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Supplemental Material for

“Efficient simulations of Hartree–Fock equations by an accelerated gradient

descent method”

by Y. Ohno, A. Del Maestro, and T.I. Lakoba

I. DERIVATION OF THE SECOND TERM IN EQ. (6b)

In Sec. 2 of [S1] it was shown that when minimizing a functional H such that δH/δϕ∗
j = L00ϕj subject to

constraints given by equations Q(k) = 0, k = 1, . . . ,K, the second term in Eq. (6b)[S2] is given by:

Φ ⟨P−1Φ |Φ⟩−1 ⟨P−1Φ |
−−−→
L00ϕ

T ⟩. (S1)

Here the (j, k)-th component of the N ×K matrix Φ is:

Φj,k = δQ(k)/δϕj , (S2)

−−−→
L00ϕ = [L00ϕ1, . . . , L00ϕN ] , (S3)

the rest of the notations — here and below — are defined in Sec. II A of the main text, and we have omitted

iteration’s index n.

For the constraints Q given by the K = N2 Eqs. (2), definition (S2) yields:

Φ = ϕ⃗⊗ I, (S4)

where ⊗ stands for the Kronecker (tensor) product and I is the identity matrix of appropriate dimension

(N × N in this case). Then P−1Φ = P−1ϕ⃗ ⊗ I. Next, using the identities (for matrices A,B,C,D of

appropriate dimensions):

(A⊗B) (C ⊗D) = (AC)⊗ (BD), (A⊗B)−1 = A−1 ⊗B−1, (S5)

one has

⟨P−1Φ |Φ⟩−1 = ⟨P−1ϕ⃗ | ϕ⃗⟩−1 ⊗ I ≡


a11 · I · · · a1N · I

...
...

...

aN1 · I · · · aNN · I

 , (S6)

with aij denoting entries of the inverse matrix in the middle of the above line. To proceed, one needs to
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write out an explicit form of the last factor in (S1):

⟨P−1Φ |
−−−→
L00ϕ

T ⟩ =



⟨P−1ϕ1 |L00ϕ1⟩
...

⟨P−1ϕ1 |L00ϕN ⟩
...

⟨P−1ϕN |L00ϕ1⟩
...

⟨P−1ϕN |L00ϕN ⟩


. (S7)

Multiplying the second and third factors in (S1) and using (S6), (S7) yields:

⟨P−1Φ |Φ⟩−1 ⟨P−1Φ |
−−−→
L00ϕ

T ⟩ =



∑N
k=1 a1k⟨P−1ϕk |L00ϕ1⟩

...∑N
k=1 a1k⟨P−1ϕk |L00ϕN ⟩

...∑N
k=1 aNk⟨P−1ϕk |L00ϕ1⟩

...∑N
k=1 aNk⟨P−1ϕk |L00ϕN ⟩


. (S8)

Finally, using (S4), one can see by inspection that j-th row of the entire quantity in (S1) is given by:

N∑
i=1

ϕi

N∑
k=1

aik⟨P−1ϕk |L00ϕj⟩, (S9)

which is indeed the second term on the r.h.s. of (6b).

II. EQUATIONS L0ϕj = 0 AND L(0)ϕj = 0 ARE EQUIVALENT

The operator in the second equation in the section title is defined in (6b). Now, the former equation, i.e.,

(3), can be written as

L00ϕj = ϕ⃗ ⟨ϕ⃗ |L00ϕj⟩ . (S10)

Similarly, the latter equation is written as:

L00ϕj = ϕ⃗ ⟨P−1ϕ⃗ |ϕ⃗ ⟩−1 ⟨P−1ϕ⃗ |L00ϕj⟩ . (S11)

In addition, constraints (2) can be written as

⟨ϕ⃗ | ϕ⃗ ⟩ = I. (S12)

Let us denote ⟨P−1ϕ⃗ |ϕ⃗ ⟩ ≡ M (an N ×N matrix).

The proof consists of showing that (S10) implies (S11) and vice versa. To show the former step, substitute

(S10) into the r.h.s. of (S11); this yields:

ϕ⃗M−1
〈
P−1ϕ⃗ | ϕ⃗ ⟨ϕ⃗ |L00ϕj⟩

〉
= ϕ⃗M−1 M ⟨ϕ⃗ |L00ϕj⟩, (S13)
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which, per (S10), equals the l.h.s. of (S11).

To show that (S11) along with (S12) implies (S10), substitute the r.h.s. of (S11) into the r.h.s. of (S10)

while multiplying the left (right) part of the inner product by P−1 (P ) and using the fact that P is Hermitian.

Then the r.h.s. of (S10) becomes:

ϕ⃗
〈
P−1ϕ⃗ |P ϕ⃗M−1⟨P−1ϕ⃗ |L00ϕj⟩

〉
= ϕ⃗ ⟨P−1ϕ⃗ |P ϕ⃗ ⟩M−1⟨P−1ϕ⃗ |L00ϕj⟩ = ϕ⃗M−1⟨P−1ϕ⃗ |L00ϕj⟩, (S14)

where we have used (S12). Per (S11), this equals the l.h.s. of (S10).

III. DIFFERENCES OF THE AITEM FROM THE SELF-CONSISTENT FIELD METHOD

(SCF) USED IN NUCLEAR AND ELECTRONIC STRUCTURE CALCULATIONS

For the sake of simplifying this discussion, we will assume no preconditioning in Eqs. (6); i.e., P = I in

Eq. (7). Then the expression for (L(0)ϕj)n reduces to (L0ϕj)n in Eq. (3).

At iteration n of the AITEM, one uses (L0ϕj)n (and, if mode elimination is used, also the Γ-term in (6a))

to advance the solution ϕ⃗ to iteration (n+ 1), with the goal being solving the HF equations (3). Iterations

are terminated when ∥
−−−−→
(L0ϕj)n∥ decreases below a specified threshold.

In the SCF, the solution of the HF equations (or the Density Functional Theory equations) proceeds

differently (see, e.g., [S3] for the coordinate-based nuclear structure calculations or [S4] for electronic structure

calculations using an atomic orbitals basis). First, one recognizes that a unitary transformation ϕ⃗ ′ = Sϕ⃗ can

diagonalize the matrix of Lagrange multipliers ⟨ϕi|L00ϕj⟩ while preserving the orthonormality relations (2)

and the form of
−−−→
L00ϕ [S4]. Then Eqs. (3) at iteration n are transformed into a nonlinear eigenvalue problem

−−−−−→
(L00ϕ

′)n = ϵn(ϕ⃗
′)n, (S15)

which is solved self-consistently as follows. One rewrites it as

(L00)n (ϕ⃗
′)n+1 = ϵn+1(ϕ⃗

′)n+1, (S16)

where (L00)n is evaluated on (ϕ⃗ ′)n. Then one finds (also by some iterative algorithm) N1 eigenstates of

the linear eigenvalue problem (S16), where one usually sets N1 > N . From them, one selects N eigenstates

(ϕ⃗ ′)n+1 with lowest ϵ, which are orthonormal as eigenstates of a Hermitian operator (L00)n, and uses them

at the next iteration. The iterations are terminated when ∥(ϕ⃗ ′)n+1 − (ϕ⃗ ′)n∥ decreases below a prescribed

threshold. The fact that, in theory, both the ITEM (without acceleration) and SCF converge to the same

ground state of the HF equations was shown in [S5]. In [S6] it was shown that, in practice, the ITEM may

converge to a lower-energy state than the SCF.

Note that the ability to initially compute N1 > N eigenstates of operator (L00)n hinges on the fact that

its dimension, which equals the number of grid points, is (much) greater than the number N of simulated
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particles. (For the methods based on atomic orbitals bases, one simply needs to choose the number of the

orbitals to be greater than the number of particles.) Using N1 > N is needed to avoid or suppress some

undesirable artifacts, similar to the error oscillations reported in Sec. III C, which are due to closely lying

energy levels ϵ in (S16). In contrast, the number of particles in the AITEM described in Sec. II B cannot be

altered without simultaneously altering the physical system, governed by Eqs. (3).

Expanding on the latter point, we will now explain why using the SCF with N1 > N , which is fully

appropriate in the contexts of the nuclear or electronic structure calculations, would not be appropriate in

the context of atoms scattered over a surface. The electrons in an atom satisfy the so-called Aufbau Principle,

which says that in the ground state of an atom, the electrons fill atomic orbitals of the lowest available

energy levels before occupying higher-energy ones; that is, the orbitals are filled in the increasing order of

their energies. Thus, the energy levels and the eigenstates of an N -electron atom/ion are a slightly modified

subset of the energy levels/eigenstates of the N1 > N -electron atom/ion. In contrast, atoms scattered as a

monolayer over a surface have their energies determined by the entire pattern that they form. In particular,

the sets of energies {ϵj}Nj=1, where ϵj ≡ ⟨ϕj |L00|ϕj⟩, of N scattered atoms will not be a (possibly slightly

modified) subset of the energies of N1 > N scattered atoms.

We will illustrate the above statement with the 1D Hartree-only problem, given by Eqs. (14), (15) of

Sec. III. (The behavior of the AITEM is qualitatively similar for that model and for the full HF model.) In

Fig. S1 we show solutions of systems with N = 15, 16, 17 atoms in a computational window containing 23

potential wells. The latter number is chosen to be prime so that N/23 be an irreducible fraction, while N

is sufficiently large so that incrementing it by 1 may intuitively appear as a small change to the system, but

sufficiently small so that the repulsion between adjacent atoms is not too strong.

One can see that the solution for the N = 15 system are different from atoms 1–15 of the N = 16 or

N = 17 systems: namely, the latter occupy different positions. The positions of the atoms, along with their

shape, are what determine the solution of the Hartree equations. Thus, the solution of the N = 15 system

is not a subset of the N = 16 or N = 17 systems.

The same fact can also be seen from the energies ϵj of the three systems, which are listed in Table S1.

Namely, while there are similarities between some energies of the N = 15 system and those of the N = 16

systems, the former energies are far from being a slightly modified subset of the latter. Moreover, all those

similarities disappear for N = 17, where all of ϵj are strictly greater than those for N = 15.

Let us now show that the (A)ITEM and SCF have the same computational complexity in the order-of-

magnitude sense. From the brief descriptions of these methods at the beginning of this section, one sees that

their main computational difference is as follows: In the AITEM, one needs to compute N(N + 1)/2 inner

products ⟨ϕi|L00ϕj⟩, whereas in the SCF one needs to find N1 ≳ N orthonormal eigenstates of operator
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FIG. S1. Colored lines: Solutions ϕj of the Hartree equations (14), (15) with 23 wells of Vext for N = 15, 16, 17

helium atoms, as indicated. Dashed line: Vext/10, shown for reference.

N ϵj

15 0.20 0.20 0.20 0.20 0.19 0.22 0.08 0.38 -0.68 0.38 0.08 0.22 0.19 0.20 0.20 — —

16 1.28 0.04 0.46 0.20 0.20 0.46 0.04 1.28 0.05 1.18 0.08 0.38 0.38 0.08 1.18 0.05 —

17 1.15 0.42 1.47 0.83 0.35 1.65 0.43 0.43 1.65 0.35 0.83 1.47 0.42 1.15 1.32 0.44 1.32

TABLE S1. The energies ϵj of atoms ϕj in the panels of Fig. S1, listed from the leftmost to the rightmost atom.

L00. Each of these steps has

Computational

complexity
= O(N2)×

(
Complexity of

computing L00ϕj

)
. (S17)

Since terms in L00ϕj contain operations diagonal either in the physical space or the momentum space and
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convolutions, the second factor on the r.h.s. of (S17) is O(N) × Mgrid logMgrid when the Fock (i.e., the

exchange interaction) term is not included in (4) and O(N2) × Mgrid logMgrid when it is included (see,

however, Remark Six at the end of Sec. II B); here Mgrid is the number of points on the computational grid.

While the order of magnitude of the computational complexity of both methods is the same, it was shown

in [S6] that in many cases, the ITEM was some factor of 2–3 slower than the SCF. However, the ITEM in

[S6] was not accelerated by either preconditioning or mode elimination, as it is done in our work.

IV. EFFECT OF PRECONDITIONER ON CONVERGENCE RATE OF THE AITEM

Here we complement the discussion found in Sec. III A and show that, depending on the spatial dis-

cretization step, preconditioner P of Eq. (7) with a suboptimal c may even degrade convergence rate when

compared to the case where no preconditioner is used (i.e., P = I, the identity matrix). On the contrary,

the preconditioner with an optimal c always improves the convergence rate of the AITEM for all practically

relevant values of the discretization step.

As follows from Eq. (13), the convergence rate is proportional to (λP−1L)min/(λP−1L)max (when this

quantity is small). When no preconditioner is used, (λL)max = O(k2max +Eclip) = O
(
10/(∆x)2 +Eclip

)
; see

Sec. III A. Here ‘10’ approximates π2 in k2max = π2/(∆x)2. Assuming that (λL)min = O(1), as confirmed

by the calculations found after Eq. (17), this predicts the convergence rate to decrease as O
(
(∆x)2

)
for

sufficiently small ∆x. Panel (a) of Fig. S2 confirms this prediction in the order-of-magnitude sense. There,

∆x = π/Mx1, where now π is the period of Vext used in Sec. III and Mx1 is the number of discretization

points per this period. For the data in Fig. S2(a) Mx1 was chosen as that in the 2D simulations reported in

Sec. V (Mx1 = 16), as in the 1D results reported in all Figures of Sec. III A except Fig. 2 (Mx1 = 32), and

as in Fig. 2 (Mx1 = 64).

On the other hand, when P is given by (7), the ratio (λP−1L)min/(λP−1L)max cannot be estimated as

simply as above: see, again, the calculations found after Eq. (17). One can only conclude that the strong

dependence of that ratio (and hence of the convergence rate) on ∆x is suppressed by P , because

(λP−1L)max =
O(k2max + Eclip)

O(k2max + c)
∼

1 +O
(
Eclip(∆x)2/10

)
1 +O

(
c (∆x)2/10

) .

In fact, our simulations of the setup of Fig. S2(a) but with P given by (7) with c = 2 or c = Eclip = 100

revealed that the number of iterations to convergence remains the same to three significant figures when Mx1

is varied as in that Figure. In Fig. S2(b) we show these results only for Mx1 = 32, as those for Mx1 = 16

and Mx1 = 64 look indistinguishable from them.

Comparison of Figs. S2(a) and (b) shows that for Mx1 = 32 and 16, the ITEM without the preconditioner

is faster than the AITEM using P with the suboptimal c = 2. On the other hand, the AITEM with the



7

0 1 2 3 4 5
iteration number 104

-10

-8

-6

-4

-2

0

lo
g1

0 
|| 

L 01D
,H

n
 ||

  M
x1

 = 16

  M
x1

 = 32

  M
x1

 = 64

(a):  P = I
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(b):  P given by (7)

FIG. S2. Error evolution of the AITEM (6) with P = I (a) and with P given by Eq. 7 (b) for the setup of Fig. 4

with no slow-mode elimination. Parameter ∆t of the (A)ITEM was optimized to two significant figures (by trial and

error) for each simulation as listed below. (a): ∆t = 2/450, 2/1200, 2/4300 for Mx1 = 16, 32, 64, respectively; (b):

∆t = 0.025, 1.1 for c = 2, 100, respectively.

optimal preconditioner (7), (19) is faster then the non-preconditioned ITEM for all practical values of Mx1.

(Taking Mx1 to be under 10 grid points per one period of Vext will make the non-preconditioned ITEM

faster, but simulations with such a low resolution will yield a strongly distorted solution.)

V. SUMMARY OF UNSUCCESSFUL ATTEMPTS TO IMPROVE CONVERGENCE OF THE

ME-ACCELERATED AITEM BY REDUCING ERROR OSCILLATIONS

• We tried to restart ME (i.e., stop it and return to it after various numbers of no-ME AITEM iterations),

in analogy to restarting certain other methods [S7]. We varied the stopping criterion for ME (e.g., did

it when the error would grow by a specified factor between 2 and 10, or ran ME only for a specified

number of iterations). The oscillations did not, in general, reduce, and in some cases would stall at a

higher error than the tolerance.

• When the error would continue to grow either for a specified number of iterations or by a given factor,

we would flip the sign of parameter s to negative and kept it so for a (typically small) prescribed

number of iterations. The error would decay in the few initial iterations but then would grow or stall.

• As explained in Sec. II B, the idea behind ME is that Luslow,j is aligned with Lϕj so that corr[Luslow,jLϕj ] ≡

⟨Luslow,j |Lϕj⟩/( ∥Luslow,j∥ ∥Lϕj∥ ) ≈ −1. Therefore, we monitored corr[Luslow,jLϕj ] and flipped the

sign of γ to make it positive when we detected that corr[Luslow,jLϕj ] > 0. This led to the same results

as in the previous item.

• From Fig. 8(c) of the main text, one can see that the error grows when the smallest of the computed α’s

decreases. The decrease of α implies, via (8b), that γ becomes more negative. To arrest this behavior,
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we tried to set the lower bound for γ in (37) at a less negative number, e.g., −10−5. However, the error

would continue to grow, but slower, and the “bulge” in the error curve would simply take many more

iterations.

• Guided by the same observation about the correlation between the evolutions of α and the error, we

tried to limit values of α to a range as follows: Once we computed α ≡ αfirst ME at the first ME

iteration, we restricted α to a range [αfirst ME/sf, [αfirst ME · sf]. Here sf is some factor, with whose

value we also experimented. This did not consistently reduce either the duration or the magnitude of

the error oscillations.

• In a slight variation to the idea of the previous item, we modulated the ME parameter s depending

on the value of α at a given iteration; we explored various dependencies of s on α. The result was the

same as in the previous item.

• As a variation of the previous idea, we modulated s according to the error rather than α. We tried

various modification of:

sn+1 = sn
∥errorn−1∥
∥errorn∥

.

This sometimes reduced the duration and/or magnitude of the oscillation of the error evolution, but

never by more than 20 % and not in all cases.

• In a different line of thought, once we detected that the error has grown by a specified factor, we would

add a spatially smooth random perturbation to each atom, the size of the perturbation being on the

order of the error at the given iteration. The hypothesis behind this was that when the error begins to

grow, the iterations could be in the vicinity of some metastable state, and adding noise to the solution

would push it away from that state and could restore convergence of the iterations. This did not work,

and the error would typically stall.

• We also tried a number of variations of the stochastic gradient descent method. For example, we

updated, by the AITEM equation (6a), only a subset of ϕj ’s. Such a subset, different for different

iterations, was chosen either randomly or based on the size of the error of individual atoms (estimated

either from ∥(ϕj)n+1 − (ϕj)n∥ or from
∥∥(L(0)ϕj

)
n

∥∥. While the error of the updated atoms would

diminish, it would grow back when a different subset of atoms would get updated later, and the overall

result was that the average error would stall.

• Finally, we tried to include memory in the definitions of αn and ϕslow, n, by replacing αn with (1 −

mf)αn+mf αn−1, where αn was computed by (20b) and mf was some ‘memory factor’ that we varied

between 0 and 1. A similar update was used for uslow, n. This trick would occasionally help by a small

amount, around 10%, and only for small mf ≲ 0.1.
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VI. PATTERNS FOR ff = 7/16 AND 7/12

These patterns were reported by previous researchers, specifically: for ff = 7/16 — in Figs. 2(c) of [S8],

5(b) of [S9], and 2 of [S10]; for ff = 7/12 — in Figs. 5 of [S8], 7 of [S9], and 2(a) of [S11]. Our patterns,

shown in Fig. S3, agree with those up to, possibly, a 90° rotation of the computational window.
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FIG. S3. Patterns for ff = 7/16 and 7/12. See caption of Fig. 10 of the main text for explanations.

VII. QR-VERSION OF THE MME ALGORITHM

As noted in Appendix D, the condition number of matrix

P 1/2∆̂ (P 1/2∆̂)T (S18)

becomes very large for the number of eliminated modes K ≳ 10, which compromises the numerical calculation

of its Cholesky decomposition (31) and hence the accuracy of the computed eigenmodes of P−1L. One can

avoid the computation of (S18) by first computing the row-counterpart of the QR-factorization of P 1/2∆̂:

P 1/2∆̂ = R Q̂, (S19)

where R is a lower-triangular K ×K matrix and Q̂ is the matrix of the same dimensions as ∆̂ whose rows

are orthonormal. Their computation is described below. Once such Q̂ and LQ̂ (defined below) are found,

they can be used in place of P 1/2 ∆̂ and P−1/2 L∆̂ in the Algorithm of Sec. IVA. The condition number

of Q̂Q̂T is 1 by design. The ill-conditioning of ∆̂ is inherited by R, which will need to be inverted (see

below). However, condR ∼ cond∆̂ =
√
cond ∆̂ ∆̂T , and thus the calculations involving Q̂ are much less

ill-conditioned than those involving (S18).

We will now outline how (S19) is found. First, the rows of P 1/2∆̂ are orthonormalized by the modified

Gram–Schmidt algorithm. The latter is used instead of the classical Gram–Schmidt because the rows of ∆̂
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are almost linearly dependent. The modified Gram–Schmidt algorithm of orthonormalizing K vectors d⃗i is

the following (see, e.g., [S12]):

- Copy all d⃗i to v⃗i.

- for i = 1 : K

rii = ∥v⃗i∥2; q⃗i = v⃗i/rii

for j = (i+ 1) : K

rij = q⃗ T
i v⃗j ; v⃗j = v⃗j − rij q⃗i

end

end

The resulting vectors q⃗i are orthonormal. They form the rows of Q̂. The matrix R is constructed next.

One begins with constructing matrices

R̃i = Ii +

 O(i−1),K

O1,K−i−1 rii . . . riK
O(K−i),K

 , (S20)

where Ii is the K ×K identity matrix whose ith diagonal entry is replaced with 0, Oj,l is a zero matrix of

size j × l, and rij have been computed above. Then [S12]

R =
(
R̃K R̃K−1 · · · R̃1

)T
. (S21)

Finally, to accomplish step (33) of the mME Algorithm, we need a counterpart of L∆̂ ∆̂T in terms of Q̂

and L Q̂. More specifically,

L∆̂ ∆̂T ≡ P−1/2LP−1/2 P 1/2∆̂ (P 1/2∆̂)T (S22)

(since all operators in the physical (i.e., (x, y)-) space commute with the boldfaced K ×K matrices that act

on rows of the K × (NMxMy) matrices with a hat). Therefore, we seek P−1/2LP−1/2 P 1/2∆̂, which from

(S19) becomes:

P−1/2LP−1/2 P 1/2∆̂ = RP−1/2LP−1/2 Q̂, (S23a)

whence

P−1/2LP−1/2 Q̂ = R−1 P−1/2L∆̂. (S23b)

To summarize: In this version of the mME Algorithm, one uses Q̂ instead of P 1/2∆̂, whence the r.h.s. of

(31) is the identity matrix and hence C = I. In (33), B is computed as P−1/2LP−1/2 Q̂ Q̂T .

The drawback of this version, as presented above, is that one would have to perform the (row-version of)

QR factorization (S19) at every iteration, which has a relatively high operational cost of 2K2 O(NMxMy)

[S12]. As an alternative, one may be able to design a variation of the modified Gram–Schmidt process

where one of the vectors in the set (corresponding to the last row of ∆̂) is discarded and a new row is made
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orthogonal to all remaining (K − 1) rows. We did not explore this option since the more straightforward

QR-version of the mME algorithm described above did not yield any consistent improvement in the iteration

number compared to the version presented in the main text.
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