes

comparable to that brought about by the mME with K as low as 3: compare Fig. 9(c) with Table I. While
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the memory requirements associated with a larger number of previous iterations stored is not an issue in 1D,

it becomes significant in 2D. Thus, due to this inferior overall performance by the AA relative to the mME,

we will not use the former for the 2D simulations reported in the next section.
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FIG. 9. (a,b): Error evolution of the AITEM (with ∆t = 0.6 and c = 100 in P ) with the Anderson Acceleration

for the two cases considered in Secs. III C, IVC: N = 23 (a) and N = 24 (b). See main text for more details. (c):

Number of iterations to convergence to 10−10 versus the number of previous iterations (up to 15) whose information is

used by the Anderson Acceleration: N = 23 (circles) and N = 24 (squares); the lines are guides to the eye. Numbers

of iterations greater than 9000 indicate that convergence was not achieved in 10,000 iterations.

V. 2D PATTERNS OBTAINED WITH AITEM

Here we will compare the performance of mME and the original single-mode ME (sME) for several rep-

resentative 2D periodic patterns that helium atoms can form over graphene. The equations simulated are

those presented in Sec. IIA. The common parameters for all simulations are: ∆t = 0.4; Eclip = 2000K

leading to c = 200 in (7); ME starts at the 100th iteration; conditions (37) and (38) were imposed, with

αmax = 0.1. The values s and K which we used in this section were motivated by the results of Sec. IVB.

As in Sec. IVB, there were patterns (i.e., values of ff) for which mME performed, on average, better than

sME, and those for which it did not. The results for the former group are shown in Table II. The equilibrium

pattern for ff = 1/2 is depicted in Fig. 10; the patterns for ff = 7/16 and 7/12 can be found in the literature

and therefore are shown in Supplemental Material [31]. Initial placement of helium atoms was done by the

Second Initial placement procedure (Appendix A.3) for all filling fractions except ff = 1/2 (and ff = 2/3

mentioned below), where that procedure led to non-periodic patterns in a large percentage of random initial

placement; therefore, for ff = 1/2 (and for ff = 2/3) we used the First procedure. The simulation window

consisted of 8 × 8, 8 × 4, and 12 × 4 rectangular periods for ff = 7/16, 1/2, and 7/12, respectively; recall

(Sec. II C) that one such a period contains two minima of Vext. The corresponding numbers of helium atoms

were N = 56, 36, and 56. For each pair (ff , s), Table II shows the number of iterations for six different

initial conditions for the placement of helium atoms, with the same condition being used to obtain results for

the sME (K = 1) and mME (K = 3). While this number of initial conditions is not statistically significant,

we have observed qualitatively similar performance of the mME relative to the sME in many exploratory
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simulations not reported here.
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FIG. 10. Equilibrium particle densities, i.e.,
∑N

j=1 |ϕj |2, for some of the filling fractions reported in this section. Units

along the axes are Å. Darkest blue in each panel corresponds to zero, while brightest yellowish, to the maximum

density. Black dots denote the locations of centers of graphene hexagons (i.e., minima of Vext). Dotted lines show

two periods of the pattern.

This performance can be summarized as follows: While the mME is not guaranteed to always reduce the

number of iterations, it does so on average (i.e., among many hundreds of cases that we tested, only a modest

part of which is reported in Table II) by about 30%. Perhaps more importantly, the use of the mME leads

to a more narrow range for the iteration numbers across different initial conditions than the sME. Also, for

any ff , using s = 0.05 leads, again on average, to fewer iterations than the larger values of s.

On the other hand, for ff = 5/12 and 2/3, whose equilibrium patterns are shown in Fig. 10, we found

that mME does not reduce the number of iterations and may even, on average, increase it compared to the

sME. This is analogous to the case N = 23 considered in Sec. IVB. Just as there, we found that a hallmark

of this case is the high oscillations of the error, as in Fig. 8(c). In contrast, for the cases where the mME

helped to reduce the number of iterations, the error oscillations were much smaller, similarly to those in

Figs. 8(a,b). The evolution of αi in 2D were found to also be similar to the respective cases shown in Fig. 8.

For completeness, we note that the simulation window consisted of 24 × 4 and 6× 8 rectangular periods for

ff = 5/12 and 2/3, respectively, with the corresponding numbers of helium atoms N = 80 and 64.

VI. CONCLUSIONS AND DISCUSSION

In this paper we have presented the details of an Accelerated Imaginary Time Evolution Method (AITEM)

for Hartree–Fock (HF) equations. Its essential steps are given in (6) with the Γ-term (for a single eliminated

mode) given by (20). The optimal value of parameter c in the preconditioner (7) is given by relation (17),

with Eclip defined in Appendix A.1. We stress that this relation is expected to hold for any hard-core-type

(i.e., strongly repulsive at short distances) potentials, which will need to be clipped when implemented in

an ITEM or another relaxation-type method. Other implementation details of the AITEM (6) are found in

Appendices A.1 and A.2, and initial placement of atoms being simulated is discussed in Appendix A.3. The
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ff = 7/16 ff = 1/2 ff = 7/12

s = 0.05 s = 0.1 s = 0.2 s = 0.05 s = 0.1 s = 0.2 s = 0.05 s = 0.1 s = 0.2

K = 1 3300 3800 4300 2400 3300 4400 4600 4600 4000

K = 3 3200 3600 3700 1600 1600 1800 3300 3100 3000

ratio 0.97 0.95 0.86 0.67 0.48 0.41 0.72 0.67 0.67

K = 1 2200 3100 4700 2500 3400 4300 2800 3000 2700

K = 3 2100 1900 4200 1600 1600 1500 2100 3600 2900

ratio 0.95 0.61 0.89 0.64 0.47 0.35 0.75 1.2 1.1

K = 1 3600 4200 4800 2000 2000 2300 2200 12800 4100

K = 3 2500 3100 3000 1500 1600 1600 4600 2700 2400

ratio 0.69 0.74 0.63 0.75 0.80 0.70 2.1 0.21 0.68

K = 1 3500 4000 4000 2100 2700 3100 3400 9200 7100

K = 3 2600 2800 2400 1500 1600 1800 2600 2300 2700

ratio 0.74 0.70 0.60 0.71 0.59 0.58 0.76 0.25 0.38

K = 1 2800 3700 3900 2200 2300 2300 2300 2200 2600

K = 3 2100 2200 2900 1700 1700 1900 2500 2400 2600

ratio 0.75 0.59 0.74 0.77 0.74 0.83 1.1 1.1 1.0

K = 1 3100 3800 4400 1700 1800 1800 2600 3100 3900

K = 3 3000 2300 2300 1300 1500 1400 2500 2500 2600

ratio 0.97 0.61 0.52 0.76 0.83 0.78 0.96 0.81 0.67

TABLE II. Number of iterations (rounded to the nearest hundred) required for the error to decrease to 10−10 for

three different periodic patterns, as obtained with sME (K = 1) and mME (K = 3). A triplet of vertically aligned

numbers enclosed between two horizontal lines corresponds to one random realization of the initial condition (see

Appendix A.3); thus, for each ff , the Table presents results for six random initial conditions for each s value. Within

the same set of horizontal lines, the initial conditions are different for different ff (naturally) and may be different

for the same ff and different s. The latter is because some initial conditions could converge to non-periodic patterns

for some of the values of s. The ratios in the third line of each row are those of the two numbers directly above,

shown for ease of comparison of performances of sME and mME.

mode-elimination (ME) step of the AITEM, discussed in Secs. III and IV, is shown to consistently improve

convergence of the optimally preconditioned ITEM by at least an order of magnitude, and often by much

more. Values of the ME parameter s, which controls the amount of modes that are being eliminated, are

discussed in Secs. III B and IVB. For HF equations, we found optimal s values to be significantly lower

than those found in earlier studies for just one or two equations (which also did not have hard-core-type

potentials).

The developments listed in the previous paragraph pertain to optimizing the form of the AITEM, which

was proposed in earlier studies. This work also presents a novel method to accelerate the AITEM: the

multiple-mode elimination (mME). Its derivation and Algorithm are found in Sec. IVA, and implementation

details are discussed at the end of Sec. IVB and in Appendix D. As we demonstrate in Secs. IVB and V,

the mME even with a small number K of eliminated modes provides an improvement of around 30% (on

average) over the single-mode elimination (sME) in those cases where the iteration error obtained by the

sME fluctuates moderately (see the thick line in Fig. 7). There, the mME also makes the number of iterations
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required for convergence slightly less dependent on the initial conditions and on values of parameter s. We

also found that when, on the contrary, error oscillations in the AITEM with sME are large, as illustrated by

the thin line in Fig. 7 (see also the discussion at the end of Sec. III C), the mME does not further improve

convergence.

Understanding the mechanism behind error oscillations remains an open problem. In the Supplemental

Material [31] we listed several approaches that we tried to reduce or remove them. Here we present an

argument that even if a “cure” for those oscillations is not found in the future, the problem of waiting for

the iterations to converge to a prescribed low tolerance can be circumvented. This argument is based on two

facts:

• The reason for setting a low tolerance for convergence is not that such accuracy of solutions is needed

in practice. Rather, it is merely to be assured that the iterations would eventually reach a (local)

minimum of the energy landscape rather than a saddle point. (In the latter case, the iterations would

eventually diverge after converging initially; this is the type of the behavior seen at points 1 and 3 in

Fig. 7.)

• By comparing solutions obtained at points 1–3 in Fig. 7 with the final solution, we observed that∥∥∥ϕ⃗pt − ϕ⃗final

∥∥∥ decreases monotonically when ‘pt’ increases from 1 to 2 to 3. That is, even though the

error of the equations does not decrease monotonically, the error of the solution does. (This is similar

to the discussion about Fig. 6 found in Sec. III C about the AITEM without ME.)

Therefore, a meaningful way to stop iteration in a case where the equation error has large oscillations could

be when one observes that the error begins to grow the second time, as at point 3 in Fig. 7. Indeed, by

waiting past that point one would obtain a slightly more accurate solution, but this will be achieved at the

expense of several hundred more iterations.

We hypothesize that the improvement of convergence rate provided by the mME over sME (when such

improvement occurs) is relatively modest — the aforementioned 30% on average — due to the fact that

the spectrum of the linearized iteration operator contains a single eigenvalue that is more than an order of

magnitude smaller than the others: see Fig. 8 and the discussion in Sec. IVB about the relation of αi’s to the

eigenvalues of P−1L. We further conjecture that the improvement would be more significant in those cases

where that spectrum contains several small eigenvalues of the same order of magnitude. One could expect

having two such eigenvalues in 2D simulations, each corresponding to a common shift mode (see Sec. III B)

in one of the two independent spatial directions. Surprisingly, however, in all of our 2D simulations we

observed the same arrangement of αi’s as in the 1D simulations of Fig. 8: that is, there is only one α that is

much smaller than the rest of them. Then, consistently with our hypothesis, one should indeed expect the

improvement brought about by the mME over sME to be modest in 2D simulations of Sec. V.
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Both single- and multiple-mode versions of ME were shown, in Sec. IVC, to perform significantly better

than the well-known Anderson Acceleration. From a philosophical perspective, this result may appear not

surprising given that the ME uses (and requires) more information of the iteration operator — namely, its

Hermitianness, — than the AA, which would work for any iteration operator.

As a byproduct, our 2D simulations revealed three interesting periodic patterns that helium atoms can form

over graphene (or graphite): ff = 5/12, 1/2, and 2/3 (surface coverages of 0.0796, 0.0955, and 0.127 Å−2,

respectively); see Sec. V. As explained in Sec. II C, the latter pattern can form only in a 2D system, or in 3D

when the motion of helium atoms in the direction perpendicular to graphene’s surface is prohibited/restricted.

The periodicity of the patterns was verified by taking their 2D Fourier transform. We acknowledge that a

periodic pattern for ff = 31/75 ≈ 0.4133, which is very close to ff = 5/12 ≈ 0.4167, was mentioned in

Refs. [4, 8], but no picture of it was provided. Also, a phase with ff = 13/24 ≈ 1/2 was shown in Fig. 5(c) of

Ref. [5]; it appears similar to the ff = 1/2 pattern shown in our Fig. 10, but was termed ‘incommensurate’

in [5].

The longest of the simulations described above and in the Supplemental Material , which involves up to

N = 80 helium atoms, takes on the order of ten hours on a desktop PC (CPU 3.2 GHz, RAM 16 Gb, running

Matlab R2021a). In comparison, solving the Schrödinger equation (SE) for the N -body wavefunction for

a similar N by a quantum Monte Carlo (QMC) method takes a few weeks on a single core to achieve

adequate statistical convergence. Thus, solving the HF equations by the AITEM is a more time-efficient,

although likely less accurate, approach than solving the SE by QMC, which could provide an avenue for

rapid pre-screening of different adsorption potentials.

On the other hand, we need to point out one drawback of the HF/AITEM approach that the SE/QMC

approach does not have. Namely, since the AITEM converges to a local, rather than global, minimum of the

Hamiltonian, and the energy landscape has many local minima with close energy values, the final state of the

HF/AITEM simulations may depend on the initial state. Thus, in addition to the periodic commensurate

phases reported above, we also observed aperiodic patterns for some values of the random number generator

used in setting the initial state (see Appendix A.3). In contrast, simulations by a given flavor of QMC should

always yield the same final state (up to spatial translation and statistical uncertainty). At the moment, to

resolve a non-unique final state of the HF/AITEM simulations, we propose that one declares the solution

with the lowest total energy to be the “true” final state. For the aforementioned simulations for the five

values of ff , the reported commensurate solids have smaller energies than any aperiodic patterns that we

observed for the same ff . We caution, however, that for other filling fractions and sizes of the simulation

domain, that is not guaranteed to always be the case.

Let us also mention two challenges that can be addressed by future research: Can the HF/AITEM approach
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detect the presence of (i) a bosonic condensate and (ii) a superfluid phase? If so, how could the existence

and properties of these phases be quantified within the HF framework, especially for (ii)?

Finally, we comment on potential applications other than finding commensurate solid phases of 4He in

graphene- or graphite-like potentials considered in Sec. V. In a straightforward extension of that setup, the

AITEM developed in this work can be used to study commensurate and incommensurate phases of bosonic

atoms over surfaces with more complex periodicity than graphene/graphite [10–14]. More generally, it can

be used to simulate hard-core bosons and fermions in various settings. For example, it can be used to

compute the nearest- and next-nearest-neighbor interaction strength in a variety of lattice Bose–Hubbard

models (see, e.g., [48–51]), as two of the present authors did in Ref. [21], which motivated this research.

It can also be used to study phases in Bose–Fermi mixtures, where bosons and fermions interact via an

attractive potential (see, e.g., [52] and references therein). In such systems, researchers are interested in the

competition between boson condensation and boson–fermion pairing, where the latter depletes the bosonic

condensate. Yet another potential application could be the implementation of the ME acceleration into the

(A)ITEM used to simulate the ground state of many-electron systems by the density functional theory; see,

e.g., [41].

When spatial orientation of the adsorbed atom or molecule is essential (as, e.g., in [13]), the method

would need to be extended to include the rotational degrees of freedom in the Hamiltonian and the third

spatial dimension, while using the same underlying concepts. A similar 3D extension of the method, or the

present version of the method applied to a conceptually new extension of the HF equations, can be used to

study formation of a small number of layers of adsorbed atoms over surfaces [1]. Also, a 3D extension of

the method can be used to study adsorption of helium atoms on ions of fullerenes and polycyclic aromatic

hydrocarbons; see, e.g., [53] and references therein. The adsorption potential in this case is not periodic as

it is provided by a single molecule (or ion), but this will not affect the setup of the AITEM.

Simulations of the HF equations by the time-efficient AITEM considered in this study can be used as

a less time-consuming, albeit approximate, alternative to quantum Monte Carlo simulations. Therefore,

the AITEM could be a useful tool in high-throughput schemes [54] that would employ HF equations to

identify promising scenarios for realizing exotic low-dimensional adsorbed superfluid phases. This may

include searching for optimal materials as substrates or for optimal tunable parameters of known substrates,

as, e.g., in [55].
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APPENDIX A: DFT FOR EVALUATION OF TERMS IN (4) AND FOR INITIAL PLACEMENT

OF HELIUM ATOMS

We use Discrete Fourier transform (DFT) and its inverse defined as:

max∑
n=0

e−i rn·km ϕn ≡ F [ϕ]m, ϕn =
1

MxMy

max∑
m=0

ei rn·km F [ϕ]m ≡ F−1 [F [ϕ] ]n , (39)

where: Mx,My are the numbers of grid points along x and y; all vectors have two components pertaining

to x and y, e.g.,: n = (nx, ny), rn = (xnx , yny ), max = (Mx − 1,My − 1), km =
(
(kx)mx , (ky)my

)
, etc. Here

xnx
= (nx− 1)∆x, (kx)mx

= (mx− 1)∆kx, etc., where ∆x and ∆kx are the respective mesh sizes. Note that

in this Appendix, n refers to the index of grid points in the physical space, while in the main text n referred

to the iteration number.

The values of Mx andMy used for the simulations presented in Sec. V correspond to 16 and 28 grid points

per one period of Vext in the x- and y-directions, respectively. Here the ratio 16/28 ≈ 1/
√
3, which is the

ratio of the periods of Vext in those directions; see Fig. 1.

The Laplacian in (4) is computed in the standard way:

−∇2ϕ = F−1
[
‖(k)shifted‖2 F [ϕ]

]
, (40)

where ‖ . . . ‖ stands for the Euclidean norm,

(
(kx)shifted

)
mx

=

{
(kx)mx

, mx ∈ [0, Mx/2− 1];

−(kx)Mx−mx , mx ∈ [Mx/2, Mx − 1],
(41)

and similarly for (ky)shifted.

A.1: Computing the nonlocal term in (4)

In this paragraph, we treat the case of one spatial dimension for the sake of clarity; its 2D generalization

will be given later. We begin by setting up Vint to be periodic on the computational grid and also clip it

removing the “singularity” at r = 0 at some empirically chosen value

Eclip � 1, (42)

as illustrated in Fig. 11. Note that, given the definition of xnx above, array Vint(xnx) is defined so as to

reflect the fact that the interaction is the strongest at zero separation between helium atoms. With this
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setup, for any function ψ(r′), one has:∫
Vint(r− r′)ψ(r′) dr′ = F−1 [F [Vint]F [ψ] ] . (43)

0 x
max

x

0

V
in

t E
clip

FIG. 11. Schematics of the interaction potential between helium atoms, set up as explained before Eq. (43). Details

along the x-axis are not to scale: the attracting “tail” past the minimum of Vint at x ≈ 3Å actually extends much

longer towards xmax/2.

We verified that a derivative discontinuity introduced by the clipping of Vint does not appear to introduce

numerical artifacts in F [Vint]. This is because the very high gradient of this potential at sufficiently small

distances already produces a long “tail” in its Fourier spectrum.

The code snippet below shows how Vint, originally defined in [37] as a 1D array over a 1D vector rint, is

interpolated on a 2D grid in Matlab:

[X,Y] = meshgrid(x,y); % create 2D grid along x and y

rint_arr = sqrt(X.^2 + Y.^2); % distance from center of grid

rint_vec = reshape(rint_arr,[1,M_x*M_y]); % make it 1 x (Mx*My) vector

Vint_vec = interp1(rint,Vint,rint_vec); % interpolate Vint from rint to rint_vec

Vint_arr = reshape(Vint_vec,[Mx,My]); % put it over Mx x My grid

The resulting 2D array Vint_arr peaks at the center of the numerical grid and decays towards its bound-

aries, which is not how Vint is set up in Fig. 11 and upon which assumption Eq. (43) is written. To adjust

for this difference, an fftshift command must be placed either around the entire r.h.s. of that equation or

around the F [Vint] term.

We now show how all the N(N + 1)/2 Hartree terms in Eqs. (4) can be computed in O(N) steps:

• Compute F [ϕ2i ] for all i and then define F [S] ≡
∑N

i=1 F [ϕ
2
i ].

• Use (43) with ψ = S − ϕ2j to compute the Hartree sum in (4) for each j.

A.2: Verifying validity of clipping Vint

The clipping here refers to the procedure mentioned before Eq. (42). Specifically, we need to verify that

a somewhat arbitrarily chosen value Eclip, which we took to be Eclip = 1000 K and 2000 K for 1D and 2D
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simulations, respectively, does not significantly alter the simulation results. (For the original Vint from [37],

(Vint)not clipped(0) ≈ 2 · 106 K.) To that end, one can monitor the difference between quantities

(Eint, j)clipped = 〈
N∑

i=1, i ̸=j

ϕ2i |(Vint)clipped|ϕ2j 〉 and (Eint, j)not clipped = 〈
N∑

i=1, i ̸=j

ϕ2i |(Vint)not clipped|ϕ2j 〉 ,

(44)

and check whether it exceeds a specified amount (see below), for all atoms j. Here all the solutions ϕi in

(44) are computed with (Vint)clipped. Choosing Eclip too low, obviously, increases the difference in (44). On

the other hand, choosing Eclip too high leads to the need to decrease ∆t so as to avoid extreme sensitivity

of the solution, whereby tiny changes of ϕi or ϕj at the locations of its neighbors would lead to very large

and unphysical changes in the entire system (examine the first term in [· · · ] in (6a)). In turn, too small a

∆t slows down convergence of the iterations.

Now, since the simulated equations (6) “do not know” that the true helium–helium interaction potential

is (Vint)not clipped rather than (Vint)clipped, they have no way of correcting a discrepancy between the two

quantities in (44) if such arises. Such a discrepancy did occur in many of our simulations and was due,

usually, to ϕj “developing too big of a piece” (usually, of a size less than 1% of its peak value) at the location

of one of its neighbors. An external correcting procedure was needed when that occurred. Through extensive

testing, we found the following one to work.

Procedure for bounding δEj = |(Eint, j)clipped − (Eint, j)not clipped|

• Compute δEj every nmonitor iterations. We used nmonitor = 200. Doing so too often will slow down

the code, while doing so too infrequently may extend a transient period which is required for helium

atoms move sufficiently close to their equilibrium locations.

Find those j for which δEj exceeds some threshold. We used the criterion δEj > 5 ·minj δEj , which

amounted to roughly 1K.

• Estimate the width of any one helium atom whose δEj is below the threshold. Replace (see (45)

below) those ϕj whose δEj exceeds the threshold with a Gaussian of the above width. (As a simpler

alternative, which may slightly increase the length of the calculations, use the initial Gaussian guess.)

• Apply the Gram–Schmidt orthogonalization to enforce conditions (2).

A.3: Initial placement of helium atoms

We first outline the two procedures that can be used to create an initial filling fraction p/q of helium atoms

and then how they were implemented using DFT.

First initial placement procedure: We first distributed 2(p/q)Ncells, x atoms over two consecutive rows of

cells, placing them equidistantly along each row and horizontally shifting atoms in the second row relative to



36

those in the previous row so as to maximize the distance between any two atoms in the two rows. We then

added to coordinates of each atom a random perturbation of size ∼ 20% of the cell’s side (i.e., of d0/
√
3).

Second initial placement procedure: We first found integer factors NHe, x and NHe, y of the total number

of helium atoms N ; the code does so by going through various combinations of these factors starting with

an initial guess NHe, x =
√
ff Ncells, x rounded to the nearest integer. Since, as mentioned in Sec. II C,

Ncells, y must be even, so must be the selected factor NHe, y. Second, we placed the atoms so that any two

consecutive atoms within one row (i.e., along x) are δHe, x = (Mx/NHe, x)∆x apart, with the rows being

spaced by δHe, y = (My/NHe, y)∆y along y. Any two consecutive rows of atoms are shifted horizontally by

δHe, x/2 so as to maximize the distance between any two atoms, as in the first placement procedure. Finally,

to those locations we add random perturbations of the size of ∼ 20% of (δHe, x − d0)/2 and (δHe, y − d0)/2

along the x- and y-directions, respectively.

Of these two procedures, the second one usually yields a more uniform initial placement for smaller ff .

Finally, the implementation of the initial placement of helium atoms at specified locations r⃗c ≡ (xc, yc) of

the lattice is straightforward with (39). Namely, one first creates a localized (typically, Gaussian) function

ϕ0(r) centered at r = 0 and then shifts it to the desired location via:

ϕ(r− rc) = F−1
[
F [ϕ0] e

−i rc·k
]
. (45)

APPENDIX B: DISCUSSION OF THE Vint-TERM IN SEC. IIIA

For the purpose of the estimate in (16) and the text below it,

‘Vint-term’ ≡

∥∥∥∥∥∥
∑
i ̸=j

〈ϕi|Vint|ϕi〉 fj + 2
∑
i ̸=j

〈ϕi|Vint|fi〉ϕj

∥∥∥∥∥∥ / ‖f⃗‖, (46)

where fj is the component of eigenfunction f⃗ of P−1L corresponding to helium atom j. Our goal here is to

show that it is feasible that this term can be O(Eclip) for some of the eigenfunctions, even though it may

not be obvious at first sight.

Both terms in the numerator above depend on the overlap between ϕi and fj for i 6= j. Note that the

magnitude of neither term can be inferred from the Vint-term in the original, non-linearized equation, (3)

or (14), i.e., from
∥∥∥∑i ̸=j〈ϕi|Vint|ϕi〉ϕj

∥∥∥. The latter term is on the order of Vint(d), where d is the distance

between neighboring helium atoms. When d = d0, the distance between centers of adjacent graphene cells,

O(Vint(d0)) = 10 . . . 100 K � Eclip [21]. (For d > d0, Vint(d) is even smaller.) This occurs because the

overlap between (the wavefunctions of) helium atoms even in adjacent wells of Vext, i.e., 〈ϕi|ϕj〉, i 6= j, is

quite small.

However, for certain eigenfunctions of P−1L, the overlap of ϕi and fj , i 6= j, can be much greater than

that between helium atoms in the adjacent wells of Vext. This is illustrated in Fig. 12. Due to this greater
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overlap, the size of the Vint-term as defined in (46) is much greater than O(Vint(d0)). In fact, from the

estimate (17) extrapolated to k = O(1) and the fact that using c = Eclip yields max(λ) = O(1) in this case,

one can infer that the Vint-term for these eigenfunctions is O(Eclip).

-10 -5 0 5 10
x

FIG. 12. Eigenfunctions of P−1L with c = Eclip = 100 for N = 6 helium atoms placed in N adjacent wells of Vext,

corresponding to some of its largest eigenvalues: λ = 1.777 = λmax (thick solid), λ = 1.772 (thick dotted), λ = 1.702

(thin solid). Thin dashed lines show the locations of the helium atoms. Vertical scale is in arbitrary units.

APPENDIX C: ON THE LOWEST EIGENVALUE OF OF P−1L AND ITS EIGENFUNCTION

C.1: The lowest-λ eigenfunction corresponds to a common shift of all atoms

In this subsection, we will justify its title. Suppose that Vext ≡ 0. Then any periodic array of atoms can be

shifted as a whole without changing its energy. In this case, the common shift mode has λ = 0. Other modes

that involve unequal shifts or breathing of atoms would increase the total energy via the term 〈ϕi |Vint|ϕj〉,

due to the rapidly-increasing repulsion between the atoms with their decreasing separation. Therefore, such

modes will have λ > 0. Now, when Vext�≡ 0, a common shift of all atoms would raise the array’s energy due

to the atoms shifting away from Vext’s minima; hence the eigenvalue of that mode becomes positive. The

reason that it is small is that the change in the external potential energy due to such a shift is still much

smaller than a change that would occur had the distance between adjacent atoms changed. In other words,

Vext acts as a small perturbation in a system where the total potential energy is dominated by Vint.

For the commensurate filling fraction ff = 1/2 the low-λ part of the spectrum of P−1L looks quite different

than that for ff = 1, shown in Fig. 5. For the same parameters as used in Fig. 5 except that now N = 3, the

common shift mode is still the lowest with λmin = 0.020; however, that value is considerably greater than

λmin = 0.0053 for ff = 1. This explains the faster convergence of the AITEM without ME for ff = 1/2

(given that λmax ≈ 1), as noted at the end of Sec. III B. Moreover, the next few modes have eigenvalues

that are much closer to λmin than in the ff = 1 case: λ=0.023, 0.034, 0.048, 0.051 . . .. They correspond to
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combinations of shifts, breathing, and other shape deformations of the atoms. The reason that eigenvalues

of these latter modes are much lower for ff = 1/2 than for ff = 1 is that the role of the helium–helium

interaction is much reduced for atoms spaced farther apart, thereby “penalizing” their independent motions

less.

C.2: Estimation of the lowest eigenvalue of P−1L from error evolution plots

Consider the error evolution curve corresponding to N = 24 in Fig. 6. From point ‘2’ on, the error decays

monotonically by 7 orders of magnitude (i.e., a factor of about exp[−16]), and therefore one can estimate

λmin of the linearized iteration operator from (see (12)):

(1−∆t (λP−1L)min)
120,000 ≈ e−16, (47)

where the exponent on the l.h.s. is the number of iteration from point ‘2’ to convergence. This yields

(λP−1L)min ≈ 4 · 10−4.

A similar estimate for the N = 23 case, where it takes over 115 million iterations for the error to decrease

from 10−8 to 10−10, yields (λP−1L)min ≈ 7 · 10−8.

The fact that P−1L, and hence L, has very small eigenvalues means that the “energy landscape” of

the considered configuration of atoms is very shallow near the energy minimum. The following order-of-

magnitude estimate illustrates this statement. First, for smooth function, which the lowest-λ eigenfunctions

are, P−1 reduces eigenvalues of L by the factor O(1/c) = O(10−2); see Sec. III A. Hence

(λL)min ∼ 102(λP−1L)min (48)

for c = O(102). Next, the error norm, defined in the caption to Fig. 3, can be related to the (minimum)

eigenvalue by:

‖L1D,H
0 ϕn‖ =

1

N

√√√√∫
dx

N∑
j=1

|L1D,H
0 (ϕj(x))n|2 ∼

√
∆x

N
(λL)min

∣∣∣(ϕ̃j)n∣∣∣ , (49a)

where: (ϕ̃j)n stands for any of the components of the iteration error (
˜⃗
ϕ)n (see (9)); ∆x is the numerical

mesh size defined in Appendix A; and we have used (9) and the fact that the observed width of ϕ̃j is O(1).

In the calculations considered here, ∆x ≈ 0.1, N ≳ 20; whence (49a) yields:

‖L1D,H
0 ϕn‖ ∼ 10−1 (λL)min

∣∣∣(ϕ̃j)n∣∣∣ . (49b)

Together, estimates (48), (49b), and the above estimates of (λP−1L)min imply that when ‖L1D,H
0 ϕn‖ reaches

10−10, the difference (ϕ̃j)n between the final and exact solution is O(10−8 . . . 10−7) for the case N = 24 and

only O(10−4) for the case N = 23. In other words, when (λL)min � 1, relatively large deviations from the

exact solutions still lead to the error (of the HF equations) reaching a prescribed small tolerance.
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APPENDIX D: IMPLEMENTATION OF THE MME ALGORITHM OF SEC. IV

D.1: Implementation issues of the mME algorithm

The Algorithm presented in Sec. IVA assumes infinite numerical precision and the relation between the

middle and right sides of Eq. (24) holding exactly rather than approximately. To account for deviation from

these conditions, the following measures need to be taken when implementing the Algorithm.

1. Matrix ∆̂ is composed of nearly linearly dependent rows because the (smooth part of the) so-

lution changes only little from one iteration to the next. Therefore, the smallest eigenvalues of

P 1/2∆̂ (P 1/2∆̂)T , used in (31), are very small and can even be comparable with the numerical pre-

cision of Matlab, O(10−16), for K ≳ 10. In such a case, Matlab would not be able to compute the

Cholesky factorization (31). To overcome this problem, we ensured that the matrix on the l.h.s. of

(31) is positive definite, and yet only minimally different from the original matrix, by adding to it a

matrix proportional to the identity with diagonal entries of the size

2 min( |λlhs| ) + 10−12 max(λlhs), (50)

where λlhs are the eigenvalues of the original matrix on the l.h.s. of (31) (the smallest of which could

be negative and on the order of machine precision, as noted above).

A version of the Algorithm that leads to a significantly smaller condition number of P 1/2∆̂ (P 1/2∆̂)T ,

although not improving performance of the mME, is presented in the Supplemental Material [31].

2. Due to the reason stated in the first paragraph of this Appendix, matrix B defined by the second

relation in (33) and computed from the middle side of (24) deviates from being symmetric. Then, for

the calculations in the Algorithm one uses the symmetric matrix

Bsym =
1

2

(
L∆̂ ∆̂T + (L∆̂ ∆̂T )T

)
(51a)

while monitoring that the anti-symmetric part

Banti−sym =
1

2

(
L∆̂ ∆̂T − (L∆̂ ∆̂T )T

)
(51b)

is sufficiently small. We indeed found that to be the case, with the anti-symmetric part being on the

order of 10−5 of the symmetric one when the iterations are converging.

3. We also monitored the difference between the l.h.s. and r.h.s. of (29) and verified that the matrix on

the l.h.s. is within O(10−10) from being orthogonal.

4. Finally, we verified that with the exceptions of those situations where the error increases (as in the

case shown in Fig. 7 for N = 23), the relative difference between αi’s computed from (35) and from
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(20b) (given the modes u⃗i found by the Algorithm) is as small as O(10−4).

We clarify that for computational efficiency, we computed αi’s from (35).

D.2: Collecting data for matrices ∆̂ and L∆̂, and efficient computation of related matrix products

Here we will give a high-level structure of our AITEM code focusing on the order in which it collects data

for the mME Algorithm. We will also demonstrate that the computational (but not storage) cost associated

with the Algorithm grows very mildly with the number K of the modes being eliminated (under the practical

assumption that K is much smaller than the number of points in the numerical grid).

1. Save the solution (ϕ⃗)n at the current iteration n.

(For n ≤ K, store (ϕ⃗)n in a variable
−−→
{ϕ}[1]. Just prior to that, stored solutions from previous iterations

must be reassigned:
−−→
{ϕ}[k − 1] 7→

−−→
{ϕ}[k] following the order k = K, . . . , 2.)

2. Compute
(
L(0)ϕ⃗

)
n
via (6b).

3. a) For n > K+1, reassign entries in (24) available from the previous iterations: P−1/2
−−−→
{∆L}[k−1] 7→

P−1/2
−−−→
{∆L}[k] following the order k = K, . . . , 2. Here the notation

−−−→
{∆L} is defined similarly to that

in ‘b)’ below.

(For n = K + 1, compute P−1/2
−−−→
{∆L}[k] using

(
L(0)ϕ⃗

)
n−k+1

which are stored in Step 6a (below) at

the previous iterations.)

b) Compute P−1/2
−−−→
{∆L}[1] ≡ P−1/2L

−→
∆ϕn−1, where the r.h.s. is found as the top entry in the middle

part of (24) and from (25).

4. Perform the mME as per the Algorithm in Sec. IVA.

5. Update the solution as in (6a), with the Γ-term being computed as explained in the last two steps in

Sec. IVA. Apply the Gram–Schmidt orthonormalization step as needed. Note that at this point, we

have the solution (ϕ⃗)n+1.

6. a) Reassign
−−−−−→
{L(0)ϕ}[k − 1] 7→

−−−−−→
{L(0)ϕ}[k] following the order k = K, . . . , 2. Here the notation

−−−−−→
{L(0)ϕ}

is defined similarly to that in ‘b)’ below.

b) Save
(
L(0)ϕ⃗

)
n
as

−−−−−→
{L(0)ϕ}[1]; it will be used in Step 3b above at the next iteration.

7. a) For n > K, reassign entries in (22) available from the previous iterations:
−−−−−−−→
P 1/2{∆ϕ}[k − 1] 7→

−−−−−−−→
P 1/2{∆ϕ}[k], following the order k = K, . . . , 2. Here the notation

−−−−−−−→
P 1/2{∆ϕ} is defined similarly to

that in ‘b)’ below.

(For n = K, compute
−−−−−−−→
P 1/2{∆ϕ}[k] using the solutions at the previous iterations stored in Step 1
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above.)

b) Compute
−−−−−−−→
P 1/2{∆ϕ}[1] = P 1/2−→∆ϕn−1, where the r.h.s. is found as the top entry in (22) and from

(23).

Note that at iterations n > K, the operational cost of all Steps above except Step 4 is clearly independent

of K. The cost of Step 4 can potentially be O(K2N MxMy) due to the need to compute the K × K

matrix P 1/2∆̂ (P 1/2∆̂)T , each term of which requires O(N MxMy) operations. However, Step 4 can be

implemented in only O(KN MxMy) operations once one notices that the upper-left (K− 1)× (K− 1) block

of P 1/2∆̂ (P 1/2∆̂)T computed at iteration n can be reassigned as the lower-right (K − 1)× (K − 1) block of

that matrix at iteration (n+1). Then only (2K−1) entries of that matrix would need to be computed anew

at each iteration n > K. The same estimate also applies to the computation of L∆̂ ∆̂. When K < 5, the

resulting cost of 4KO(N MxMy) operations adds a relatively small amount to the baseline computational

cost of the method.
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